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Preface 

The constantly evolving technological infrastructure of the modem world 
presents a great challenge of developing software systems with increasing 
size, complexity, and functionality. The software engineering field has seen 
changes and innovations to meet these and other continuously growing 
challenges by developing and implementing useful software engineering 
methodologies. Among the more recent advances are those made in the 
context of software portability, formal verification· techniques, software 
measurement, and software reuse. However, despite the introduction of some 
important and useful paradigms in the software engineering discipline, their 
technological transfer on a larger scale has been extremely gradual and 
limited. For example, many software development organizations may not 
have a well-defined software assurance team, which can be considered as a 
key ingredient in the development of a high-quality and dependable software 
product. 

Recently, the software engineering field has observed an increased 
integration or fusion with the computational intelligence (Cl) field, which is 
comprised of primarily the mature technologies of fuzzy logic, neural 
networks, genetic algorithms, genetic programming, and rough sets. Hybrid 
systems that combine two or more of these individual technologies are also 
categorized under the Cl umbrella. Software engineering is unlike the other 
well-founded engineering disciplines, primarily due to its human component 
(designers, developers, testers, etc.) factor. The highly non-mechanical and 
intuitive nature of the human factor characterizes many of the problems 
associated with software engineering, including those observed in 
development effort estimation, software quality and reliability prediction, 
software design, and software testing. 

The computational intelligence area provides a software development 
team with a unique conceptual and algorithmic opportunity of incorporating 
technologies such as fuzzy logic, neural networks, and evolutionary 
computation to address open software engineering problems. The basic 
purpose of incorporating Cl technologies into the various phases of software 
development and analysis is to address the problems arising due to imprecise 
measurement and uncertainty of information. 

This book presents a collection of twelve articles selected from peer
reviewed papers that focus on computational intelligence in software 
engineering. Cl technologies have been applied to solve software 
engineering issues arising from the ever-increasing complexity of software 
systems descriptions and analysis. These papers were initially selected for a 
special volume of the Annals of Software Engineering (ASE) journal, 
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published by Kluwer Academic Publishers. Titled "Computational 
Intelligence in Software Engineering", this special volume was destined to be 
Volume 15 of the ASE. However, due to unfortunate circumstances, the ASE 
journal was discontinued after the publication of Volume 14. In light of the 
considerable efforts put in by the various reviewers, volunteers, and myself 
toward the realization of the special volume, Kluwer decided on publishing 
the same in the form of this book. I am thankful to them for recognizing our 
efforts. Twelve high-quality research papers were chosen based on a rigorous 
peer-review and selection process, from over seventy submissions received 
for the special volume of ASE. Most submissions were reviewed by at least 
four reviewers familiar with the respective subject matter. Osman Balci, the 
Editor-in-Chief of ASE, handled the review process for the included paper 
by Hochman, Khoshgoftaar, Allen, and Hudepohl. 

The contributions of this book are generally grouped into four software 
engineering categories: software project management and effort estimation; 
software quality assurance and estimation; software testing, verification, and 
validation; and, software design. All the papers focus on applying 
computational intelligence techniques to address software engineering 
problems. 

The group of articles related to software project management and effort 
estimation consists of two papers. The paper by Boetticher presents a process 
of applying machine learners, in particular neural networks, to formulate 
effort estimation models early in the software life cycle. The approach 
presented is alternative to the traditional software cost estimation models, 
COCOMO II and Function Points Analysis. Empirical case studies are based 
on input and output measures extracted from GUI interface specification 
documents. The goal of this paper is to define a tool that deterministically 
constructs accurate early life cycle estimation models. The paper by 
MacDonell and Gray presents a study of applying fuzzy logic to the software 
project management problem. A software toolset is constructed that enables 
data, classes and rules to be defined for estimation problems such as project 
risk, product size, and project effort based on a variety of input parameters. 
The effectiveness of the fuzzy logic-based toolset is demonstrated by 
applying it to two data sets, the first related to software sizing and the second 
to effort estimation. 

The next group of papers (four) is related to software quality assurance 
and software quality estimation. The first among these, by Balasubramaniam 
and Abdel-Hamid, focuses on improving the decision support system with a 
genetic algorithm to optimize the decision variable. A decision support 
system based on the system dynamics simulation model has been developed 
to support decision-making regarding the optimal allocation of effort toward 
software quality assurance. The overall objective of this study is to present a 
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tool to support the software project manager in efficiently allocating the 
quality assurance effort throughout the software development lifecycle. A 
case study is based on a real project that was conducted at one of NASA's 
space flight centers. 

The paper by Hochman, Khoshgoftaar, Allen, and Hudepohl describes an 
application of genetic algorithms to the evolution of optimal or near-optimal 
backpropagation neural networks for the software quality classification 
problem. Predicting the quality of modules as either fault-prone or not fault
prone can support the decision making process regarding the allocation of 
software quality improvement resources. The ultimate goal in this informed 
allocation of software project resources is to contain costs and maintain 
schedules with minimal impact on software quality. It is suggested that 
evolutionary neural networks can be used to successfully attack a broad 
range of data-intensive software engineering problems, where traditional 
methods have been used almost exclusively. 

The paper by Olivera and Belchior introduces a fuzzy logic-based model 
for software quality evaluation and its implementation, theAdaQuaS Fuzzy 
tool. The study clearly demonstrates how fuzzy logic is more suitable for 
software engineering decision making processes in which inherent 
subjectivity and inconsistencies are found due to the human component. Two 
empirical case studies are presented: the first is the software quality 
evaluation process of e-commerce website; the second is an evaluation of 
software requirements specification quality. The paper by Neil, Krause, and 
Fenton is based on the aim of producing a single model that combines the 
diverse forms of, often causal, evidence available in software development in 
a more natural and efficient way than done in previous related studies. They 
use Bayesian Belief Networks as the appropriate formalism for 
demonstrating the same. The authors argue that the causal or influence 
structure of these models more naturally mirrors the real world sequence of 
events that can be achieved with other formalisms. 

The third group of papers, related to software testing, verification, and 
validation, consists of four papers. The one by Mili, Cukic, Liu, and Ayed 
presents a framework for reasoning about on-line learning systems, which 
they envision as a candidate technology for their verification and validation. 
Their discussion is based on a practical problem associated with adaptive 
systems, i.e., due to the constantly evolving nature of adaptive systems, they 
are inherently more difficult to verify/validate. The paper by Briand, Feng, 
and Labiche presents an improved strategy to devise optimal integration test 
orders in object-oriented systems in the presence of dependency cycles. The 
goal of their study is to minimize the complexity of stubbing during 
integration testing, which has been shown to be a major source of software 
testing costs. The strategy to achieve the goal is based on the combined use 
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of inter-class coupling measurement and genetic algorithms, which are used 
to minimize cost functions based on coupling measurement. 

The paper by Last and Kandel presents an attempt to automate a 
common task in black-box software testing, namely reducing the number of 
combinatorial test cases. Their proposed approach is based on automated 
identification of relationships between inputs and outputs of a data-driven 
application. The input variables relevant to each output are extracted by the 
proposed data mining algorithm, called the info-fuzzy network. The case 
study is that of a typical business software application program. The last 
paper in this group, by Patton, Wu, and Walton, besides providing a basic 
introduction to genetic algorithms, presents a genetic algorithm-based 
approach to focused software usage testing. A genetic algorithm is used to 
select additional test cases to focus on the behavior around the initial set of 
test cases in order to assist in identifying and characterizing the types of test 
cases that do/do not induce system failures. It is shown that the approach 
presented supports increased test automation and provides increased 
evidence to support reasoning about the overall quality of the software. 

The next paper in this book is related to computational intelligence as 
applied to software design problems. The authors, Kung, Bhambani, Shah, 
and Pancholi present a methodology for constructing expert systems which 
can suggest software design patterns to solve design problems as stated by 
the software design team. More specifically, the expert system selects a 
design pattern through dialog with the software designer to narrow down the 
possible choices. Moreover, classification and heuristics have been used to 
improve the selection effectiveness. The final paper, by Menzies, Chiang, 
Feather, Hu, and Kiper, presents a machine-learning approach of condensing 
uncertainty of various prediction problems. Their method is based on 
incremental treatment learning and their previously proposed funnel theory. 

TaghiM.Khoshgo~ 

Florida Atlantic University 
Boca Raton, Florida, USA 
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ABSTRACT 

Producing accurate and reliable early life cycle project estimates remains an 
open issue in the software engineering discipline. One reason for the 
difficulty is the perceived lack of detailed information early in the software 
life cycle. Most early life cycle estimation models (e.g. COCOMO II, 
Function Point Analysis) use either the requirements document or a size 
estimate as the foundation in formulating polynomial equation models. This 
paper explores an alternative approach using machine learners, in 
particular neural networks, for creating a predictive effort estimation model. 
GUI-specifications captured early in the software life cycle serve as the basis 
for constructing these machine learners. This paper conducts a set of 
machine learning experiments with software cost estimation empirical data 
gathered from a "real world" eCommerce organization. The alternative 
approach is assessed at the program unit level, project subsystem level, and 
project level. Project level models produce 83 percent average accuracy, 
pred(25), for the client-side subsystems. 

KEYWORDS 
Machine learning, machine learners, requirements engineering, software 
engineering, neural networks, backpropagation, software metrics, effort 
estimation, SLOC, project estimation, programming effort. 

1. INTRODUCTION 

One of the most important issues in software engineering is the ability to 
accurately estimate software projects early in the life cycle. Low estimates 
result in cost overruns. High estimates equate to missed financial 
opportunities. 

From a financial context, more than $300 billion is spent each year on 
approximately 250,000 software projects [30]. This equates to an average 
budget of $1.2 million. Coupling these facts with Boehm's observation [2] 
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that project estimates range from 25 to 400 percent early in the life cycle 
indicates a financial variance of $300 thousand to $4.8 million. 

Why does such a high variance exist? One primary reason is the severe 
lack of data early in the life cycle. In the embryonic stage of a software 
project the only available artifact is a requirements document. This high
level document provides relatively few metrics (e.g., nouns, verbs, 
adjectives, or adverbs) for estimating a project's effort. Due to the 
complexity and ambiguity of the English language, formulating an accurate 
and reliable prediction, based upon a requirements document, is a nearly 
impossible task. 

Despite this high variance, the ability to generate accurate and reliable 
estimates early in software life cycle is extremely desirable. Many IT 
managers are under pressure to offer relatively narrow ranges of estimates 
regarding anticipated completion rates. 

The software engineering discipline recognizes the importance of 
building early life cycle estimation models. The traditional approach 
involves formulating a polynomial equation based upon empirical data. 
Well-known equations include the COnstructive COst MOdel II (COCOMO 
II) and Function Point Analysis. Each has produced reasonable results since 
their inception [13,28]. However, there are several drawbacks in using these 
well-known equations. 

Using these equations is a time-consuming process. The complexity of 
each requires extensive human intervention and is subject to multiple 
interpretations [21, 31]. What is needed is an alternative approach for 
generating accurate estimates early in the software life cycle. An approach 
which produces accurate estimates, is automated to avoid subjective 
interpretation; and is relatively simple to implement. 

This paper describes a process of applying machine learners, in 
particular neural networks, in formulating estimation models early in the 
software life cycle. A series of empirical experiments are based on input and 
output measures extracted from four different 'real world' project 
subsystems. The input measures for each experiment are derived by utilizing 
the GUI interface specification document. The GUI interface document 
offers the advantage of being an early life cycle artifact rich in objective 
measures for building effort estimation models. 

The set of experiments use 109 different data samples (or program units). 
Each program unit corresponds to a form consisting of up to twelve different 
types of widgets (e.g., edit boxes, buttons). Extracted widget counts serve as 
the input measures. The output measure is the actual, not estimated, effort 
expended in developing that particular program unit. 
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Section 2 provides background infonnation and motivation for using 
machine learners in project estimation. Section 3 discusses related research 
in the area of machine learning applied to effort estimation. Section 4 
describes a set of machine learning experiments. Section 5 offers a 
discussion of the experiments. And section 6 draws several conclusions and 
describes future directions. 

2. BACKGROUND 

Different techniques for cost estimation have been discussed in the 
literature [2, 16, and 18]. Popular approaches include: algorithmic and 
parametric models, expert judgment, fonnal and infonnal reasoning by 
analogy, price-to-win, top-down, bottom-up, rules of thumb, and available 
capacity. 

Two well-known parametric approaches for early life cycle estimation 
are CO COMO II and Function Point Analysis (FPA). 

The COCOMO II equation embeds many project parameters within the 
equation. It is defined as follows [10]: 

Effort = A * (Size)B * EM (1) 

where 

Effort refers to the Person Months needed to complete a project 

A represents the type of proj ect. There are three possible values for 
this parameter. 

Size is defined by using a SLOC estimate or Function Point Count. 

B is a derived metric which includes the sum of five cost driver 
metrics. 

EM is an abbreviation for Effort Multiplier. The COCOMO II 
equation defines seven effort multipliers for early life cycle 
estimating. 

A difficulty in applying the COCOMO II equation is managing the very 
large solution space. In the early life cycle version, there are 3 options for 
project type, 55 options for the cost drivers, and 57 options for the effort 
multipliers. Multiplying all the options together reveals a search space of 
732,421,875 different settings. This excludes the effort value supplied for the 
Size parameter. 

A more fundamental problem with COCOMO II is that it requires an 
estimate for the size of the project represented by SLOC of Function Points. 
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If the size of a project were actually known early in the life cycle, then it 
would be easy to formulate a reasonable effort estimate. 

Another parametric approach is Function Point Analysis (FPA). This 
process starts with the requirements document where a user identifies all 
processes. Each process is categorized into one of five function types; 
different Record Element Type, Data Element Types; and File Types 
Referenced. Based upon the settings chosen, the equation produces an 
Unadjusted Function Point (UFP) for each process. There are seven possible 
values for each UFP ranging from 3 through 15. 

The next step involves defining the Global System Characteristics 
(GSC). Collectively, there are 14 different GSC parameters with 5 possible 
settings for a total search space of 6, 1 03,515,625 options. The total GSC may 
range from 0 through 70. 

After applying several mathematical operations to the UFP, it is 
mUltiplied by the total GSC to produce the final Adjusted Function Point. A 
software project with only one function point may range from 1.95 to 20.25 
Adjusted Function Points. Assuming a mean of 11.1, this produces a 
variance of 83.7. This Adjusted Function Point variance does not compare 
well with Boehm's early life cycle variance of 4 [2]. 

Assuming a perfect Adjusted Function Point value is determined, the 
next step in the FPA requires the model builder (presumably a project 
domain expert) to define a constant by which to multiply the final Adjusted 
Function Point total. This last step, which is totally subjective, is the most 
critical step in the process and very sensitive to distortion. 

The complex nature of COCOMO II and FPA suggests the need for an 
alternative approach to early life cycle project estimation. 

One approach would be to formulate an early life cycle model using a 
machine learning algorithm. There are different types of machine learners 
including predictors, classifiers, and controllers. Since this is a predictor type 
problem, a neural network approach is chosen for conducting a series of 
experiments. 

The goal of these experiments is to define a tool that deterministically 
constructs an accurate early life cycle estimation model. Deterministically 
means that there are no subjective measures introduced into the modeling 
process. 

To establish a context for the application of machine learners to software 
project estimation; the following section describes previous research in this 
area. 
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3. RELATED RESEARCH 

Related research consists of the utilization of various types of machine 
learners for predicting project effort. Also, there had been some previous 
research in using GUI metrics for estimating project effort. This section 
describes both of these contexts in terms of machine learning algorithms 
deployed, if applicable, and results achieved. 

In [1, 15, 20, 24, and 25], a Case-Based Reasoning (CBR) approach is 
adopted in constructing a cost model for the latter stages of the development 
life cycle. Delany [12] also uses a CBR approach applied early in 
development life cycle. 

Chulani [9] uses a Bayesian approach to cost modeling and generates 
impressive results. He collects information on 161 projects from commercial, 
aerospace, government, and non-profit organizations [9]. The COCOMO 
data sets contain attributes that, for the most part, can be collected early in 
the software life cycle (exception: COCOMO requires source lines of code 
which must be estimated). Regression analysis was applied to the COCOMO 
data set to generate estimators for software project effort. However, some of 
the results of that analysis were counter-intuitive. In particular, the results of 
the regression analysis disagreed with certain domain experts regarding the 
effect of software reuse on overall cost. 

To fix this problem, a Bayesian learner was applied to the COCOMO 
data set. In Bayesian learning, a directed graph (the belief network) contains 
the probabilities that some factor will lead to another factor. The 
probabilities on the edges can be seeded from (e.g.) domain expertise. The 
learner then tunes these probabilities according to the available data. 
Combining expert knowledge and data from the 161 projects yielded an 
estimator that was within 30% of the actual values, 69% of the time [9]. It is 
believed that the above COCOMO result of pred(30) = 69% is a high
watermark in early life cycle software cost estimation. 

Cordero [11] applies a Genetic Algorithm (GA) approach in the tuning 
of COCOMO II. 

Briand [8] introduces optimized set reduction (OSR) in the construction 
of software cost estimation model. 

Srinivasan [29] builds a variety of models including neural networks, 
regression trees, COCOMO, and SLIM. The training set consists of 
COCOMO data (63 projects from different applications). The training 
models are tested against the Kemerer COCOMO data (15 projects, mainly 
business applications). The regression trees outperformed the COCOMO and 
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the SLIM model. The neural networks and function point-based prediction 
models outperformed regression trees. 

Samson [26] applies neural network models to predict effort from 
software sizing using COCOMO-81 data. The neural network models 
produced better results than the COCOMO-8l. 

Wittig et ai. [32] estimated development effort using a neural network 
model. They achieved impressive results of 75 percent accuracy pred(25). 

Boetticher [6] conducted more than 33,000 different neural network 
experiments on empirical data collected from separate corporate domains. 
The experiments assessed the contribution of different metrics to 
programming effort. This research produced a cross-validation rate of 
73.26%, using pred(30). 

Hodgkinson [19] adopted a top-down approach using a neurofuzzy cost 
estimator in predicting project effort. Results were comparable to other 
techniques including least-squares multiple linear regression, estimation via 
analogy, and neural networks. 

Lo et al. [23] constructed a GUI effort estimation multivariate regression 
model using 33 samples. Independent variables consisted of GUI metrics 
classified into 5 groups: static widgets (labels), data widgets not involving 
lists (edit boxes, check boxes, radio buttons), data widgets involving lists 
(list boxes, memo boxes, file lists, grids, combo boxes), action widgets 
involving the database (buttons), and action widgets not involving the 
database (buttons). Instead of using the actual effort values for the dependent 
variable, estimates from 4 experts with a least I year of experience were 
averaged. The average of these estimates ranged from 3 to 48 hours. 
Variance of the expert's estimates is not presented in the paper. The initial 
internal results were pred(25) = 75.7% and MARE 20.1%. External results 
(against another system) yielded were pred(25) = 33.3% and MARE = 192%. 

4. MACHINE LEARNING EXPERIMENTS 

4.1. General Description 

This section describes a series of machine learning experiments based on 
data gathered from four 'real-world' project subsystems. 

Prior to conducting the experiments, it was necessary to decide which 
ML approach to adopt. A neural network paradigm for creating models 
seemed like a natural choice. This decision was based upon the author's 
previous successes using neural networks to model software metrics [3, 4, 5, 
6, and 7]. 
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Advantages of using neural networks include [17]: the ability to deal 
with domain complexity, ability to generalize, along with adaptability, 
flexibility, and parallelism. 

There is also support in the literature for applying neural networks in 
estimation tasks [22, 26, and 29]. However, some researchers consider the 
relative merits of neural nets over other machine learning techniques (e.g. 
decision tree learning) an open issue [27]. 

4.2. Neural Network Overview 

A supervised neural network can be viewed as a directed graph 
composed of nodes and connections (weights) between nodes. A set of 
vectors, referred to as a training set, is presented to the neural network one 
vector at a time. Each vector consists of input values and output values. In 
Figure 1, the inputs are Xo through XN-l and the output is y. The goal of a 
neural network is to characterize a relationship between the inputs and 
outputs for the whole set of vectors. During the training of a neural network, 
inputs from a training vector propagate throughout the network. As inputs 
traverse the network, they are multiplied by appropriate weights and the 
products are summed up. In Figure I, this is Wi . Xi. If the summation exceeds 
some specified threshold for a node, then output from that node serves as 
input to another node. This process repeats until the neural network generates 
an output value for the corresponding input portion of a vector. This 
calculated output value is compared to the desired output and an error value 
is determined. Depending on the neural network algorithm, either the 
weights are recalibrated after every vector, or after one pass (called an 
epoch) through all the training vectors. In either case the goal is to minimize 
the error total. Processing continues until a zero error value is achieved, or 
training ceases to converge. After training is properly completed, the neural 
network model which characterizes the relationship between inputs and 
outputs for all the vectors is embedded within the architecture (the nodes and 
connections) of the neural network. After successful completion of training, 
a neural network architecture is frozen and tested against an independent set 
of vectors called the test set. If properly trained, the neural network produces 
reasonable results against the test suite. 
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Inputn 

Figure 1. Sample Neural Network. 

All experiments utilize a variant of the backpropagation neural network, 
called the quickprop. The quickprop algorithm converges much faster than a 
typical backpropagation approach [14). It uses the higher-order derivatives in 
order to take advantage of the curvature [14]. The quickprop algorithm uses 
second order derivatives in a fashion similar to Newton's method. Using 
quickprop in all the experiments also ensures stability and continuity. 

4.3. Description of Experiments 

Four datasets were used in the experiments. The GUI metrics were 
extracted from one of four major subsystems of an electronic commerce 
(procurement) product used in the process industry. Table 1 shows each 
major system along with the number of program units. 

Buyer Administrator 
Buyer 

Distribution Server 
Su lier 
TOTAL 

Number of ro ram units 
7 
60 
10 
32 
109 

Table 1. Description of the major subsystems. 

Each program unit consists of a GUI form along with corresponding 
code written in Delphi. 

In the context of neural networks, a program unit is referred to as a 
vector. Each vector consists of a set of inputs along with a set of outputs. 
Each vector contained twelve input parameters based upon GUI categories 
described below. These include: Buttons; Charts; Check boxes/radio buttons; 
Combo boxes; Grid (string grid, database grid); Grid Tabs; Edit boxes; 
Labels; Memo/List boxes; Menu bars; Navigation bars; and Trees. 
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The grid tabs refers to how many tabs were available for each grid. For 
example, the default is three (worksheets) in Microsoft© EXCEL. 

The output consists of the actual, not estimated, effort required for 
developing each program unit. Effort values ranged from 1 to 160 hours. All 
program units were developed by a single developer. This reduces the impact 
of the human element in terms of various skill and knowledge levels in the 
model formulation process. 

All experiments use a fully-connected neural network architecture of 12-
5-11-5-1 (see Figure 2), meaning twelve inputs, one layer of five hidden 
nodes, followed by another hidden layer of eleven hidden nodes, followed by 
another hidden layer of five nodes, then an output layer of one node. 

Input 
Buttonl ---t...-

Llbell --~. 

Memol 
Ult BoItH 

"'nu --~""'rJ 

Output 

... - ........ -- Effort 

NIY. B r --1I ... rrr'::...l.-"'~rrr-. .. 

T,...---4U1 

Figure 2. 12-5-11-5-1 Neural Network Architecture. 

In order to minimize experimental variance among experiments, we 
standardized the experimental process. Different components of each neural 
network model remain constant. Alpha, which represents how quickly a 
neural network learns, may range from zero to one. Alpha for these 
experiments is always one. Momentum, a variable which helps neural 
networks break out of local minima, may also range from zero to one. 
Momentum is also always set to 1. The threshold function is a function 
associated with each node after the input layer. Function selection determines 
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when a node fires. Firing a node essentially propagates a value further 
through the network. All experiments use an asymmetrical sigmoid function 
as a threshold function. 

One scan through the training data is considered an epoch. Each 
experiment iterates through 10,000 epochs. Initial trials indicated that 5,000 
to 7,000 epochs were sufficient for determining the highest correlation along 
with the highest accuracy (with respect to the test data). The "most accurate 
test results" is defined as number of correct matches within 25 percent, or 
pred(25), of the actual effort values for the test vectors. 

4.4. Experiments and Results 

Four different neural network experiments are performed for each 
subsystem. For each set of experiments, data from one of the subsystems is 
treated as a test suite and the data from the other three subsystems is 
combined into a training set. Each experiment is performed ten times in order 
to discount any outliers. After each experiment all the weights in the neural 
network are reset. 

Table 2 presents the Pred(25) and MARE for each of the four types of 
experiments. The Pred(25) of 64.3 percent for the 'Buyer Administrator' test 
set is reasonable, however the other Pred(25) values are low relative to [9, 
23]. The relatively low values for the Pred(25) may be attributed to range of 
effort values, 1 to 160 hours. Nineteen percent of all the vectors had an effort 
of one. As a consequence, the neural network experienced difficulty in 
adequately approaching these low effort values. Secondly, the test sets were 
organized by subsystem. This led to extrapolation issues. A total of 15 
vectors from three different test sets contained maximum values for one or 
more inputs/output. The only way to avoid any extrapolation problems would 
be to continuously retain the 15 vectors in the training set. This is not a 
realistic solution. Finally, for some of the input metrics, there were less than 
three instances of values. Essentially, the corresponding metric contributed 
little to the training process. 

The relatively large range of effort values, along with the large 
percentage of effort values less than or equal to five (65 percent) inflated the 
MARE values. 
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Buyer Admin Buyer Client Distribution Supplier Client 
Server 

Pred Pred Pred Pred 
RUN (25) MARE (25) MARE (25) MARE (25) MARE 

1 71% 54% 32% 231% 40% 212% 34% 176% 
2 57% 54% 33% 355% 50% 160% 38% 126% 
3 57% 98% 32% 258% 50% 319% 44% 179% 
4 57% 72% 23% 385% 60% 84% 41% 200% 
5 57% 89% 27% 248% 50% 66% 38% 288% 
6 71% 38% 33% 210% 50% 176% 41% 171% 
7 71% 82% 25% 253% 50% 74% 38% 189% 
8 71% 44% 18% 312% 50% 55% 38% 198% 
9 71% 53% 23% 254% 50% 492% 38% 178% 
10 57% 103% 25% 652% 60% 68% 44% 131% 

AVE 64.3% 68.5% 27.2% 316% 51% 172% 39.1% 184% 

Table 2. Results from initial experiments. 

One question is whether the results are any different when perceived 
from the subsystem (project) level. Viewing the results from a subsystem 
perspective, as opposed to a program unit perspective, dramatically improves 
upon the results. Table 3 shows the Pred(25) and MARE for each of the four 
major subsystems. The results are determined by summing the calculated 
effort values for each program unit for each individual experiment. Hence 
three of the four models produced estimates 80 percent or higher with 
MARE values less than 18 percent. The best case generates a Pred(25) of 90 
percent and a MARE of 12.2 percent. 

Subs stem Pred 25 MARE 
Buyer Administrator 80% 17.6% 

Buyer Client 80% 14.6% 
Distribution Server 20% 96.7% 

Supplier Client 90% 12.2% 

Table 3. Aggregate analysis of the subsystems. 

A natural extension of the subsystem results would be to aggregate them 
into corresponding project results. Table 4 presents two worst-case scenarios 
and one average-case scenario. For the worst-case scenarios the minimum 
average efforts and maximum average efforts are totaled. The average-case 
scenario is the average estimate (for the ten experiments) for each subsystem. 
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Subsystem Worst case Worst Case Ave. Actual 
Min. Max. Cases Effort 

Buyer Admin. 158 289 220 215 
Buyer Client 958 1660 1313 1202 
Dist. Server 114 246 170 307 

Supplier Client 505 790 644 576 
TOTAL 1735 2985 2347 2300 

Table 4. Aggregate analysis of the project. 

Thus, in the worst-case scenarios, the collective estimates range from 
24.6% below the actual project effort to 29.8% above the actual project 
effort. The average-case estimate is within 2% of the actual project effort. 

5. DISCUSSION 

The vectors were grouped according to the project subsystems, rather 
than applying a statistical process for organizing the vectors. This followed 
the natural contours of the project at the expense of generating artificially 
better results. 

One question that persists is, "Why are the results so low for the 
distribution server presented in table 3?" In general, server-side applications 
are not intended to be interactive. As a consequence, GUI-based metrics 
might not be appropriate for server-side software. However, the server-side 
metrics did not taint the results presented in table 4. 

This work extends the previous research of Lo et al [23] by assessing 
more data in greater detail using better effort values. See Table 5 below. 

Category Lo [23] Current work 
Data Samples 33 109 

Number of GUI metrics 5 12 
utilized 

Does formulating GUI Yes No 
metrics require human 

interpretation? 
Model type Multivariate regression Neural networks 

Nature of effort values Defined through expert Based on actual 
estimates effort values 

Best results Pred(25) = 75.7%, Pred(25) = 90%, 
MARE =20.1% MARE = 18% 

Table 5. Comparison of current with previous research. 
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Extrapolation issues frequently arose during the conducting of 
experiments. Adding more data might reduce the frequency of extrapolation, 
but it will never eliminate the problem. The extrapolation issues did not seem 
to affect the results produced at the subsystem and overall project levels. 

It is worth noting the software environment from which this data 
emerged. This organization did not have a formal process. Most likely it 
would be characterized as a one in the context of the Capability Maturity 
Model. Thus, the experiments show that it is possible to construct very 
reasonable early life cycle project estimates in light of a poorly defined 
process. 

6. CONCLUSIONS AND FUTURE DIRECTIONS 

This research describes a process of formulating early life cycle project 
estimates based on OUI specifications. Twelve different types of widgets are 
counted. Most, if not all, of the widgets are frequently used and well 
understood within the software industry. 

Using well-defined widgets simplifies the measurement gathering 
process. Thus, the learning curve is rather shallow (as compared to 
COCOMO II or FP A) for understanding the model formulation process. 

The model formulation process is repeatable since there is no 
subjectivity involved in counting the widgets. 

The results at the program unit level seemed low. However, the results 
improved dramatically when viewed from the project subsystem level. Three 
of the four subsystems produced a Pred(25) of 80% or higher and a MARE 
of 18% or lower. 

One strategy to improve upon the results at the program unit level would 
be to reduce the number of classes for the effort values. Thus a set of actual 
effort values ranging from 10 to 15 hours may be collapsed into 12.5 hours. 

Since the literature describes various applications of Machine Learner in 
effort estimation, it would be plausible to conduct additional experiments 
using other machine learning algorithms. 

The process does not fare very well in situations where development is 
computationally complex with little or no OUI specifications. This is evident 
in the server-side results. One future activity would be to integrate the neural 
network-based OUI effort estimation approach with an algorithmic approach, 
such as COCOMO II or FP A. This could reduce the complexity related to 
COCOMO II and FP A and extend the neural network GUI approach to 
accommodate non-OUI software development. 
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ABSTRACT 
In this paper we provide evidence to support the use of fuzzy sets, fuzzy rules 
and fuzzy inference in modeling predictive relationships of relevance to 
software project management. In order to make such an approach accessible 
to managers we have constructed a software toolset that enables data, 
classes and rules to be defined for any such relationship (e.g. determination 
of project risk, or estimation of product size, based on a variety of input 
parameters). We demonstrate the effectiveness of the approach by applying 
our fuzzy logic modeling toolset to two previously published data sets. It is 
shown that the toolset does indeed facilitate the creation and refinement of 
classes of data and rules mapping input values or classes to outputs. This in 
itself represents a positive outcome, in that the approach is shown to be 
capable of incorporating data and knowledge in a single model. The 
predictive results achieved from this approach are then compared to those 
produced using linear regression. While this is not the principal aim of the 
work, it is shown that the results are at least comparable in terms of 
accuracy, and in specific cases fuzzy logic modeling outperforms regression. 
Given its other appealing characteristics (for instance, transparency, 
robustness, incorporation of uncertainty), we believe that fuzzy logic 
modeling will be useful in assisting software personnel to further improve 
their management of projects. 

KEYWORDS 
Fuzzy logic modeling, project management, software metrics. 

1. INTRODUCTION 
Effective management of projects remains a significant challenge in 

software engineering practice. While technical and marketing issues may 
have a strong influence over a project's success, poorly managed projects are 
more likely to fail than succeed, no matter how clever the technology or how 
well tailored the product to the market's needs. In this regard the use of 
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effective management models in classifying and predicting important project 
management parameters (for example, defect density, requirements 
volatility, system size, or personnel effort) can be influential in determining 
the success of a project. In this paper we focus our attention on the issues of 
code product size prediction and personnel effort estimation based on 
measures collected during the specification and design stages of 
development. 

Central to this paper is the contention that the components and methods 
comprising fuzzy logic modeling (fuzzy sets, fuzzy rules, and fuzzy 
inference) can be used to good effect in the management of software 
projects. Although more traditionally associated with hardware devices and 
embedded systems, fuzzy logic modeling is receiving increasing attention 
from the software development and project management research 
communities [1-4]. This has occurred largely in response to the perceived 
limitations of other classification and prediction methods. For instance, in 
contrast to many statistical and machine-learning approaches, fuzzy logic 
methods can be used effectively either with or without large banks of 
historical data. Furthermore, they have other characteristics that match those 
sought by project managers - for instance, they can cope with a degree of 
uncertainty and imprecision in classification and prediction, the models 
produced using fuzzy logic methods can be constructed on the basis of 
existing management expertise, and models can also be adjusted as new 
knowledge is gained. While there has been some work to date in this area 
[1,4-7], recent research has largely been focused on the use of fuzzy logic in 
retrieving 'similar' cases. In contrast, the emphasis here is on assessing the 
performance of fuzzy logic modeling in characterizing relevant variables and 
the relationships between them. In the case studies presented later in the 
paper, the accuracy of the fuzzy logic models is shown to be as good as or 
better than that achieved with standard linear regression. 

The remainder of the paper is structured as follows: we next provide an 
overview of issues relating to software project management, with particular 
emphasis on less mature software organizations; this is followed by a 
description of fuzzy logic modeling in relation to software measurement; a 
review of the applicability of fuzzy logic modeling to software project 
management is presented; a description of the software environment that has 
been created to support the use of fuzzy logic modeling in this domain is 
provided; this is followed by two case studies, the first relating to software 
sizing and the second to effort estimation; and we close with some comments 
on the potential of the approach and future research opportunities. 



www.manaraa.com

Applying Fuzzy Logic Modeling to Software Project Management 19 

2. SOFTWARE PROJECT MANAGEMENT 
It is a truism to say that in order to manage software processes we must 

first know how to measure them - with such a foundation we can make 
predictions, generate plans, monitor activities, exert control in a sensible and 
reasoned manner, and finally evaluate processes and learn how they might be 
improved. The classifications and predictions that form part of this 
management activity may be constructed from formal and informal models, 
expert knowledge, or some suitable combination of these. Some techniques 
for developing such models have become well known and include function 
point analysis [8] and CO COMO [9] (in their various forms); alternatively 
regression or other data-driven models may be used as they allow the 
modeler greater freedom, albeit at the expense of a degree of standardization 
and (global) comparability. 

The use of such software measurement models for prediction and 
classification in project management has promised much and in some cases 
has been very successful. However, it has also been hampered by many 
difficulties, not the least of which is in ensuring that the models actually 
capture the factors of interest and influence. Managers may possess 
significant knowledge about the likely relationships between factors, 
including variables that cannot be effectively or easily modeled in a formal 
or quantitative sense (e.g. team dynamics, developer fatigue, and the likely 
effect of new techniques and tools). These variables are those that the 
experienced manager takes into account implicitly when they make a 
'guestimate' or instinctively round a predicted value up or down after using a 
formal technique. In order to improve our processes, however, we need to 
have repeatability and consistency in management; this generally requires the 
use of more formalized modeling techniques, techniques that are typically 
less able to take such subjective knowledge into account. 

A related concern arises when experienced managers leave an 
organization, taking substantial amounts of project management knowledge 
with them. This knowledge is crucial for planning, and in many 
organizations, particularly those that are not mature in terms of process, such 
knowledge may be difficult or even impossible to replace. This information 
can have a significant and potentially quantifiable financial value to the 
organization, so attempts to retain even some of this knowledge could be 
crucial to its continuing viability. 

To augment this expert knowledge, databases of historical data can be 
populated and used for model development, indexed for retrieval, and mined 
for trends and patterns. Data for many different software measures could be 
collected, including specification size, developer expertise and experience, 
and code quality and complexity, depending on the relationship(s) of 
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particular interest. Less mature organizations, however, are characterized by 
the absence of such databases (and, for that matter, the procedures of 
systematic collection), making model development and subsequent 
calibration far less feasible. Unfortunately many modeling methods assume 
the availability of such a collection of records. Furthermore, the usefulness of 
any data that might be available is further limited by rapidly changing 
technology, in that new development environments, programming languages, 
methodologies and other factors can all make project data outdated within a 
short period of time [10]. 

In light of these difficulties, one of the most commonly used prediction 
'techniques' in management practice, particularly in new or emerging 
software organizations, is expert estimation [11,12]. While this can be very 
effective, it suffers from problems of subjectivity, non-repeatability, 
inconsistency, and, as mentioned, vulnerability to loss of knowledge if 
managers leave an organization. In these circumstances what is needed is not 
more formalized models of metrics, nor more ways of guessing parameter 
values - rather, we need to find a way to combine expert and formal 
modeling without overly dulling the benefits of either [12,13]. 

3. FUZZY LOGIC MODELING AND SOFTWARE 
MEASUREMENT 

(The use of fuzzy logic modeling in relation to software engineering and 
project management has only recently come to prominence, in spite of a 
small number of innovative papers published during the 1990s. We therefore 
include here a high-level overview of the basic concepts of fuzzy sets and 
fuzzy logic in this context. More detailed introductions may be found in [3] 
and [14]. The reader who is familiar with such material may wish to skip 
directly to the next section.) 

Fuzzy logic is a term used to describe a set of modeling methods that 
enables us to accommodate the imprecision in relationships between 
variables. Fuzzy sets can have linguistic rather than numeric labels in order 
to represent the inherent uncertainty in some concepts. For instance, a system 
may best be described as large (for the concept of size), a developer may be 
highly experienced, and a program may have very simple structure. Figure 1 
shows an illustrative group of fuzzy sets (or membership functions) derived 
from a project manager regarding his perspective on data model size. It 
provides an easily understandable view of what this expert means when he 
says that a system has a 'small-medium' sized data model (about 30 entities 
in this case), or a 'very large' data model (something over around 110 
entities). A system with 60 entities is apparently what this expert would 
regard as exactly matching his view of a 'medium' sized data model. 



www.manaraa.com

Applying Fuzzy Logic Modeling to Software Project Management 21 

MFd..-"" 
m .. dium 

1.00 small 

Iliall clqn::c: =- O.B 

0.5 

medium dq~c: = O.:! 

0.0 ¥----'----,-------¥------,-------"--,-
o .ntltl •• = 10 

30 60 90 \20 

Entities 

Figure 1. Example membership functions for a data model size variable. 

Of course, such membership functions must first be derived for each of 
the concepts of interest. Common techniques used with groups of experts 
include polling, negotiation and voting [14,15]. Alternatively a single expert 
can outline their membership functions by specifying the centers of each set 
and then evaluating the concept at various points along the x-axis. Note that 
there is no reason for membership functions to be represented only as 
triangles. Other shapes, such as trapezoids, bell-shaped curves, and even 
arbitrary curves, can be used equally well. The specific shape should be 
chosen in order to most effectively represent the views of the expert in terms 
of the degree of set membership for various values within the range of 
interest. Or, if some data is available then it can be used to derive 
membership functions, usually based on some form of clustering. These 
data-derived functions can then be used as is, or may be employed more as a 
first-cut system requiring refinement by domain experts. 

Membership functions define the level of mapping between values and 
concepts, so we have considerable freedom in how we define these functions, 
both directly (as in Figure 1) and implicitly - for example, adjectives such as 
'about' can be defined so as to be usable for any numeric value, as in Figure 
2. 
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Figure 2. Different forms oflinguistic membership functions. 

Crucial to the fuzzy logic modeling approach is the fact that propositions 
are allowed to take various degrees of truth [14], so that membership of any 
particular fuzzy set is partial rather than exclusive. This allows a manager to 
describe a system as mostly 'large', say to a degree of 0.75 (on the scale 0 to 
1) in terms of data model size, but also to some degree, say 0.40, 'medium'. 
For each concept the number of membership functions can be made as high 
as necessary to capture the required level of granularity. A manager may 
choose to begin with three (to represent low, medium, and high or similar) 
and then extend to five, seven or more as the available information increases 
and accuracy demands become greater. 

Given a set of membership functions, rules are then needed to relate the 
variables to one another as appropriate. It is here that fuzzy rules and fuzzy 
inference (rather than fuzzy sets) become apparent in a model, although the 
termJuzzy logic is often used to describe the entire modeling approach. Rules 
generally take the form of 'these input variables with these labels/values 
generally lead to this output variable having this label/value'. Again, rules 
can be derived directly from an expert, from voting and negotiation 
procedures with a group, or from an existing data set. 

An sample pair of simple rules relating an interface size variable 
(number of screens) and data model size (number of entities) with code 
product size (number of lines of code) could be: 
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IF screens is LOW 
AND entities is LOW 

THEN size is VERY LOW 

IF screens is MEDIUM 
AND entities is MEDIUM 

THEN size is MEDIUM 

The rules are fired based on the degree to which each rule's antecedents 
match the observed values/sets, in this case the numbers of screens and 
entities. Each rule then makes a contribution to the output prediction - being 
either a label or a numeric value - based on the degree to which its 
conditions are satisfied (thus interpolating between the rule points) and 
determined using a chosen defuzzification method. As in production systems, 
this process is known as inference. 

The standard logical connectives and modifiers AND, OR, and NOT can 
be used along with bracketing to create nested rules. Rules may also be 
weighted, and even individual clauses can be given weights, to reflect the 
extent of confidence the domain experts have in a given rule or clause, with a 
consequential effect on the processing of the rules to determine the output 
label or value. There is an obvious trade-off, however, between rule 
sophistication (and thus the ability to make arbitrary mappings) and 
comprehensibility. 

(Note: In this paper the term fuzzy logic modeling is used to refer to the 
combined use of fuzzy sets, fuzzy rules and fuzzy inference.) 

4. APPLICABILITY OF FUZZY LOGIC MODELING TO 
SOFTWARE PROJECT MANAGEMENT 

The characteristics of fuzzy logic modeling that make it suitable in 
principle for software project management are as follows. 

Able to cope with minimal data: Since they can be based on data, 
knowledge, or both, fuzzy logic models can be developed with little or even 
no data at all (see also the following two points). This is a considerable 
advantage given the widely acknowledged problems encountered in data 
gathering in software management research and practice. It is well known 
that the collection of homogeneous data sets is often complicated by rapidly 
changing technologies and by reluctance for inter-organizational sharing of 
measurement data. Even within a single organization there can be 
considerable pressure from programmers and managers against measurement 
collection. 

Robustness to data set characteristics: It is not uncommon for 
software management data sets to contain unusual or anomalous observations 
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thus reducing the generalisability of any model derived empirically from 
them [16]. These atypical observations may occur for a variety ofreasons -
change in development practices, enhanced training for staff, or other 
unmeasured (perhaps unmeasurable) influences. By developing models with 
considerable expert involvement, where the model can be interpreted, 
checked and refined if needed, some of the problems of non-representative 
data corrupting empirically tuned models can be reduced or avoided. 

Use of expert knowledge: Since fuzzy logic enables us to represent 
concepts as membership functions and associations between these concepts 
as rules we can very easily incorporate expert knowledge of such concepts 
and relationships in a fuzzy system. This expert knowledge is therefore 
naturally captured within the system, providing a means of retaining it, 
perhaps beyond the expert's employment. This means that organizations that 
are 'data-poor' but 'knowledge-rich' can still develop and use effective and 
locally relevant management models. This is in contrast to other data
dependent modeling methods, including statistical methods such as cluster 
analysis and linear regression, and connectionist methods including neural 
networks. Note that we are not advocating that data-driven modeling should 
be abandoned entirely; on the contrary, if a high quality data set is available 
then it can be extremely valuable in terms of providing the basis for useful 
models. Rather, we are simply suggesting that total reliance on empirically 
derived models may not always provide an optimal solution, particularly in 
circumstances where the data set is small, incomplete or limited in other 
ways. A modeling method that sensibly incorporates the views of 
experienced personnel and combines this dynamically with appropriate data 
as it becomes available would seem to the most preferable approach. This 
seems all the more reasonable when it is considered that expert estimation is 
still prevalent among many software organizations [11]. (As a result, our 
software toolset (described later in the paper) can accommodate both data 
and expert knowledge as appropriate for each relationship being modeled.) 

Able to cope with uncertainty: The terms 'prediction', 'estimate' and 
the like are generally understood to indicate a forecast value. In terms of 
good business practice it is normally in our interests to provide estimates that 
are as close as possible to the values actually achieved or incurred. That said, 
there should also be a degree of acceptance that there is some chance that the 
actual value will not match the estimate made. Such an outcome becomes 
increasingly likely when we have only minimal information on which to base 
our prediction. Where this is the case, however, our estimate may be made 
more accurate as we move through the process and more information 
becomes available. In many industries such a scenario operates quite 
effectively. In the software industry, however, the provision of accurate 
estimates early in the development process is much more difficult. 
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Requirements are volatile, processes vary, personnel are transient, 
technology moves rapidly - change is endemic. Under these circumstances it 
would seem sensible to use modeling methods that enable us to formulate 
estimates with some form of associated confidence factor, along with an 
assessment of the source and level of risk that the estimate will not 
correspond to the actual value. Early estimates are clearly needed - modeling 
methods that enable early 'ball park' predictions to be developed, but that 
deliver them to both manager and client with appropriate qualification either 
as a label or as a likely range of values, would appear to be an acceptable 
compromise. Methods should also be sufficiently flexible to enable the 
incorporation of contingencies based on sound organizational knowledge 
[17,18]. Fuzzy logic models facilitate the provision of confidence-weighted 
predictions as well as the inclusion of relevant contingencies. 

Varying granularity: A further related advantage of fuzzy logic models, 
but one that is less frequently cited, is the ability to change the level of 
granularity in the inputs and outputs without changing the underlying rule set 
[19]. For example, Figure 3 shows the inputs to and outputs from a rule set at 
different stages of a software development process. During requirements 
analysis the inputs to and outputs from the model are linguistic, they become 
fuzzy numbers during design, and evolve into exact values in later stages, 
when more is known. This increasing specificity can be easily 
accommodated using the same fuzzy logic model so there are no problems 
with inconsistent models when moving from phase to phase. In short, we can 
design a fuzzy logic model so that input granularity reflects what we actually 
know, and output granularity reflects what we need to know. 

'Free' modeling capability: As opposed to more formalized algorithmic 
techniques, such as function point analysis and linear regression, fuzzy logic 
models can include any variables at all and the inference process can easily 
account for non-linearity and interactions in relationships. 

Easily learned and transparent: Relatively speaking, fuzzy logic 
modeling is considerably easier to understand and use than many statistical 
and neural network techniques. While there are several important underlying 
mathematical principles, the technique lends itself to use by novices as well 
as experts [14,20]. Fuzzy logic models are also completely transparent in that 
the mapping from inputs to outputs can be examined, analyzed, and revised 
where necessary. This can be especially important in terms of a model's 
acceptance by the personnel affected by its use. An ideal modeling method 
should strike a balance between effectiveness in terms of accuracy and 
consistency on the one hand and simplicity in calculation and application on 
the other. 
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In spite of what appears to be sound rationale for the application of fuzzy 
logic in software engineering and management, work to date in this area has 
not been extensive. One of the earliest papers to address this general area 
reported on the use of fuzzy sets in assessing software correctness [21]. In 
1994 Kumar et al. [22] provided an excellent introduction to the potential of 
fuzzy logic and neural networks in software engineering project 
management, but perhaps because it appeared in an artificial intelligence 
journal rather than mainstream software engineering literature the ideas 
relating to fuzzy logic were not widely adopted in this domain. The same 
may be said of the work of Shipley et al. [2], which was reported in the 
engineering and technology management literature. In the wider context of 
systems management de Ru and Eloff [23] used a simulated case study to 
illustrate the potential of fuzzy logic modeling in computer security risk 
assessment. Looking specifically at the synthesis of fuzzy logic and software 
management, Khoshgoftaar and Allen and their colleagues have undertaken 
some of the more prominent work in this area, although their focus had 
tended to be on other modeling methods, including neural networks, genetic 
programming and decision trees [24,25]. Ebert [26] assessed the comparative 
performance of a similar set of methods in determining error-prone modules 
in a large telecommunication system. More recently, Idri, Abran and others 
have used fuzzy logic in relation to software development effort prediction 
using a fuzzy variant of the COCOMO model [1] and in creating more 
forgiving methods for the retrieval of analogous cases in software project 
management [5,6]. 
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Figure 3. Changes in input and output granularity throughout the development 
process. 
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5. THE FUZZYMANAGER TOOLSET 
Since there is limited benefit in proposing solutions to problems without 

providing developers and managers with the means to implement those 
solutions [27], we have developed a freely available fuzzy logic modeling 
toolset called FUZZYMANAGER [20]. The toolset consists of two modules, 
FULSOME (FUzzy Logic for SOftware MEtrics) and CLUE SOME 
(CLUster Extraction for SOftware MEtrics). 

The FULSOME module (Figure 4a-d) supports the graphical creation 
and refinement of membership functions (Figure 4b) and rule bases (Figure 
4c) using expert knowledge, as well as tracing the inference process at the 
observation, rule, and rule clause levels (Figure 4d). This latter component is 
important from the perspective of credibility, delivered through model 
transparency, and robustness, in that any anomalies in the inference process 
can be identified and corrected where appropriate. 

The FULSOME process can be augmented through the incorporation of 
relevant data observations. In fact, an organization that has systematically 
collected data concerning a particular relationship but that does not 
understand the 'rules' governing that relationship can use the CLUESOME 
module to derive membership functions and rule bases from that data (either 
together or separately), using a simple form of fuzzy c-means clustering. 
Two separate algorithms are used, one for membership functions and another 
for rules. Some approaches to obtaining fuzzy logic systems from data use 
highly complex algorithms that produce extremely effective mappings 
between inputs and outputs. Here we have used a simpler method that 
generally produces smaller and more intuitively acceptable rule sets, given 
that there is a trade-off between understandability and accuracy in such sets. 
Just as importantly, project managers in our collaborative partner 
organizations have understood the algorithms without difficulty. The 
extracted membership functions and rules can then be imported back into 
FULSOME for further processing and possible refinement. (The case studies 
discussed later in the paper both employ a data-driven approach to model 
development, to illustrate the use of both CLUESOME and FULSOME 
modules.) 
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The following steps are performed in the membership function extraction 
algorithm: the user selects the number of membership functions and their 
shapes for each of the variables of interest; the clustering algorithm finds the 
centers of the clusters for each variable; each cluster center is used for the 
center of a membership function with appropriate parameters used to connect 
it to its adjacent functions (if any). This process is more formally expressed 
as follows: 
1. select an appropriate mathematically defined function for the 

membership functions of the variable of interest i, say fi(x) 
2. select the number of membership functions that are desired for that 

particular variable, mi 
3. call each of the m;functionsfij([xJ) where} = I ... mi and [x] is an array of 

parameters defining that particular function (normally a center and width 
parameter are defined) 

4. using one-dimensional fuzzy c-means clustering on the available data set 
find the mi cluster centers, eij 

5. sort the cluster centers eli into monotonic (generally ascending) order for 
the given i 

6. set the membership function center for fli' generally represented as one of 
the parameters in the array [x], to the cluster center eij 

7. set the membership function widths for fij in [x] such that I min=1 

fin([cin, ... J) = 1, or as close as possible for the chosen fix) where this 
cannot be achieved exactly (for example for triangular membership 
functions each function can be defined using three points a, band c 
where a is the center of the next smaller function and c is the center of 
the next larger function). 

In the rule extraction algorithm the following steps are undertaken: the 
user selects the number of rules desired; the clustering algorithm finds the 
cluster centers; the membership functions that are mostly highly activated for 
each variable are used as the antecedents and consequents of each rule. 
Optionally, the label activation degrees can be used to produce rule weights, 
and rules with the same set of labels can be combined to produce a smaller 
rule base. More formally, this can be described as follows: 
1. start with known membership functions fii[x J) for all variables, both 

input and output, where} represents the number of functions for variable 
i and [x] is the set of parameters for the particular family of function 
curves 

2. select the number of clusters k (which represents the number of rules 
involving the k-l independent variables to estimate the single output 
variable) 

3. perform fuzzy c-means clustering to find the centers (i dimensional) for 
each cluster 
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4. for each cluster k with center Ck 

a. determine the kth rule to have the antecedents and consequent /ij 
for each variable i wherejij(ck) is maximized over all} 

b. weight the rule, possibly as rr n~dij( Ck) or Iin~J /ij( Ck) 

S. combine rules with the same antecedents and consequents, either 
summing, multiplying, or bounded summing rule weights together 

6. (optionally) ratio scale all weights so that the mean weight is equal to 1.0 
to aid interpretability. 

The two components of the CLUE SOME module, the data entry/edit 
screen and the cluster view screen, are shown in Figure Sa-b. 

Figure Sa. CLUE SOME data entry/edit screen. 
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6. CASE STUDY 1 - SOFTWARE SIZING 
To illustrate the viability of fuzzy logic modeling in software project 

management we conducted a case study utilizing a previously published 
software engineering data set concerned with code product size prediction 
for 4GL systems (see [28]). Data had been routinely collected over a period 
of five years relating to the development of small- to medium-sized 4GL 
transaction processing systems by groups of senior students at the University 
of Otago in New Zealand. This led to the availability of a data set comprising 
70 observations, each incorporating measures relating to the size of the data 
model and the functional decomposition chart from the requirements 
specification and a count of the number of source statements of 4GL code 
that comprised the delivered system. Although we did have some high-level 
knowledge of the systems, and of the personnel involved in their 
development and management, these individuals were no longer part of the 
faculty. We therefore decided to treat this case study as one that might match 
the scenario in industry whereby experienced development and management 
personnel had left the organization, taking with them their knowledge of 
relevant size prediction models. This implied the use of CLUESOME in 
order to build a first-cut fuzzy system from the existing data set. 
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Given that our aim here was principally to illustrate the feasibility of 
fuzzy logic modeling in the context of software project management the 
actual data set was not especially important - any systematically collected 
software management data set could have been used. This set was chosen, 
however, because we knew something about the systems and had previously 
analyzed the data using standard statistical methods. This analysis, reported 
in [28] along with the full data set, indicated that an effective predictive 
model of 4GL system size could be constructed using linear regression and 
incorporating measures of the number of attributes in the system data model 
and the number of non-menu system functions (in other words, data 
entry/edit screens and periodic reports) depicted in the functional hierarchy 
as predictor variables. In order to provide a basis for comparison in terms of 
model performance we decided to use this model as a benchmark and as a 
starting point for our fuzzy logic model construction. Thus our model was to 
consist of two predictor variables - the number of attributes in the system 
data model (ATTRIB) and the number of non-menu functions in the 
functional hierarchy (NONMENU) - and one independent variable - the size 
of the implemented system in 4GL source statements (Size). 

In order to develop useful predictive models it is common practice to 
split any available data set into two parts - the first is used to build a 'best 
fit' model, and the second is used to assess that model's accuracy on an 
unseen collection of observations. We also chose to follow this convention. 
Moreover, previous research has indicated that model construction using 
empirical analysis of software engineering data sets can be influenced 
significantly by the samples used in the construction process [29,30]. In 
order to lessen the possible bias of a single sample, we therefore took two 
separate random samples of twenty observations as our test samples, leaving 
two samples of fifty observations for the model building process. 

The CLUESOME module of FUZZYMANAGER was used to generate 
membership functions and rule sets for each of the two build samples. 
Several membership function structures were considered, including bell, 
trapezoidal and triangular shaped sets numbering five or seven for each of 
the three variables. The fit of each model was considered in terms of six 
measures of accuracy (where the relative error of each prediction equals the 
actual value less the predicted value all divided by the actual value): mean 
magnitude of relative error (MMRE), median magnitude of relative error 
(MedMRE), the proportions of predictions falling within 20% and 30% of 
the actual values (pred(20) and pred(30) respectively), and two indicators of 
absolute error, the sum of the absolute difference (SumAbsDiff), and the 
median absolute difference (MedAbsDiff). Whilst the MMRE, MedMRE and 
pred indicators have been widely used in empirical software engineering 
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research opinion is divided on their appropriateness, hence the inclusion of 
the simpler absolute error measures. 

It should be noted that we did not expend a large amount of effort 
optimizing the accuracy of our build models, for three reasons. One, high 
accuracy on a build sample does not necessarily translate to similar or better 
performance on an independent test sample, where it is actually desired; two, 
we may over-fit the model to the build sample at the expense of model 
generalisability; and three, we wanted to assess how well a reasonably 
rudimentary fuzzy model performed against standard statistical methods. To 
this end CLUESOME produces straightforward outputs - it simply looks for 
important rules based on all of the predictor variables (antecedents), 
combined using only the AND connective. Thus it can be considered that the 
generated models are at the low end of the spectrum in terms of 
sophistication (and therefore complexity). This illustrates our intent that 
CLUE SOME provide easily understandable fuzzy systems as a starting point 
for expert refinement, rather than highly accurate but potentially very 
complex systems. 

For both build samples it was found that seven rather than five 
membership functions provided the most accurate models. For the ATTRIB 
and NONMENU variables we used the labels VeryLow, Low, LowMedium, 
Medium, MediumHigh, High and VeryHigh to indicate the spread of values. 
A slightly different set of labels was used for Size: VerySmall, Small, 
SmallMedium, Medium, MediumLarge, Large and VeryLarge. Trapezoidal 
sets proved to be slightly more effective for build sample one, whereas 
triangular sets performed most effectively for the second build sample, 
although the difference in performance for both samples was not large. In 
both cases, however, bell-shaped curves did not result in usefully accurate 
models. 

Another difference resulting from the use of two different build samples 
was the number of extracted rules to provide the most accurate model. We 
evaluated just two sizes of rule set, at fifteen and twenty rules respectively. 
The most accurate model for build sample one comprised fifteen rules 
whereas the best-performing model for build sample two was made up of 
twenty rules. Again, we could have evaluated many other rule set sizes in 
order to possibly achieve further incremental improvement, but for the 
reasons stated above we maintained a reasonably simple build and 
assessment strategy. 

The form of the systems as generated and imported into FULSOME is 
illustrated in the screen shots shown in figure 4. Figure 4b shows the seven 
triangular membership functions created for the ATTRIB variable from build 
sample two. A selection of the associated set of rules is shown in figure 4c. If 
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no data had been available, but the organization had substantial experiential 
knowledge of the important concepts (variables) and their relationships, 
these same components of the system could have been created and edited 
directly in FULSOME. 

The selected models were then applied in a predictive capacity in 
FULSOME against their corresponding test samples. Input values for the two 
independent variables were mapped onto the output functions using the rule 
sets, and point estimates of Size were inferred for each observation (although 
linguistic labels or ranges could have been chosen instead). Table 1 provides 
a summary of the accuracy of the two fuzzy models. For the purposes of 
comparison, these results are shown alongside the performance of linear 
regression models generated for each of the build samples and then applied 
against the same test samples as their fuzzy counterparts. 

Regression Fuzzy Regression Fuzzy 
Modell Modell Model 2 Model 2 

MMRE 0.22 0.17 0.31 0.31 
MedMRE 0.16 0.10 0.17 0.17 
pred(20) 55% 50% 55% 45% 
pred(30) 65% 55% 65% 55% 
Nopred 0% 30% 0% 10% 

pred(20)s 55% 71% 55% 50% 
pred(30)s 65% 79% 65% 61% 

SumAbsDiff 4463 2367 5557 4992 
MedAbsDiff 175 97 198 146 

Table 1. Comparative performance of regression and fuzzy logic models for the 
two test samples (case study 1). 

It can be seen in Table I that in terms of the MMRE, MedMRE, 
SumAbsDiff and MedAbsDiff measures the two fuzzy logic models 
performed either as well as or better than the corresponding regression 
models. Using the pred(20) and pred(30) indicators, however, the regression 
models were superior for both samples. These results are confounded, 
however, by the fact that in both cases the fuzzy logic model failed to 
provide predictions for some of the observations in the test samples. This 
occurred for six of the twenty observations in sample one and two .of the 
twenty cases in sample two (indicated as 30% and 10% in the 'No pred' line 
of Table I). These cases made no contribution to the MMRE and MedMRE 
calculations leading to what might be seen as optimistic values for the fuzzy 
logic models. On the other hand, the pred values for the fuzzy logic models 
are pessimistic as they were calculated over the entire set of twenty 
observations even though for some no estimates were made. In order to 
provide further insight in terms of performance we have also included 
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measures of pred accuracy over the subset of observations for which an 
estimate was produced, denoted as pred(l)s in Table I. This indicates that 
although fuzzy model I only produced an estimate for fourteen of the twenty 
cases, the accuracy of those predictions was good, and superior to that 
achieved using linear regression. 

The fact that estimates were not produced in some cases clearly warrants 
some discussion. The reason is relatively straightforward - the input values 
in these observations, or more correctly the fuzzy sets to which the input 
values belonged, failed to match any combination of those specified in the 
rules comprising the respective rule sets. Not surprisingly, this was a more 
significant issue for model one that comprised just fifteen rules when 
compared to the twenty-rule set available to model two. It illustrates well the 
potential impact of both sampling and rule set size selection on the efficacy 
of the resulting models. This outcome could be interpreted with some 
concern - an organization receiving estimates for only some of their 
activities may consequently feel that the modeling method is inadequate, 
particularly if it is considered that linear regression models, once 
constructed, can produce an estimate for all input values. We may equally 
come to an alternative, more positive interpretation, however. It may be 
considered a good thing that the model does not attempt to provide a 
prediction when there is no sound basis for doing so, particularly given that 
we are already incorporating a degree of imprecision through the use of 
fuzzy sets. If indeed no rules were fired then this would imply that there is 
insufficient information to enable an accurate prediction to be made, just as 
extrapolation of a regression model outside the bounds of the data on which 
it was built is risky (although not prohibited). 

On the basis of the results presented above, using what were relatively 
rudimentary fuzzy logic models, it can be concluded that the approach has 
the capacity to perform at least as well as standard linear regression 
modeling in some cases. In order to assess whether slightly more advanced 
analysis could lead to further improvement in accuracy we refined the two 
selected models by using CLUESOME to generate weighted rule sets for 
each sample, rather than using the default weight of I for every rule. This 
enables a measure of confidence to be associated with each rule based on the 
strength of the clustering that led to its derivation (as in step 4(b) of the rule 
extraction algorithm described above). Whilst no improvement in 
performance was obtained for fuzzy logic model I as a result of this further 
analysis, gains were made for fuzzy logic model 2 for all of the accuracy 
measures employed (see Table 2). 
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Regression Fuzzy Regression Weighted 
Modell Modell Model 2 Fuzzy Model 2 

MMRE 0.22 0.17 0.31 0.29 
MedMRE 0.16 0.10 0.17 0.13 
pred(20) 55% 50% 55% 50% 
pred(30) 65% 55% 65% 60% 
Nopred 0% 30% 0% 10% 

pred(20)s 55% 71% 55% 56% 
pred(30)s 65% 79% 65% 67% 

SumAbsDiff 4463 2367 5557 4005 
MedAbsDiff 175 97 198 123 

Table 2. Comparative performance of regression and weighted fuzzy logic models 
(case study 1). 

In the final phase of case study 1 we simulated the real-world scenario 
whereby a model would be refined using expert analysis. As we had some 
knowledge of the systems and their construction, there was some basis for 
such an adjustment. We were by no means experts, however, so our 
motivation was as much to improve model accuracy as to produce truly 
representative models. In fuzzy model I we made minor changes to the lower 
bound parameters of the Low and High fuzzy sets for ATTRIB. (Three of the 
six observations for which no prediction had been made had relatively low 
values for ATTRIB and one had a high value for the same parameter.) We 
also made one adjustment to the Size label, from Small Medium to Small, in a 
single rule in the fifteen-rule set. These changes had a significant impact on 
both the coverage and accuracy of fuzzy modell, as shown in Table 3. For 
the sample two model the addition of a rule dealing with the prediction of 
large systems, along with minor refinements to the Low and Medium fuzzy 
sets of the A TTRIB membership function, led to the provision of reasonably 
accurate predictions for all twenty observations. 

Examination of the data also revealed an outlier value in test sample two, 
with an MRE more than twice that of its closest rival, at 1.59 and 1.80 for the 
regression and fuzzy logic models respectively. The degree of influence of 
this observation had been noted in the previous analysis [28]: "This project 
was found to be the smallest of the entire sample at just 309 lines of source 
code. On further investigation, it was found that the system had been 
developed using the maximum of default settings and generated code, with 
very little programmer adaptation to customize the functionality and user 
interface employed. Although admittedly unusual, this did not make the 
project invalid in terms of the study - thus the observation was left in." Its 
impact is evident in the inflated MMRE values for both sample two models. 
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Regression Amended Regression Amended 
Modell Fuzzy Model 1 Model 2 Fuzzy Model 2 

MMRE 0.22 0.18 0.31 0.28 
MedMRE 0.16 0.10 0.17 0.12 
pred(20) 55% 60% 55% 60% 
pred(30) 65% 75% 65% 70% 
Nopred 0% 10% 0% 0% 

pred(20)s 55% 67% 55% 60% 
pred(30)s 65% 83% 65% 70% 

SumAbsDiff 4463 2831 5557 4206 
MedAbsDiff 175 90 198 110 

Table 3. Comparative performance of regression and 'expert' amended fuzzy 
logic models (case study 1). 

7. CASE STUDY 2 - SOFTWARE DEVELOPMENT 
EFFORT 

Our second case study deals with development effort prediction, and is 
based on a data set published by Miyazaki et al. [31]. Development effort in 
person-months (MM) had been recorded for 48 systems, along with values of 
several predictor variables, including the numbers of screens required 
(SCRN), forms to be produced (FORM) and files to be accessed (FILE). 
Examination of the data set revealed a significant outlier observation, 
illustrated clearly by the fact that the mean effort value across the sample 
was 87 person-months whereas the outlier observation had an effort value of 
1586 person-months. As a result this observation was removed from the 
analysis, leaving a set of 47 observations for further investigation. Further 
preliminary examination indicated that models employing the FORM and 
FILE variables would provide the most effective predictive capability. 

As in the previous case study we split the data set into build and test sub
samples, comprising 30 and 17 observations respectively. We also repeated 
the sampling process so that we were able to undertake two separate analyses 
on the data set. The CLUESOME module of FUZZYMANAGER was 
employed to generate first-cut fuzzy models from the build sub-samples 
before considering whether the resulting classes and rules might be improved 
with refinement. In this case study the number of membership functions 
involved in the best-performing models was different for the two build 
samples, at seven and five respectively. Triangular functions proved to be the 
most effective in both cases, however, and twenty rules proved to be more 
useful than fifteen for both sub-samples. Applying the models as constructed 
to the test sub-samples of seventeen observations and comparing this to 
regression analyses resulted in performance as shown in Table 4. 
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Regression Fuzzy Regression Fuzzy 
Modell Modell Model 2 Model 2 

MMRE 1.10 1.04 0.52 0.59 
MedMRE 0.92 0.68 0.43 0.33 
pred(20) 18% 12% 24% 18% 
pred(30) 18% 12% 35% 35% 
No pred 0% 18% 0% 24% 

pred(20)s 18% 14% 24% 23% 
pred(30)s 18% 14% 35% 46% 

SumAbsDiff 521 498 719 226 
MedAbsDiff 29 20 24 17 

Table 4. Comparative performance of regression and fuzzy logic models for the 
two test samples (case study 2). 

The results presented in Table 4 generally support the use of fuzzy logic 
modeling over regression analysis, but again this is at least in part a function 
of the fact that the fuzzy models did not produce predictions for three and 
four of the 17 test observations respectively. This has a particularly 
significant impact on the SumAbsDiff value for the second sample. We also 
employed CLUESOME to produce weighted rule sets for the two fuzzy 
models to increase the influence of the rules in which confidence was high. 
In both cases this led to small but useful improvements in performance for 
most of the assessment indicators (see Table 5). 

Regression Weighted Regression Weighted 
Modell Fuzzy Model 1 Model 2 Fuzzy Model 2 

MMRE 1.10 1.01 0.52 0.56 
MedMRE 0.92 0.69 0.43 0.36 
pred(20) 18% 12% 24% 24% 
pred(30) 18% 18% 35% 35% 
No pred 0% 18% 0% 24% 

pred(20)s 18% 14% 24% 31% 
pred(30)s 18% 21% 35% 46% 

SumAbsDiff 521 486 719 217 
MedAbsDiff 29 20 24 14 

Table 5. Comparative performance of regression and weighted fuzzy logic 
models (case study 2). 

As we had not been involved in the development of the systems at the 
center of case study 2, or in the associated data collection exercise, we were 
not in a position to amend the classes and/or rules on the basis of 'expert' 
knowledge. In order to provide a more direct comparison of regression 
analysis and fuzzy modeling for this case study, however, we did amend the 
two fuzzy systems so that coverage of the observations was increased. This 
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involved the inclusion of one further rule for the first sample, and the 
addition of two membership functions for the second sample, in order to deal 
with the larger observations that had by chance only been allocated to the test 
subsets. Assessment of performance of the amended systems relative to their 
regression counterparts is reported in Table 6. 

Regression Amended Regression Amended 
Modell Fuzzy Model 1 Model 2 Fuzzy Model 2 

MMRE 1.10 0.75 0.52 0.61 
MedMRE 0.92 0.34 0.43 0.38 
pred(20) 18% 29% 24% 29% 
pred(30) 18% 47% 35% 35% 
No pred 0% 0% 0% 6% 

pred(20)s 18% 29% 24% 31% 
pred(30)s 18% 47% 35% 38% 

SumAbsDiff 521 330 719 436 
MedAbsDiff 29 13 24 18 

Table 6. Comparative performance of regression and amended fuzzy logic 
models (case study 2). 

In concluding the case studies it is evident that the use of fuzzy logic 
modeling can lead to the provision of useful predictions in software project 
management. Furthermore, in the first case study in particular the fuzzy logic 
modeling approach, combining existing data with a small degree of 'expert' 
knowledge, led to models that outperformed their linear regression 
alternatives. While it is true that we did not attempt to refine the regression 
models to any great extent, we feel that this is justified as our focus was 
primarily on assessing the feasibility of the fuzzy logic modeling approach. 

8. SUMMARY, CONCLUSIONS AND FUTURE WORK 
In this paper we have illustrated that fuzzy logic modeling appears to 

have potential applicability in the domain of software project management. 
We have shown that fuzzy logic modeling can be used to effectively 
represent software project management relationships and, in our case studies, 
to do so accurately when compared to more commonly used linear regression 
analysis methods. When this level of performance is considered alongside 
the additional benefits of a fuzzy logic approach - ability to cope with 
minimal data where necessary, robustness to data set characteristics, ability 
to incorporate expert knowledge, flexibility to cope with uncertainty and 
changing granularity, 'free' modeling capability, and model/process 
transparency - the potential of such an approach looks promising indeed, 
particularly for organizations with relatively immature or emerging 
management processes. 
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The work reported here illustrates just one application of fuzzy logic 
modeling, that of simple data-driven model development followed by minor 
'expert' amendment. The underlying techniques and their implementation in 
the FUZZYMANAGER toolset could also be used to support direct 
elicitation and modeling of knowledge, or to fuzzify concepts andlor data for 
further processing using other modeling methods. While our case studies 
illustrated their use in prediction, they could be applied in a similar manner 
for classification tasks. They could also be used at other levels of software 
management - an organization's project portfolio risk profile could be 
modeled using such an approach, as could the internal structure and defect 
profile oflow-Ievel code modules. 

In the light of the specific results obtained in the case studies we intend 
to examine the impact of sampling on the coverage and stability of extracted 
rule sets. It may be possible to generate a 'core' set of rules that hold 
irrespective of the sample used in their derivation. Stratified rather than 
random sampling may well result in more generally effective models. We 
have also placed responsibility for specifying some of the model parameters 
over to the manager, including the number of membership functions and the 
number of rules generated. The values chosen clearly have an impact on the 
resulting models - an extreme solution would be to have sufficient 
membership functions and rules to create a one-to-one mapping from input to 
output values. However, this is not knowledge in any real sense, and the 
models would likely be difficult to understand, analyze and revise. Our case 
study samples, with either fifteen or twenty-one rules, are probably of 
reasonable size in that they are small enough to be understood, but large 
enough to give good coverage and accuracy. 

In terms of other future work there is a pressing need to evaluate the 
approach in an industry setting. While the case studies have illustrated the 
potential of the approach this needs to be verified against real-world and 
larger scale software management challenges, perhaps in the areas of 
application mentioned above. This will almost certainly result in the 
development of more complex rule sets - it remains to be seen whether such 
rule sets remains intuitively appealing to managers. We also intend to assess 
the effectiveness of various processes and methods for knowledge elicitation, 
so that the most effective representations possible can be developed. 
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ABSTRACT 

Optimal allocation of effort towards Software Quality Assurance is critical for 
the successful development of software systems. A decision support system based 
on systems dynamics simulation model has been developed to support software 
project managers in making this decision. The effectiveness of the decision 
support system has been enhanced with a genetic algorithm to optimize this 
decision variable. The architecture of the DSS, and results from an empirical 
experiment to validate the effectiveness of our approach are presented. 

KEYWORDS 
Software quality assurance, Project Management Decision Support, Genetic 
Algorithms, Systems Dynamics. 

1. INTRODUCTION 

Software quality assurance (QA) constitutes a set of activities undertaken 
during the development of software systems so as to reduce the risks of 
unacceptable system performance and to ensure that the produced software does 
conform to established technical requirements [Pressman 2001]. Increasingly, 
software quality assurance is being recognized as a critical factor in the 
successful development of software systems. The reason is a simple one: the 
evidence indicates that failure to pay attention to QA often results in unsatisfied 
users and higher lifecycle costs. Software quality assurance is approached 
through two complementing strategies. First, through ensuring that the quality is 
initially built into the product. This involves emphasizing the early generation of 
a coherent, complete, unambiguous, and non-conflicting set of user 
requirements. Then, as the product moves into the design and coding stages, a 
second set of QA tools are deployed to continuously review and test the system 
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(e.g., through walkthroughs, inspections, code reading, etc.) [Pressman 2001]. 
Even in the context of systems that are developed at Internet speed the ability to 
understand and control the level of quality is important to achieve the desired 
balance between quality and speed [Baskerville et al. 2001]. 

The utilization ofQA tools and techniques does, however, add significantly 
to the cost of developing software as person-days are expended in developing 
test cases, running test cases, conducting structured walkthroughs, etc. Consider, 
as an example, the Omega project, in which 180 development staff worked to 
port a micro-networking operating system to new hardware [Gilb 1988]: Initial 
planning estimates indicated 30,000 person hours a year for inspections. 
Management assumed that a third of this resource would be spent on inspection 
meetings, and the average meeting would last 90 minutes and involve five 
persons. This meant that there would be well over 1300 inspection meetings, 
requiring 1300 conference room bookings. As there were no conference rooms in 
the office area, two were quickly built! 

It is no wonder then, that the added cost of QA activities is a source of 
concern to QA managers, program managers and customers. As of yet this 
concern has not been adequately addressed in the literature. Our objective in this 
article is to present a tool to support the software project manager in efficiently 
allocating the QA effort throughout the software development lifecyc1e. This tool 
uses a systems dynamics simulation model that provides the ability for project 
managers to experiment with decision variables such as software quality 
assurance effort allocation. A genetic algorithm has been integrated with this 
model to find an optimal QA effort allocation scheme. 

2. A CASE STUDY 

Consider the case of a software project conducted to develop a software 
system for a space application. The system was estimated to be: 16,000 delivered 
source instructions (nS!) in size; require 1,100 person-days for development and 
testing; and be completed in 320 working days. How much should management 
allocate to QA? 

The above project is not a hypothetical scenario. Indeed, it is a real project 
that was conducted at one of NASA's space flight centers. The basic 
requirements for the project were to design, implement, and test a software 
system for processing telemetry data and for providing altitude determination 
and control for a NASA satellite. 

As is typically the case, resources for QA were allocated as a function of the 
project's total development effort. In this case, approximately 30% of the 
project's development resources were allocated to QA, a level that is significantly 
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higher than the industry norm [Dunn 1994]. Upon completion, the project's 
statistics were: 

Project size 24,000 DSI 

Development cost 2,200 person-days 

Completion time 380 working days 

Obviously the project was not a total success. On the positive side, the end 
product was reported to be of high quality i.e., was reliable, stable, and easy to 
maintain. On the other hand, the project overshot its schedule by 20% and its 
cost by 100%. 

In a project postmortem, a number of issues were raised including the issue 
of whether the Q A effort allocated was optimal. And if not, what the impact was 
on the project's cost and schedule. In principle such issues can be addressed by 
conducting a controlled experiment in which the project is repeated many times 
under varied QA expenditure levels. Such an experimental approach, however, is 
obviously too costly and time consuming to be practical. Furthermore, even 
when affordable, the isolation of the effect (cost) and the evaluation of the 
impact of any given practice (QA) within a large, complex, and dynamic social 
system such a software project environment can be exceedingly difficult. 

Simulation modeling, on the other hand, does provide a viable alternative for 
such a task. In addition to permitting less costly and less time-consuming 
experimentation, simulation-type models make "perfectly" controlled 
experimentation possible. Indeed: 

The effects of different assumptions and environmental factors can be 
tested. In the model system, unlike the real system, the effect of 
changing one factor can be observed while all other factors are held 
unchanged. Such experimentation will yield new insights into the 
characteristics of the system that the model represents. By using a 
model of a complex system, more can be learned about internal 
interactions than would ever be possible through manipulation ofthe 
real system [Forrester 1961]. 
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Figure 1. Four Subsystems of the System Dynamics Simulator. 

3. A SYSTEM DYNAMICS MODEL OF SOFTWARE 
DEVELOPMENT 

47 

As part of a wide-ranging study of software project management, a 
comprehensive system dynamics model of the software development process has 
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been developed. The model was developed on the basis of field interviews of 
software project managers in five organizations, complemented by an extensive 
database of empirical findings from the literature. The model integrates the 
multiple functions of the software development process, including both the 
management-type functions (e.g., planning, controlling, and staffing) as well as 
the software production-type activities (e.g., designing, coding, reviewing, and 
testing). Figure 1 is an overview of the simulation model's four major 
subsystems: (1) the human resource management subsystem; (2) the software 
production subsystem; (3) the controlling subsystem; and (4) the planning 
subsystem. 

As the model is quite comprehensive and highly detailed, it is infeasible to 
fully explain it in the limited space of this article. Therefore, the description will 
be limited to a high level overview of the four subsystems. The model's QA 
component (which is part of the software production subsystem), is, however, 
discussed in more detail in the following section. (For a more detailed 
description of the model's structure, its mathematical formulation, and its 
validation the interested reader can refer to [Abdel-Hamid and Madnick 1991]. 

The human resource management subsystem captures the hiring, training, 
and transfer of the human resource. Such actions are not carried out in a vacuum, 
but are affected by the other subsystems; for example, the hiring rate is a 
function of the work force level needed to complete the project by a given date. 
Similarly, the available work force has a direct bearing on the allocation of 
manpower among the different production activities. 

As the software is developed, it is also reviewed using quality assurance 
activities such as structured walkthroughs to detect any errors. Errors detected 
through such activities are reworked. However, some errors "escape" detection 
until the testing phase. The development lifecycle phases incorporated in the 
software production subsystem include the designing, coding, and testing 
phases. Three sets of factors affect the error generation rate. The first set includes 
organizational factors (e.g., the organization's use of structured techniques, the 
overall quality of the staff). A second set includes project-specific factors (e.g., 
project complexity, system size, programming language). While these two sets of 
factors differ from organization to organization and from one project to another, 
they tend to remain constant throughout the development lifecycle of any single 
project. A third set of factors affecting error generation includes the work force 
mix and schedule pressures. Unlike the factors in the first two sets, these two 
variables change dynamically throughout the lifecycle. 

As progress is made, it is reported. A comparison of the degree of project 
progress to the planned schedule is captured within the control subsystem. 
Once an assessment ofthe project's status is made, it becomes an important input 
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to the planning function. In the planning subsystem, initial project estimates are 
made and then revised, when necessary, throughout the project's life. For 
example, to handle a project that is behind schedule, plans can be revised to 
(among other things) hire more people, extend the schedule, or do both. 

4. SOFTWARE QUALITY ASSURANCE MODEL 

A primary objective of the software quality assurance (QA) activity is to 
detect the software errors that have been generated. Typically, the QA effort is 
planned and allocated as a fixed schedule of periodic group-type functions e.g., 
as two-hour walkthroughs scheduled once a week [Abdel-Hamid and Madnick 
1991]. During these periodic "QA windows," all tasks developed since the 
previous review are supposed to be processed. A surprising finding showed that 
all completed tasks, irrespective of how many these were, were always indeed 
"processed." No backlogs, therefore, develop in the QA pipeline even when QA 
activities are suspended temporarily because of schedule pressures. For example, 
when walkthroughs are suspended on a project, the requirement to review the 
affected tasks is bypassed, not postponed. Since the objective ofthe QA activity 
is to detect errors and since undetected errors are by their very nature invisible, it 
is almost impossible to tell whether an adequate QA job was done (except much 
later in the lifecyc1e). Under such circumstances it is easy to rationalize both to 
oneself and to management that the QA job that was "convenient" to do, was not 
insufficient. Furthermore, the QA effort that is convenient to expend (given 
scheduling considerations) is usually never exceeded even when more effort is 
called for. There seems to be no significant incentives to do otherwise. First, at a 
psychological level, there are actually disincentives for working harder at QA, 
since it only "exposes" more of one's mistakes. Second, at the organizational 
level, there are seldom any real reward mechanisms in place to promote quality 
or quality-related activities [Abdel-Hamid and Madnick 1991]. 
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Figure 2. Model Structure for Error Detection/Correction. 

Figure 2 depicts the system dynamics model's structure for the detection and 
correction of errors. This component of the model together with two others -
software development and system testing - constitute the software production 
subsystem of Figure 1. To capture this "Parkinsonian" nature ofthe QA activity, 
the QA RATE shown in Figure 2 is modeled as an exponential delay. This says 
that software tasks that are developed will always be QA'ed (or, more accurately, 
considered QA'ed) after a certain delay, which is independent of the actual QA 
effort allocated! 
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4.1 Error Detection Factors 

However, the effectiveness ofQA would obviously depend on the QA effort. 
That is, the amount of errors that are detected will necessarily be a function of 
the amount of QA effort allocated. This is evident in Figure 2, where the error 
DETECTION RATE equals DAILY MANPOWER FOR QA divided by QA 
MANPOWER NEEDED TO DETECT AN ERROR. 

The QA MANPOWER NEEDED TO DETECT AN ERROR, is a function 
of both error-type (e.g., design errors versus coding errors) and on the efficiency 
of how people work. Work inefficiencies such as man-hours lost on 
communication and other non-project activities (e.g., personal business, coffee 
breaks, etc.) are captured by the model's MULTIPLIER TO PRODUCTIVITY 
DUE TO COMMUNICATION AND MOTIVATION LOSSES. 

Finally, there is the effect of error density on the error detection activity. At 
any point in time, the set of POTENTIALLY DETECTABLE ERRORS 
constitutes a hierarchy of errors, in which some are subtler, and therefore more 
expensive to detect than others. Empirical results reported by Basili and Weiss 
[1985] suggest that the distribution is pyramid-like, with the majority of errors 
requiring a few hours to detect, a few errors requiring approximately a day to 
detect, and still fewer errors requiring more than a day to detect. In the model it 
is assumed that as QA activities are performed, the more obvious errors will be 
detected first. As these are detected, it becomes increasingly expensive to 
uncover the remaining, more elusive (although less pervasive) errors. 

4.2 Error Correction Factors 

Errors detected through QA are reworked. The REWORK RATE is a 
function of how much effort is allocated to the rework activity (DAILY 
MANPOWER FOR REWORK) and the ACTUAL REWORK MANPOWER 
NEEDED PER ERROR. The ACTUAL REWORK MANPOWER NEEDED 
PER ERROR has two components. The first is the NOMINAL REWORK 
MANPOWER NEEDED PER ERROR, which is a function of error-type, i.e., 
design versus coding errors. Design-type errors are thus generated at a higher 
rate, are more costly to detect, and are more costly to rework [Pressman 2001]. 
The ACTUAL REWORK MAN-POWER NEEDED TO CORRECT AN 
ERROR also depends on the work efficiency of the project staff. That is, the 
communication and motivation losses must be accounted for. For example, if the 
MULTIPLIER TO PRODUCTIVITY DUE TO COMMUNICATION AND 
MOTN ATION LOSSES is 0.5 (indicating that 50 percent of the time is lost in 
nonproductive activities), then the actual rework manpower needed to correct an 
error becomes twice the nominal. 
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As further demonstrated in Figure 2, the reworking of software errors is not, 
itself, an errorless activity. As detected errors are reworked, some fraction of the 
corrections will be bad-fixes. The detection and correction of such bad-fixes, 
together with errors that escape QA detection during the project's development 
phases, are activities that are captured in the model's system testing sector. 

5. A DECISION SUPPORT SYSTEM (DSS) FOR QUALITY 
ASSURANCE EFFORT ALLOCATION 

Controlled experimentations are very costly and time consuming in software 
engineering [Myers 1976]. Even when experimentation is affordable, the 
isolation of the effect of any given practice within a large, complex and dynamic 
project environment can be extremely difficult [Glass 1982]. Simulation 
modeling offers a viable alternative for testing software engineering hypotheses. 
The Systems Dynamics Simulation has been used to support decision-making in 
software project management in a variety of contexts. For example, it has been 
used to support a continuous resource planning and allocation activity. Software 
managers use the model to update project cost and schedule estimates due to 
factors such as changes in user requirements [Abdel-Hamid 1993]. The model 
also allows managers to conduct trade-off analyses, e.g., between extending the 
duration of a project versus adding more personnel. In this research, the Systems 
Dynamics Simulation is used to study the allocation of effort towards software 
quality assurance. 

The QA effort is a function of a large number of factors that are interrelated 
in a complex non-linear fashion. For example, one ofthe critical factors, cost of 
undetected errors, grows exponentially and not linearly over time. Therefore, 
analytical solutions to develop an "optimal" QA scheme are not available. The 
systems dynamics simulator provides a viable tool to assess QA effort allocation 
scenarios. In the simulation model, managerial policies, such as the QA effort 
allocation throughout the life cycle, are captured as table functions. This 
representation allows a policy variable (e.g., person-days allocated to QA over 
time) to be defined as a function of project life cycle stage or the project 
completion status. Once a policy is defined, the model can be run to assess its 
impact on project performance. Such experimentation can help a project 
manager make informed decisions. 

Specifically, simulation can be run with any QA effort allocation scheme 
(keeping all the other parameters constant). At the end ofthe simulation run, the 
total project cost is estimated by the simulation system. The user can vary the 
QA effort allocation scheme and study its effect on total project cost. By 
experimenting with various schemes, the user may decide on an appropriate 
scheme. 
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However, this process has a serious limitation. The QA effort allocation as a 
fraction of total effort can vary theoretically between 0% and 100% for any 
period. If the life cycle is divided into 10 periods (10% complete, 20% complete 
etc.) and the decision maker has to select a specific value in this range for each 
ofthe 10 periods, then the total number of possible QA schemes will be 100 10. 

The decision maker can, however, use his domain knowledge to limit the search 
space. For example, it can be decided that very high (say, over 75%) or very low 
(say, below 10%) levels ofQA effort are undesirable from implementation and 
productivity considerations. Even with such constraints, the search space for 
potential solutions is extremely large. Running the simulation manually to find 
an optimal solution can, therefore, be very difficult. The development of an 
automated procedure to try different values of the decision variables to find the 
"optimal" solution can be significantly enhance the usefulness of the systems 
dynamic simulator as a DSS. 

QA Effort Allocation 
Scheme 

Systems Dynamics 
Simulator 

~~ 

~r 

Genetic Algorithm 
Module 

To 
De 

tal Software 
velopment Effort 

Figure 3. Overview of the System Architecture. 

5.1 Genetic Algorithm To Optimize QA Effort Allocation 

The search for a "good" solution can be done using classical exhaustive 
search methods if the search space is small. However, when the search space is 
very large, such as in the case of the QA allocation problem, computational 
intelligence techniques such as Genetic Algorithms (GA) have been found to be 
very effective. GAs are very effective in searching complex, non-linear, 
multidimensional search spaces even in the absence of specific knowledge about 
the problem domain. GAs are probabilistic algorithms that combine features of 
stochastic and directed search and are more robust than most existing search 
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methods [Michalewicz 1996]. The problem of finding an optimal QA allocation 
scheme can be thought of as a dynamic non-linear optimization problem in 
which the objective is to minimize the total development effort. GAs have been 
used successfully in optimizing system behavior in such problems [Sholtes 
1994]. 

Figure 3 provides the architecture of a DSS in which the Systems Dynamics 
simulator is coupled with a Genetic Algorithm module for optimizing the model 
behavior. The GA module proposes different QA effort allocation schemes. 
These are provided as inputs to the simulation model. The simulation model is 
executed and estimates the total software development effort with that scheme. 
This information is used by the GA to develop an efficient QA scheme. 

5.2 Genetic Algorithms 

Genetic Algorithms are a class of search, adaptation and optimization 
techniques that are based on the principles of natural evolution in which 
individuals and species that adapt to changing environments have a higher 
chance of survival [Forrest 1993; Srinivas and Patnaik 1994; Forrest 1996]. The 
features that distinguish individuals are determined by a set of genes or 
chromosomes. Selection involves the principle of "survival of the fittest" that 
characterizes natural evolution. It implies that the fittest genes survive during 
evolution. Reproduction involves the combination of the genetic material of 
parents to form the genetic material of offsprings. Crossover refers to the 
exchange of segments of chromosomes of the parents during reproduction. 
Mutation involves random changes in the genetic make up. Genetic algorithms 
attempt to use these principles of crossover, mutation and recombination and a 
variety of mechanisms inspired by natural evolution to solve search or 
optimization problems. 

In a GA, solutions to a problem are represented as (often binary) strings. A 
one-to-one mapping between the strings and the actual solution to the problem 
must exist. A fitness function that measures the quality of the solution is either a 
formal objective function (e.g., directly computed or results from a simulation) 
or a subjective judgment. The basic steps in finding an "optimal" solution are: 
1. Create a population of initial solutions randomly 
2. Evaluate the fitness of each individual in the population 
3. Create a new population using genetic operators (such as selection, 

crossover and mutation) 
4. Repeat steps 2 & 3 until the termination condition (such as convergence, 

resource limitation) is reached. 
5. Select the individual with the best fitness value as the solution to the 

problem in that generation. 
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This process mimics evolution in achieving novelty in its approaches to 
maintaining fitness [Levy 1992]. Genetic algorithms generate high quality 
solutions but have fewer tendencies to terminate on local optima than traditional 
techniques. Genetic algorithms outperform traditional learning techniques, 
especially when the solutions that have to be learned are complex. They are 
especially useful when there is no domain knowledge available to guide the 
search for solutions [Holsheimer and Siebes 1994] or when the noisy data is used 
in data mining [Goldberg 1994]. 

5.2.1 How do GAs work 

The notions of schemata and building blocks proposed by Holland [Holland 
1992] are used in explaining the working of a GA. In simple terms, schemata are 
similarity templates or subsets that have some features in common. Building 
blocks are schemata that have high fitness values. These are preferred in 
selection and exchanged by genetic operations. The building-block hypothesis 
states that the strings with high fitness values can be identified by sampling and 
combining building blocks. The fundamental theorem governing the working of 
a GA is Holland's schemata theorem, which states that the schemata with high 
fitness values grow exponentially with time. Later empirical and theoretical 
research [Goldberg et al. 1992; Koza et al. 1996] provides more insights into the 
workings of a GA. 

5.2.2 Comparison with other techniques 

Genetic algorithms differ considerably from other search and optimization 
techniques such as hill-climbing and random walk in several ways [Goldberg 
1989]: 

• The parameters of the functions to be optimized are coded in a GA, typically 
as fixed length strings. 

• GA employs a highly parallel search using a population of potential 
solutions, rather than a single search point. 

• The fitness of a solution is determined by a payoff or cost function, rather 
than auxiliary information (such as derivatives used in gradient techniques 
or the various tabular parameters needed by combinatorial optimization) 

• GAs employ probabilistic rather than deterministic rules to guide the search 
towards regions in the search space that are likely to improve performance. 

Genetic algorithms are increasingly popular to solve problems in a variety of 
domains including engineering, economics, management science and other areas 
(see [De-Jong 1999] [Holland 1992] for surveys). Building on the principles of 
GA, Koza introduced genetic programming (GP) [Koza 1992]. GP uses symbolic 
expressions (S-expressions)- rather than bit strings - as units being evolved by a 
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genetic program. A Genetic programming has been successfully used in 
automatic induction in a wide variety of applications ranging from generating 
small subroutines to real-time problems such as robot control. Koza [Koza 1994; 
Koza et al. 1999; Koza 2000] asserts that GP has already achieved the goal of 
producing results that equal or exceed human performance in a variety of 
domains such as algorithm design, game playing, pattern recognition, control and 
design. Taking a high-level statement of a problem's requirements, GP is 
capable of producing solutions that infringe on or improve on previously issued 
patents in problems like circuit design [Koza et al. 1999]. 

The application of using GP to solving business problems is exemplified by 
a system developed by Dworman, Kimbrough and Laing [Dworman et al. 1995] 
that discovers high quality negotiation patterns in a multi-agent game. Though 
this approach has similarities to our work on integrating a systems dynamics 
simulation with GAs, our approach has the benefit of learning from data drawn 
from a validated systems dynamics model. In contrast, the outcomes of the 
negotiations in the multi-agent game can be very easily evaluated for optimum 
results. 

Holland [Holland 1992] establishes the appropriateness of using Genetic 
Algorithms for learning patterns such as the QA effort allocation scheme. The 
GLOWER system [Dhar et al. 2000] represents an approach to learning rules 
from data using genetic algorithms. The system exploits the power of GA to 
scour the search space thoroughly in finding interesting trading rules. This 
approach is especially useful when the search space includes continuous 
variables. Unlike greedy search processes used by machine leaning systems, 
Genetic Algorithms are less constrained in searching for all applicable rules. In 
GLOWER, the chromosomes are made up of sets of genes that represent 
constraints on a single descriptor variable. The characteristics of our search space 
are similar to those used in GLOWER. However, instead of relying on data from 
past trades, our system learns from data drawn from the systems dynamics 
simulator. 

Simulated annealing, genetic algorithms and evolutionary strategies are 
similar in that they use probabilistic search mechanisms to find the best solution. 
Simulated annealing generates a sequence of states that converge to an optimum 
solution based on cooling schedules. The principal difference between 
evolutionary strategies and genetic algorithms is that the former uses mutations 
as the primary search mechanism, whereas GA uses crossover and mutation as 
search mechanisms. 
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6. THE NASA SOFTWARE PROJECT REVISITED 

In this section, we describe how a GA can be used to find an optimal QA 
resource allocation scheme for the NASA software project. 

6.1 Representation 

The representation of the problem in terms of strings that can be manipulated 
by the GA is a critical step in successful application of the method. Our problem 
involves finding the "best" QA effort allocation scheme, specified as a vector 
representing the fraction of the total resources employed in QA during each 
period. 

6.1.1 Limiting the search space 

Knowledge about the problem domain can be used to limit the search space 
of potential solutions so that the GA can converge to an "optimal" solution 
quickly. Theoretically, the values ofQA allocation in each period can range from 
0% (no QA at all) to 100% (all resources allocated to QA) during each 
development phase. However, it is unreasonable to assume extremely high levels 
of QA effort in large scale projects. The return on the QA investment typically 
flattens out when it exceeds the 40% of the development effort [Abdel-Hamid 
1988]. Similarly, using very low levels of QA allocation may not be feasible 
from a project manager's perspective; a project manager may want to maintain at 
least a minimal QA effort during all phases of the life cycle for reasons of 
gradual staffing, training, and maintaining a QA "presence". Under these 
conditions, the range of candidate values for the GA to select may be set between 
say, 10% and 75% (to allow sufficient room for plausible values)'. 

Though the GA may find the same optimal solutions even with the larger 
search spaces, it is more efficient to eliminate infeasible regions to speed up 
convergence towards the solution. However, care must be exercised in 
constraining the search space to minimize the risk of eliminating potentially 
optimal solutions from consideration. 

6.1.2 Fitness measure 

The total development effort for a project is the sum of the effort required in 
the design, coding, QA, rework and testing. As discussed in Section 3, the QA 
activity has significant effect on these activities. Therefore, the total development 
effort is an appropriate measure of fitness of a QA effort allocation scheme. It 
may be used as a surrogate for the total project cost that should be minimized. 
When provided with a candidate QA effort allocation scheme, the simulation 
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model can compute the total development effort for the project that is used as the 
measure of fitness of the scheme. 

Specifically, the GA generates candidate QA effort allocation schemes. Each 
scheme is passed onto the simulation for evaluation. The simulation is executed 
with the scheme as the input (keeping all the other parameters constant). The 
simulation estimates the total project cost and returns it to the GA. The GA uses 
this total project cost as the fitness value ofthe scheme. The objective ofthe GA 
is to evolve a QA effort allocation scheme that minimizes this cost. 

6.2 GA parameters 

A variety of parameters can be controlled while evolving solutions using a 
GA. The population size, total number of generations, frequency of crossover 
and mutation are some of the important variables. The choice of the 'best' values 
for each of these variables is typically determined by varying each of the 
parameters over a range of values and observing the effect on convergence of a 
solution. Several "rules of thumb" for different classes of problems are also 
discussed in the literature [Koza 1992; Koza et al. 1996). Often, simple hand 
optimization is used by starting with' standard' parameter settings and changing 
each parameter one at a time and see what results are obtained. In our 
experiments, crossover rates between 0.6 and 0.9 were used to examine the 
effect of various values. Mutation rates were varied between 0.01 and 0.15 and 
the population sizes ranging from 500 to 1500 were used in the experiments. The 
values of the various parameters that produced the best results is shown in Table 
1. It should be noted that such parameter tuning by experimentation may lead to 
sub-optimal choice of these parameters. A variety of techniques for find good 
parameter settings for genetic algorithms have been discussed in the literature 
[Grefenstette 1986]. However, the problem of controlling parameters of an 
evolutionary algorithm is still a subject of active research and theoretical 
investigations on selecting optimal parameters do not provide results with wide 
generalizability {Eiben, 2000 #19. Further, the cost of finding such parameter 
tuning could be very significant and the rewards in solution quality may not 
justify the cost [Beasley et at. 1993]. 

The experiment uses a crossover-dominated GAs (i.e., with a low mutation 
rate). Here, mutation is performed randomly on a gene ofa chromosome and it 
ensures that every region of the problem space can be reached. When a gene is 
mutated it is randomly selected and randomly replaced with another symbol from 
the alphabet. To eliminate the risk of pathological initial populations in which an 
important low-order schema my be missing, and needs to be created by only by 
mutation, the GA creates a super-uniform initial population in which all 
schemata are equally represented using a reduced-variance stochastic algorithm 
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which produces a population with no local, but large global correlations 
[Schraudolph and Belew 1992; Schraudolph and Grefenstette 1992]. The trials 
are stopped when the maximum generation is reached or the convergence 
threshold (the percentage of the population that needs to have the same values 
for it to be considered to have converge) is achieved. A high convergence 
threshold implies that the genetic make up ofthe population is not significantly 
different enough to produce better results with more trials. 

Parameter 
Population Size 

Max. Generations 
Crossover Rate 
Mutation Rate 

Convergence Threshold 

Table 1. GA parameters. 

6.3 Incorporating constraints 

Value 
1000 
100 

0.60 
0.05 
0.95 

Problem specific constraints can be easily incorporated to guide the GA 
towards desirable solutions and away from those that are undesirable. This can 
be done by incorporating in the fitness function, a penalty for solutions that have 
desirable characteristics. Similarly, a reward for solutions that have desirable 
characteristics can be incorporated into the fitness function. For instance, the 
management may specify that the QA effort allocation may not vary by more 
than say 5% between periods, except in the initial stages of the project. Such a 
constraint can be easily incorporated in a GA using a penalty function as a part 
of the fitness function. Solutions that violate the following constraint may be 
assigned a very high fitness value (in this fitness minimization problem) so that 
they will become unattractive: 

ABS[QA,-QAt+d > 5% 

When such a fitness consideration is used, a scheme that provides a smooth 
QA scheme will perform well. Thus, through the process of careful evaluation of 
potential solutions, a project manager may identify and impose constraints on the 
solution space. Finding the best possible solution within those constraints is well 
achieved by the GA. 

6.4 Results from GA 

The GA produced several hundred schemes that did better than the actual 
NASA project in terms of the total project cost. Figure 4 shows the best QA 
effort allocation scheme suggested by the GA. This scheme would require only 
1475.9 person-days for the project compared to the 2200 person-days required in 
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the actual project. In other words, by adopting the QA effort allocation scheme 
suggested by the GA, the project could have saved nearly a third of the total 
project costs. 

7. SIMULATION EXPERIMENTS 

Though the above results from the GA are impressive, it is useful to evaluate 
its performance against other possible approaches. However, as discussed earlier, 
no analytical formulations to this problem are available. Therefore, it is not 
possible to use traditional analytical procedures to find a solution. However, the 
results from the GA can be compared to those developed by other procedures. 
We have chose two candidates: 

• a series of randomly generated QA effort allocation schemes. and 
• QA effort allocation schemes used by human decision makers using the 

systems dynamics simulator as a DSS. 

The performance of the GA can be compared to the results from these 
experiments on the basis of both 

• the total development effort as a measure of the impact of the solution on 
total proj ect costs, and 

• qualitative assessment of the implementability of the proposed schemes. 

This section describes the simulation experiments that were conducted for 
such a comparison. 

7.1 Randomly Generated Schemes 

The first of the simulation experiments involved randomly creating several 
QA effort allocation schemes and running to simulation experiment to evaluate 
the effectiveness of these schemes on the basis of the total development effort 
produced by the simulation. These experiments were based on the premise that 
given access to a simulator, a decision maker will be able to experiment with a 
large number of possible QA effort allocation schemes and may be able to find 
an appropriate scheme. 

In the experiment 2000 QA effort allocation schemes were randomly 
created. Each was passed on to the simulation for the estimation of the total 
development effort. Table 2 summarizes the results from these runs. 
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Random QA Scheme 

"Best" scheme 
"Worst" scheme 

Average 
Standard Deviation 

Actual project 

Table 2. Results from Random Schemes. 
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During this experiment, the average total effort from randomly created 
schemes was well above the level experienced in the project. The worst scheme 
increased the development effort more than six fold. However, the best scheme 
generated a QA scheme that was about 30% lower than that observed in the 
actual project. But this scheme did not perform as well as the best scheme 
developed by the GA. As the GA starts with a set of random schemes and 
evolves better performing solutions based on feedback from the simulation, this 
result is not surprising. It should be noted that even with such a simulation 
available, human decision makers are unlikely to be able to evaluate thousands 
of schemes manually to find the best scheme. Instead, the use of a GA to 
automate and optimize this task appears a more reasonable approach. 

7.2 Manual Simulations 

Another experiment was set up in which subjects played the roles of project 
managers making QA resource allocation decisions over the life of a software 
project. As project managers, the subjects were required to use the what-if 
capabilities of the model to derive "optimal" QA allocation for the project. The 
objective function was to minimize the total project cost as measured by the total 
effort. The simulation was based on the NASA project and the QA scheme was 
the only variable manipulated by the subjects. 

The experiment was conducted with 25 graduate students at a U.S. 
university. The subjects were master's students in a computer systems 
management curriculum, and had an average of 12 years of full time work 
experience. The experiment was part of a course on software engineering. The 
experiment was conducted on desktop computers with interactive simulation 
software system written in Dynamo. All students were given a hands-on 
demonstration on the use of the simulation package before the experiment. The 
experimental set up had been tested in a variety of contexts to ensure that the 
software performed as intended. 

The subjects were also given a one-hour tutorial on software project 
management, explaining the key principles involved. Further, they had 
undergone graduate level work in the area of software engineering. Each subject 
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was provided a five-page set of written instructions. A pilot was conducted to 
ensure that the subjects understood the instructions properly. 

The experimental task involved the development of different QA effort 
allocation schemes which were used as inputs in simulation runs. At the end of 
each run, the simulator provided information on percentage of defects detected, 
rework cost, testing cost etc. in addition to assessing the impact on project cost. 
The subjects would use this information to revise their QA effort allocation 
schemes, and rerun the simulation (with the objective of minimizing the total 
development effort) until they are satisfied with the results. No limits were 
placed on how many times the simulation can be run by the subjects. Each 
subject reported the "optimal" QA scheme and the effort estimate at the 
conclusion of the experiment. 

7.2.1 Manual Experiment Results 

Table 3 summarizes the results from the experiments and the result from the 
actual NASA project. The "best" scheme (with minimum total project cost), the 
"worst" scheme (with the maximum total project cost) developed by the subjects 
as well as summary statistics are presented. 

Manual QA Scheme 

"Best" scheme 
"Worst" scheme 

Average 
Standard Deviation 

Actual project 

Total Development 
Effort 

Table 3. Results from Manual Simulation. 

Several factors may explain the superior performance of the subjects 
compared to the actual project. In the actual project, the project manager had to 
rely only on prior limited experience on similar projects in arriving at a QA 
scheme. Subjects in the experiment had the benefit of experimenting with a 
variety of QA schemes using the Systems Dynamics simulation and observing 
the effect on total project costs. The subjects had conducted an average of eight 
trials before arriving at their final solution. The results from the experiment 
indicate that using the simulation, a significantly improved solution may be 
found. Even the "worst" scheme from the experiment achieved a significantly 
lower cost compared to the actual project. The best scheme arrived at during the 
experiment would have saved more than 33% of the total project cost. The 
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results illustrate the usefulness of the systems dynamics simulation as a DSS in 
making policy decisions such as QA effort allocation. 

The examination of the QA schemes developed by the subjects in our 
simulation experiment suggests that they had used their knowledge of software 
engineering principles in lirpiting their search spaces. For instance, most subjects 
had developed QA schemes with high level of effort early in the life cycle, 
declining to a lower level later in the life cycle - consistent with practices 
advocated in software engineering literature. Similarly, no subject had used very 
high (over 70%) or very low (less than 10%) levels ofQA effort indicating that 
they had considered values outside this range infeasible. 

7.3 Comparison with GA results 

A comparison of the results from the actual project, the best QA schemes 
from the GA, random generation and the manual experiment is presented in 
Table 4. Figure 4 graphically shows the corresponding QA schemes. 
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Figure 4. QA Effort Allocation Schemes. 

7.3.1 Project Costs 

The best scheme developed by the GA outperforms the manual simulation 
by about 12 person-days. In addition, the GA developed over 120 solutions that 
were better than the best solution produced manually. Also, the GA and the 
manual solutions outperformed the best results produced by the random scheme. 
The result is significant in that it the actual project costs were nearly 50% more 
than that would have been obtained by using any ofthese schemes suggested by 
the GA. 
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Source of QA Scheme 

Actual Project 
Random Scheme 

Manual 
GA 

Total Development 
Effort 

Table 4. Project Cost under different QA schemes. 

7.3.2 Qualitative Evaluation 

65 

The GA worked with no domain knowledge about the "optimal" shape of the 
QA scheme. In contrast, the human subjects possessed superior domain 
knowledge. For instance, they tried only schemes with high QA effort in the 
early phases, declining to lower levels at the later phases. It is interesting to note 
that the solution suggested by the GA also has similar characteristics (see Figure 
4). The QA effort starts with a high effort in the early phases, tapering off to a 
uniform level during the middle of the project. Also, the QA effort increases 
towards the end of the project. This scheme is consistent with research results 
[Pressman 200 I] that suggest that 

• the cost of not detecting errors injected in the early phases can be very high 
and therefore a high QA effort during these phases is likely to have high 
pay-off. 

• the cost per bug fix during the final stages of the project is very low and 
therefore increasing QA effort during these phases is likely to have high pay
off. 

The above comparisons suggest that the GA produces a scheme that not only 
improves the objective function, but also has desirable characteristics from an 
implementation perspective. In summary, the GA enhances the usefulness ofthe 
dynamics simulator as a DSS by automating the search for an optimal solution. 
Further, it provides the project manager the ability to control the direction ofthe 
search (by specifying appropriate fitness functions with penalty or rewards) 
based on domain specific knowledge. 

The results seem to suggest that the project managers in the DE-A project 
used more than QA personnel than necessary throughout the project, possibly 
explaining the increased total development costs. It should be noted that a variety 
of factors beyond cost considerations may explain their behavior. First, the 
project was a critical for the launch of a satellite system by NASA and serious 
schedule slippages were not permitted. In fact, all software was required to be 
accepted and frozen three months before the launch date. As the deadline 
approached, the project managers were under pressure to reduce the chances of 
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delays by adding more personnel to the QA task, even at the risk of increasing 
the total project costs. Also, the management had underestimated the project's 
estimated schedule (time for completion) but was not inclined to change this 
estimate until very late in the project's lifecycle. Instead, additional workforce 
was added to various activities (possibly at more than necessary levels) to meet 
this schedule. Such behavior is typical for political reasons [Demarco and 
Boehm 1998] suggesting that the optimal schemes may at times not get 
implemented for considerations other than project cost. 

8. CONCLUSIONS 

The GA when used with the system dynamic simulation has proved to be 
effective decision support mechanism for arriving at an optimal QA scheme. The 
dynamic simulator is similar to a flight simulator for software project 
management and provides the ability for project managers to experiment with 
decision variables. Such a DSS may help the project manager understand 
repercussions of various assumptions and scenarios on critical outcomes of a 
project. Further, examination of various solutions may assist in problem 
redefinition and the identification of constraints on the solution space. Then, a 
GA can be assigned the task of finding the best solution within those constraints. 
As Holland advocates in [Holland 1992], the focus of our approach is more on 
improvement and less on optimization. The dynamic simulation model combined 
with a GA can be a very powerful tool for solving a variety of similar, complex 
problems in software project management. 

NOTES 
In our experiments, the values were set between 10% and 74% as this is 
considered an appropriate range for the problem. 
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ABSTRACT 
This paper describes an application of genetic algorithms to the evolution of 
optimal or near optimal back propagation neural networks for the 
classification of fault-prone/not fault-prone software modules to support 
decision making On resource allocation. The algorithm treats each network 
in a population of neural networks as a potential solution to the optimal 
classification problem. Variables governing the learning and other 
parameters and network architecture are represented as substrings (genes) 
in a machine-level bit string (chromosome). When the neural net population 
undergoes simulated evolution using genetic operators - fitness-based 
selection, crossover, and mutation - the average performance increases in 
successive generations as better-performing neural nets emerge. We found 
that, On the same data, the classifications obtained were significantly better 
using a uniform crossover operator when compared with our previous work 
using traditional one-point crossover. These results are compared with those 
from the discriminant analysis statistical approach. The latter approach was 
found to be inferior on our data set. It is suggested that evolutionary neural 
networks can be used to successfully attack a broad range of data-intensive 
software engineering problems, where traditional methods have been used 
almost exclusively. Evolutionary enhancements of traditional methods are 
also worth considering. 

KEYWORDS 
Backpropagation, classification, discriminant analysis, fault-prone module, 
fitness function, genetic algorithm, neural network, simulated evolution, 
software metrics, uniform crossover. 
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1. INTRODUCTION 
Classification brings order to a problem domain and supports systematic 

planning and risk-based decision making. Typically, classifying individuals 
into groups is based on a set of observed characteristics, such as classifying 
software modules as high or low risk [16]. Membership in a particular group 
may imply unobserved information about the individual or may indicate or 
necessitate a specific treatment of the individual. For example, a high-risk 
software module may be "treated" to more rigorous testing. 

In our study, the individuals to classify are software modules taken from 
a large software development project. Their observed characteristics are 
software product metrics. We want to be able to predict, from a vector of 
attribute values for a module, which modules merit greater attention by 
virtue of being fault-prone. When modules are assigned to mutually 
exclusive groups (fault-prone and not fault-prone), personnel for testing and 
maintenance can be assigned accordingly. Moreover, some fault-prone 
modules identified early in one release may be marked for redesign in the 
next release before they lead to the growth of a code base too brittle to 
profitably maintain or enhance. The ultimate goal in this informed allocation 
of software project resources is to contain costs and maintain schedules with 
minimal impact on software quality. 

Artificial neural networks [17, 18] and multivariate statistical methods, 
such as discriminant analysis [16, 20], have been commonly used to build 
computer models which perform this classification process. In discriminant 
analysis and other statistical methods, few adjustments in the form of 
configurable parameters are available when attempting to optimize the 
model. Neural networks, however, offer so many adjustments that optimizing 
the model by the trial and error approach is intractable, and in this domain of 
software engineering, rules of thumb are not yet validated. Fortunately, 
neural networks lend themselves to hybridization with evolutionary 
computation methods (general purpose search and optimization algorithms 
inspired by biological evolution), which automate global traversals through 
the search space of candidate neural networks. Some researchers have 
developed genetic algorithms for designing and optimizing neural network 
architectures [8, 25]. 

In previous work [11, 12], we found that significantly better performing 
neural networks for detection of fault-prone modules can be obtained using 
the classical genetic algorithm than by manual trial and error (as is common 
practice), with great savings in time and effort and greater confidence in the 
optimality of the results. In the present study, we investigate techniques for 
improving and extending genetic algorithms to achieve increased accuracy, 
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and we compare our results with those from discriminant analysis on the 
same data, and the difference in results is tested for statistical significance. 

In this paper, the term evolutionary neural network (ENN) will be used 
to signify an artificial neural network whose architectural, learning, and 
training parameters have been optimized by evolutionary computation, 
usually a genetic algorithm (GA). Hence an ENN is the end product of 
simulated evolution on ~ population of static competing solutions selected 
for superior performance. A similar term is used in a less restricted sense 
elsewhere [32]. 

The following sections cover methods, results and conclusions. In the 
next section, we describe the techniques used for preparing data, neural 
networks, genetic algorithms, discriminant analysis, and comparing two 
proportions for significance. We then present the case study, which classifies 
software modules as fault-prone or not. Finally, conclusions and directions 
for future research are presented. 

2. EXPERIMENTAL METHODS 
In this study, we have measurements on a sample of n software 

modules, using a set of m software metrics, X j ,j = 1, ... , m . Let X be the 

n x m matrix of measurements. The following is a summary of our 
methodology [14]. 

1. Transform the raw data. 
a) Standardize measurements to a mean of zero and a variance of 

one for each metric. 
b) Perform principal components analysis on the standardized 

product metrics to produce domain metrics. 

2. Prepare data sets. 

Because we had data from only one project which did have a sufficiently 
large number of modules for meaningful statistical results, we 
impartially split the data into training, test, and validation data sets. The 
fit data set consists of all modules not in the validation data set. 

3. Develop models. 
a) Develop a best evolutionary neural network model based on the 

training and test data sets. 
b) Develop a nonparametric discriminant analysis model based on 

the fit data set. 

4. Predict the class of each module in the validation data set using the 
discriminant model and the best neural network model. 
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5. Evaluate the accuracy of the models by comparing proportions of 
predictions to proportions of actual values, using a test for statistical 
significance. 

A classification model is evaluated by the portions of modules that are 
assigned to the wrong class. Type I misclassifications classify not fault-prone 
modules into the fault-prone group. Type II misclassifications classify fault
prone modules into the not fault-prone group. The overall misclassification 
rate is all misclassifications divided by the number of modules. 

2.1. Data Preparation 
To render the data manageable and usable by the neural net program, and 

to make the training time tractable, several data preparation steps are 
followed. 

2.1.1. Standardization 

Because software metrics have a variety of units of measure, any 
modeling methodology must reconcile the units of measure. We standardize 
software metric data, so that the unit of measure becomes one standard 
deviation. 

Let the population mean of the j'h metric be estimated by the average, 

xj , of a set of measurements, xlj , ••• , xnj , and let the population standard 

deviation of the j'h metric be estimated by the sample standard deviation, 

S j . A standardized metric is defined as 

X.-X. 
Z. = J J 

J 
(1) 

for all j = 1, ... ,m . Thus, all Z j have a mean of zero and a variance of one. 

Let Z be the n x m matrix of standardized measurements where Z ij is an 

element, each row corresponds to a module, and each column is a 
standardized metric. 

2.1.2. Principal components analysis 

When there is some degree of correlation among the input variables, as is 
usually the case with software metrics, principal components analysis (peA) 
enables one to reduce the dimensionality of the input data without significant 
loss of information by clarifying the directions of greatest variation in the 
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data set. The resultant gain in speed and ease of training makes the use of 
this classic multivariate statistical technique worthwhile. 

Software product metrics are often highly correlated with one another, 
because they measure related attributes of the software. Principal 
components analysis is a technique for transforming multivariate data into 
variables that are not correlated, and thus, they result in a more robust model 
[31]. When the original data are software metrics, we call the new principal 
component variables domain metrics. 

Principal components analysis is also a data reduction technique. Given 
m product metrics, a stopping rule chooses p« m domain metrics, and 
ignores the remaining domain metrics because they have insignificant 
variation across the data set [31]. 

Recall that we have m product measurements on each of n modules. 
Principal components analysis performs the following calculations, given an 
n x m matrix of standardized metric data, Z [31]. 

1. Calculate the covariance matrix, :r., of Z . 

2. Calculate eigenvalues, A j' and eigenvectors, e j' of :r. , j = 1, ... , m . 

3. Reduce the dimensionality of the data. In this study, we chose to explain 
at least 95% of the total variance of the original standardized metrics. 

Choose the minimum p such that. 2:;=1 Aj / m ~ 0.95. 

4. Calculate a standardized transformation matrix, T , where each column 
is defined as 

e· 
t. = ~) for j = 1,. .. , p ) A. 

) 

5. Calculate domain metrics for each module, where 

Dj = Ztj 

D=ZT 

(2) 

(3) 

(4) 

The end result is an n x p matrix of domain metric data, D, where each 

domain metric, D j , has a mean of zero and a variance of one. Since they are 

orthogonal, the domain metrics are suitable as independent variables. 

We used the principal components analysis feature in the SAS statistical 
package. Further mathematical details are available in statistics texts [22]. 
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2.1.3. Scaling 

The transformed data, D, are further processed with a scaling function 
for compatibility with the neural network. Each value, d ij' is thereby 

mapped into the closed interval [0, I]. For each dimension of the vector, the 

minimum, min j' and the maximum values, max j' of the data set are 

determined. For neural network input, inij' 

d .. -min. 
in .. = _...:..lJ __ --'-l_ 

lJ • 
maxj-mm j 

(5) 

The not fault-prone class is encoded as class I and the fault-prone class is 
encoded as class 2. 

2.1.4. Data splitting 
We impartially split the data into two sets with similar fault distributions, 

one twice the size of the other (or nearly so). For the discriminant analysis 
experiments, the larger set is taken to be the fit set and the smaller serves as 
the validation set. Similarly, for the neural network experiments, the smaller 
of the two becomes the validation set, identical with the validation set in 
discriminant analysis work. However, the larger of the two sets is further 
split randomly into a training set and a test set. 

In our study, the network is trained on one file and run on two other files 
of similar data. The files required for the method used here are: 

• The training set, from which the independent variables and the actual 
class are read and fed through the network to create the weight set for the 
model. 

• The test set, which is used to monitor the ability to interpolate data while 
the model is being developed. It allows one to avoid overfitting. 

• The validation set, which is introduced only when the model is finished 
to verify its ability to generalize to new data from the same environment. 

The test set and the validation set should approximate the distribution of 
classes expected to be found in the task environment. The training set, 
however, is evenly balanced between fault-prone and not fault-prone patterns 
to facilitate training by preventing fixation on the predominant class. All of 
the observations in the less numerous class are concatenated with an equal 
number pseudorandomly selected from the more numerous class. 



www.manaraa.com

Improved Fault-Prone Detection Analysis o/Software Modules 75 

2.2. Neural Network 
The neural-net classification model for this study is a supervised 

learning, multilayer, feedforward backpropagation network. This is a rather 
standard form of neural network. It is well suited to modeling complex non
linear functions, including classification functions. A more thorough 
treatment is available in many excellent references on various levels [5, 9, 
10]. 

As illustrated in Figure 1, the architecture of this system consists of 
connected nodes, or processing units, organized hierarchically into layers, 
and, except in the last layer, the units of one layer are fully connected to all 
of the nodes in the next forward layer. The connections communicate 
weighted real-number values from one unit to another. In the feedforward 
neural network paradigm, no connections occur within layers, across layers, 
or in the backward direction: connections are made between units in adjacent 
layers in only one direction. 

In our neural net classifier, the activation states of the output units 
represent the degree of membership in each class. The output with the larger 
value indicates the predicted class. 

in! 

im 
Qut! 

in} 
Quiz 

inm 

Input layer Hidden layer Output layer 

Figure 1. Multilayer feedforward neural network. 

Each neuron-to-neuron connection has a variable weight quantifying the 
connection strength. Let Wij be the connection weight between neurons i 

and j . Each input-layer neuron receives its input directly from a single input 
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variable. Let in j be the value of the input variable for input-layer neuron j . 

Then the summed input at a neuron j is given by 

{
in j if j is an input - layer neuron 

Net. = n 
J :L WijOut i - OJ otherwise 

i=1 

where OJ is the threshold of neuron j having n neural inputs. The 

output of neuron j is given by the logistic function 

Out - } {
Net. 

j - 1/(1 + eP Nelj ) 

if j an input - layer neuron 

otherwise 

where fJ adjusts the gain of the function. 

(6) 

(7) 

The network learns by finding a vector of interconnection weights that 
minimizes its error on the training data set, a data set having known inputs 
and known outputs. After the connection weights have been selected, the 
network can predict the outputs for data having known inputs and unknown 
outputs. These actions, learning and predicting, occur in the two phases of 
neural network activity. 

During training on a data set having N observations, a network with 
M output layer neurons attempts to find a vector of connection weights, W, 
that minimizes 

N M 

E(W) = :L:L(dpi -Outp;)2 
p=1 i=1 

where d pi and Out pi are, respectively, the desired and actual output values 

of i lh output layer neuron on the plh observation. In our study, M = 2 . In 

this study, the neural networks achieve this using a backpropagation learning 
algorithm. At the beginning of the training phase, W is a random vector. The 

network iterates through the training data adjusting W. Let Wij (n) be the 

interconnection strength between neuron i in layer (l - 1) and neuron j in 

layer I after the nih iteration through the training data set. The following 
relationship adjusts the weights: 

Wij(n + 1) = W;j(n) + 170uti6J + a(Wij (n) - Wij (n -1)) 
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where 17 and a set the learning and momentum rates, respectively, and g) 

gives the error contribution for neuron j . For the output layer, 

g) = (d) -Out)Out/l-Out)) 

The desired output for the hidden layer neurons is not known. However, 
since the error contribution of the hidden layer neurons propagates to the 
output layer, backward propagation of error allows estimation of the hidden 
layer neuron error contributions, 

g) = ("L gkW)k )Out /1- Out)) 
k 

where k is the running index for the neurons in layer (I + 1) . 

The algorithm iterates through all of the inputs until the maximum 
number of iterations is reached. To facilitate training, the order of 
presentation to the net of the training set observations is randomized with 
respect to class membership. 

In our study, no attention is given to whether the net converges to a 
minimum error level. The theoretical justification for this is given by Lin and 
Vitter [21] and Blum and Rivest [3], who proved that the training problem 
for even the simplest neural networks is NP-complete. In practical terms, a 
test for convergence is difficult to precisely define, would greatly increase 
running time, and, for the success of the genetic algorithm in our problem 
domain, is unnecessary. Furthermore, reducing the training error in a neural 
net to zero is not desirable since this often leads to overfitting: it will perform 
perfectly on the memorized training set but will not perform well on other 
similar sets of new data. The optimizing program needs only to determine for 
each net the best classification (on the test set) within the window from 1 to 
the specified maximum number of epochs. When the model is incorporated 
into an application, new data must have the same dimensionality and scaling 
(or lack of scaling), and the activation function and gain parameters for the 
neural net must match those of the model (the training parameters used to 
build the model - learning parameter, momentum, update method for weight 
adjustment - do not matter in the application stage). 

2.3. Genetic Algorithm 
The genetic algorithm (GA), inspired by natural evolution, is a global 

search method which can simplify and automate searches in complex, 
multimodal spaces. It was developed and formalized by Holland [13]. It was 
further developed and shown to have wide applicability by Goldberg [7]. 
Schaffer, et al. [30] showed that it could be used to improve the learning 
ability of neural networks for simple pattern discrimination on a small data 
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set. Evolving the weight set for a neural net classifier with the inverted error 
as the fitness function has also been studied [27]. Ways of combining GAs 
with neural networks to form improved hybrid algorithms constitute a major 
research direction. For a good introduction to GAs and an examination of 
recent work, see Mitchell [26]. Michalewicz [24] is also an invaluable 
pnmer. 

GAs can be modified in many nontraditional ways, but they generally 
have the following computationally simple steps: 

1. Initialize a population of individuals P(O) with random gene values; set 

i = O. 

2. Evaluate the fitness of each member of P(O) according to specified 
criteria. 

3. If the terminating condition is satisfied, stop. 

4. Select according to fitness members of the current generation P(i) as 
parents. 

5. Recombine the genes of selected parents (crossover) to get the members 
of the next generation P(i + 1) . 

6. Mutate some genes in the members of P(i + 1) according to a given 
mutation probability. 

7. Evaluate the fitness of each member of P(i + 1) ; increment i. 

8. Go to 3. 

Most importantly, a GA operates on populations. A population provides 
a multitude of potential solutions to a problem, and maintains, in effect, a 
reservoir of potentially valuable gene combinations. Each individual is a 
combination of genes which characterize it or influence its behavior. The 
genes occur in a usually fixed-length sequence called a chromosome. In each 
generation, each chromosome is assessed by the fitness function for its value 
in solving the problem. A chromosome, in this study, is the binary encoding 
of the blueprint for a neural net, which demonstrates some performance 
value when it is run on the test data. This performance value is determined 
by the fitness function. 

In the next generation, new solutions are created with crossover and 
mutation, which operate on chromosomes. Bitwise mutation was 
implemented, where mutation operates on each bit of an offspring 
chromosome. After crossover has occurred with a likelihood given by the 
crossover rate, each bit is flipped or not with a probability equal to the 
mutation rate. Some mutation is needed to maintain the diversity of the gene 
pool - the collective genetic information in a population. But this should 
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occur at a low rate. With a high mutation rate, the GA would degenerate to 
no better than a random search; any good building blocks developed would 
quickly disappear from a highly unstable gene pool. 

Crossover is a mean of recombining good genetic building blocks from 
the most fit individuals into individuals of the next generation. It provides the 
major driving force for progress in the run of a GA, and the crossover rate is 
usually set to a high value. 

For our prior experiments [11], the traditional one-point crossover was 
used. A crossover point in the chromosome is selected randomly. All genes 
after that point are swapped in the pair of offspring. For example, let the 
parents be 111000 and 000111 (to make it easy to see). If the crossover point 
is 3, then the offspring are 111111 and 000000. This crossover operator 
suffers from positional bias. The genes at the end of chromosome string will 
always be exchanged. Using two crossover points (two-point crossover) or 
more (n-point crossover), will overcome this drawback to some extent, but 
sequences of adjacent genes are likely to be exchanged in a crossover. While 
uniform crossover eliminates positional bias, it is the most disruptive to the 
integrity of the chromosome. 

Uniform crossover is a generalization of one-point crossover. In one
point crossover, all bits before and including the bit at the crossover point 
have probability 0 (no probability) of exchange and all bits after the 
crossover point have probability 1 (the probability of certainty). In uniform 
crossover, the number of crossover points is the number of bit positions in 
the chromosome and each is exchanged with some probability p between 0 

and 1. Usually, p is 0.5 (O.S-uniform crossover), but higher values may be 
better. Of course, when p is 1, no recombination occurs because crossover 
occurs at every point and the offspring are identical to the parents, the first of 
the pair to the second parent and the second to the first parent. 

Uniform crossover is in some ways analogous to the generalized sets 
exploited in fuzzy logic, which extends the 011 set membership of classical 
set theory by admitting intermediate values. This analogy suggests another 
apparently untried variation of one and two-point crossover, which may be 
worth investigating, in which crossover points are selected as usual but bits 
after the crossing point are exchanged with a probability intermediate 
between 0 and 1. 

For the software engineering data, selection of individuals for mating is 
done by the fitness proportionate method. If the fitness of a particular 
individual a is fa' then the probability of selection for a in a population of 

size N is 
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p = fa 
a L:lh 

where L:l h is the population fitness, the sum over. all individual 

fitnesses. Thus, an individual is selected in proportion to its contribution to 
the population fitness. 

Tournament selection of size 2 was used in one experiment. In 
tournament selection of size n, n individuals are randomly selected from 
the population and the individual with highest fitness among these is used in 
mating. This selection process is repeated for the number of mates required. 

In the fixed population size, generational paradigm used here, while the 
population size has not been reached, two individuals are selected as parents 
to produce a pair of offspring to replace the parents in the new generation. 
Selecting the best individual or the best n individuals to copy without 
modification into the next generation, is known as elitist selection. It is 
helpful in preventing the degeneration of the gene pool. In our experiments, 
elitist selection was used, with n set to 4. When a run of our GA optimizing 
program terminates, the four best results are output, thus giving a range of 
good choices rather than a single, inflexible answer. Typically, one model 
may give somewhat better class 2 performance at the slight expense of class 
I, or vice versa. We have two often conflicting objectives: optimizing the 
identification rate for each of two classes. So, providing a range of choices to 
the user is a rational strategy. 

The genetic algorithm, itself, is application independent, but in order for 
it to work in a specific application, two problems must be addressed in terms 
of the application - the representation problem and the fitness problem. Their 
solutions are not always straightforward. The following two subsections will 
explain the solutions developed for our problem domain. 

2.3.1. Representation problem 

At the machine level, an individual in the population is a string of bits 
(non-binary alphabets may also be used). To the GA, this string is a 
chromosome, and algorithmically, an individual is identical with its 
chromosome. The chromosome is a sequence of genes (bit substrings), 
whose encoded values (alleles) characterize the individual. How to encode 
the essential attributes of an individual in its chromosome is known as the 
representation problem. Its solution is application-specific. 

Since we want to build high-performance classification nets, the genes 
should encode network characteristics that are controlled by parameters 
which influence network performance. For the backpropagation algorithm, 



www.manaraa.com

Improved Fault-Prone Detection Analysis ofSofiware Modules 81 

probably the most important parameters are the number of hidden layers, the 
number of units in each layer, the learning rate 17, and the momentum a . To 
these, we added the update method (continuous or periodic updating of the 
weights during training) and the gain, the factor in the activation function. 
For most of these experiments, the number of hidden layers was fixed at one, 
since our empirical evidence [11,12] showed no significant advantage in 
more than one layer in this domain. 

Half of the results below used a chromosome for an individual that was 
33 bits in length and had the following gene sequence: 

• Number of hidden layers - 2 bits. 
(Not used because the number of layers was fixed at 1) 

• Number of units in hidden layer (maximum 128) -7 bits. 
• The learning rate (range 0 to 1) - 8 bits. 
• The momentum (range 0 to 1) - 8 bits. 
• Update (continuous or periodic) - 1 bit. 
• Gain (range 0 to 1) - 7 bits. 

The other half of the results below used & 41 bit-length chromosome. An 
extra 8-bit gene was added to encode separate learning rates on the the input 
layer to hidden layer error and on the hidden layer to output layer error. As a 
consequence, the size of the binary search space was increased by a factor of 
256. 

Each gene encodes a real-valued or an integer-valued parameter. The 
integers are decoded by the GA from their binary number representations 
into decimal integers for use by the program. In the case of the number of 
hidden layers or the number of units in a hidden layer, the value is 
augmented by 1, since a zero value for these variables is not permitted in the 
neural net algorithm. Update needs only one bit to represent it in the 
chromosome since it is coded as a Boolean variable - continuous or not 
continuous (periodic). The genes for the learning rate (17 ), the momentum 
(a ), and the gain encode real numbers. Representation of real numbers in a 
string of binary values entails some difficulties. In our representation, eight
bit substrings for 17 and a were coded as binary fractions and decoded to 
decimal fractions with division by 255. The gain was represented as a seven
bit substring and divided by 127 to obtain a decimal fraction. 

A real-number encoding was also developed for comparison tests. In this 
representation, the chromosome is an array of real numbers. Each of the 
above mentioned parameters is represented by a gene whose value is a real 
number between 0 and 1. If, however, the range of permissible values for the 
parameter is between 0 and a, the real-number value of the gene is 
multiplied by a . If the parameter is Boolean, the value of its gene is tested 
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to determine whether or not it is less than 0.5. The comparable real-number 
chromosome has a length of 6. Crossover for real-number chromosomes can 
be implemented in the same way as for binary chromosomes - by swapping 
corresponding genes (real numbers rather than binary digits) from the parents 
in opposite ways for the two offspring - or the genetic information from the 
selected parents can be recombined by taking the mean of the values of 
corresponding genes. In this latter case, two parents have just one offspring. 
Mutation for a gene with real value a , 0 ~ a ~ 1, is implemented by either 
incrementing the gene value by a random percentage of 1- a or, with equal 
probability, decrementing by a random percentage of a . 

2.3.2. Fitness problem 

A fitness function is needed to rank the members of a generation for 
selection. What the fitness function actually measures (often not what the 
researcher expects it to measure) is maximized. Since what it measures is 
dependent on an application-specific decoding of chromosomes, the fitness 
function must be specifically designed for the application. 

Most work in evolving neural networks has made the complement or 
inverse of the error used for weight readjustment the measure of fitness [1,4, 
19,25,27]. For our problem, however, the optimization task is complicated 
by the fact that minimization of the learning error is not sufficient. The 
magnitude of the error does not clearly indicate how successful the net is in 
separating classes with different frequencies since an undesirable reduction 
in the the accuracy for one class can nevertheless greatly reduce the total 
error. 

A neural network's degree of success with respect to class separation is 
readily determined from the confusion matrix it produces for a data set. For 
the two-category problem considered here, this is a 2 x 2 matrix of integers. 
The first row contains the number of correctly classified modules of class 1 
(not fault-prone) and the number of incorrectly classified modules of class 1. 
The second row contains the number of incorrectly classified modules of 
class 2 (fault-prone) and the number of correctly classified modules of class 
2 in that order. The position of a number in the matrix encodes its semantic 
interpretation. 

A perfect classification would have zeroes on the minor diagonal and the 
total numbers of class 1 and class 2 modules on the major diagonal, as 
follows: 

[ 20
0
04 0] 

320 
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Here, 2004 means the total number of class I and 320 the total number 
of class 2 patterns (the actual numbers for the validation set used in the 
neural network experiments and for discriminant analysis). In the N-
category problem, A is an N x N matrix whose entry Aij (in the ith row, 

/h column of A) is the number of times a pattern in class i has been 

identified as a member of class j. For our problem, if Nil and N22 denote 
the number of correct class 1 and class 2 identifications, respectively, and 
NI2 and N21 the number of class 1 patterns identified as class 2 and the 
number of class 2 patterns identified as class 1, respectively, then 

is the general confusion matrix which is output by a neural net routine for a 
set of patterns. This matrix is the input to the fitness function f . 

In prior work [11], several different fitness functions were devised, 
tested, and evaluated. The fittest of these is the surviving fitness function 
used in the present experiments. It is as follows: 

PI ~ ~ or P2 ~ P2 

PI > ~ & P2 > P2 

where PI and P2 are the model's identification rates for class I and class 2 

respectively, and ~ and P2 are the corresponding minimum cutoff rates. 
When the identification rate for either class is less than or equal to the 
minimum cutoff rates for the class the individual is penalized with a fitness 
value of 0.1. Otherwise, the fitness value is 0.1 plus the sum of the amounts 
by which each class identification rate exceeds its specified minimum rate -

i. e., I:~I (p i - P;). The minimum fitness is 0.1 in order not to exclude the 

poorest performers from the gene pool. They have a contribution to make to 
the diversity of the gene pool and have a nonzero albeit small chance of 
being selected for reproduction. For our experiments, ~ ranged from 0.30 to 

0.60, and P2 ranged from 0.72 to 0.75. In many cases, ~ was set to 0.40 

and P2 to 0.74. Higher values limit the gene pool but generally produce 
higher performing individuals. Other data sets may require different values. 



www.manaraa.com

84 Software Engineering with Computational Intelligence 

2.3.3. Implementation 
The computational complexity of the code for the genetic optimizer (see 

Figure 2) is of the order of magnitude of the product of three variables: the 
maximum number of generations (G), the population size (P), and the 
aggregate complexity (A) - in big Oh notation, O( GP A). The aggregate 

complexity A is the complexity of the backpropagation algorithm and its 
input. It depends on E, the number of epochs (the amount of training), the 
connectivity of the network (which depends largely on the number of layers 
as well as the number of units in each layer), and the complexity of the data
the size of the training set, the size of the test set, and the dimensionality of 
the pattern space. The connectivity must be summed over the variety of 
architectures in each generation and that sum must itself be summed over the 
total number of generations. The bit length of the chromosome will also have 
an effect. Thus, the running time on our Unix-based workstations for 
experiments of modest size (say, G = 30, P = 10, E = 100) was hours. 
The code will be most effective when ported to a distributed environment (a 
cluster of workstations), or a massively parallel machine, with one processor 
allocated for each neural net in the population. 
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for initial neural net (nn) population 
initialize fixed parameters 
randomly configure other nn params 

end for (initial nn population) 
set fitness of best nn to zero 
for 1 to maximum number of generations 

for 1 to population size 
build nn from its parameters 
set fitness of nn to zero 
for 1 to maxepochs by stepsize 

for stepsize epochs train nn 
run on test data set 
generate the confusion matrix 
compute fitness 
if fitness > previous fitness of nn 
update fitness of nn 
if fitness > fitness of best nn 

update best nn record 
endif ( > fitness of best nn) 

endif (> previous fitness of nn) 
end for (training epochs) 

end for (population) 
using genetic operators, generate 

new population from old population 
replace old pop. with new population 

end for (generations) 
evaluate the best nn on validation data set 

Figure 2. Pseudocode for the genetic optimizing program. 

85 

However, for a single-processor machine, some time-saving strategies 
can be exploited. These include running the inner loop for an initial number 
of iterations without computing the evaluations and comparisons for the best 
neural net. This can usually be done without any sacrifice because there is a 
latent, initial formation stage in which the only strategy the net exhibits is to 
identify all patterns as belonging to one category. The initial step size for this 
study was often set to 30. Another way to save some time is to skip the inner 
loop if the offspring neural net has not undergone crossover and mutation 
and is a copy of one of the parents. It would also be a copy if it is the result 
of elitist selection. In these cases, the fitness is already known (it is the 
fitness of the parent), so entering the inner loop is not necessary. 

If the training set is sufficiently large and representative, it can often be 
reduced by uniformly random selection to half its size without loss of 
essential information. The training set initially used was reduced in this way 
for the present study - 850 patterns were cut by random selection to 425 
patterns. If the stepsize for the inner loop is increased the running time will 
be shortened. But in these experiments this feature was little used. Probably, 
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the possibility of missing good results with stepsize greater than one 
becomes negligible only when the number of epochs needed for convergence 
is very large. 

2.4. Discriminant Analysis 
Discriminant analysis is a multivariate statistical modeling technique for 

estimating classification. It can determine with some accuracy to what extent 
separation into predefined classes is possible for an observation sample with 
given metrics. As a tool for making decisions about group membership, it is 
available in many modern statistical packages. We use the nonparametric 
discriminant analysis tool in the SAS package [29]. We chose the 
"nonparametric" form of discriminant analysis because density functions 
were unlikely to be normally distributed [14]. Estimated density functions for 
two mutually exclusive classes are computed using a normal kernel function 
on the vectors of independent variables, Bayesian posterior probabilities of 
membership in a particular class, and the a priori probability distributions of 
the labeled classes in the fit data set from which the discriminant model is 
built [16]. One configurable parameter, a smoothing parameter A, exists for 
attempting to minimize classification error over a number of runs with 
different A values. 

2.4.1. Stepwise discriminant analysis 

Recall that our purpose was to classify modules as belonging to either 
the not fault-prone group or the fault-prone group. We used stepwise 
discriminant analysis model selection at the 5% significance level to choose 

the domain metrics, D j , that should be included as independent variables in 

the discriminant model [31]. 

Variables are entered into the model in an iterative manner, based on an 
F test from analysis of variance which is recomputed for each change in the 
current model. Begin with no variables in the model. Add the variable not 
already in the model with the best significance level, as long as its 
significance is better than the threshold (5%). Then remove the variable 
already in the model with the worst significance level, as long as its 
significance is worse than the threshold (5%). Repeat these steps until no 
variable can be added to the model. The final result is a subset of 

D j , j = 1 " .. , p, that are significantly related to the module class. 

2.4.2. Estimating parameters 

We applied nonparametric discriminant analysis, a standard statistical 
technique, to predict the membership of each module in the not fault-prone 



www.manaraa.com

Improved Fault-Prone Detection Analysis o/Software Modules 87 

group (G1 ) or the fault-prone group (G 2)' We defined the selected domain 

metrics, Dj' as independent variables, and the group membership was 

given. We estimated a discriminant function based on the fit data set [31]. 

Consider the following notation. Let d i be the vector ofthe i1h module's 

independent variables, and let nk be the number of modules in group 

G k , k = 1 , 2 . Let S k be the covariance matrix for all samples in G k' and 

let IS k I be its determinant. Let fk (d i) be the multivariate probability 

density giving the probability that a module, d i' is in G k' and let 
" fk (d i I 2) be an approximation of fk (d i)' where 2 is a parameter. From 

a Baysian probability viewpoint, let 1l k be the prior probability of 

membership in Gk. We choose the prior probability, 1lk' to be the 

proportion ofjit modules in Gk • 

Since the density functions, fk' are not likely to conform to the normal 
distribution, we use nonparametric discriminant analysis. Let 2 be a 
smoothing parameter in this context. We select the multivariate normal 
kernel on vector u with modes at v. This is the most commonly used 
kernel, and has been studied the most mathematically. 

Kk(u I v,2) = (21l 22 rnkl2lSkl-lf2 

exp( (-1/22 2)(U - v)' S;I (u - v) ) (8) 

Let d kl ,[ = 1,'" ,nk be a vector of independent variable values for the 

[Ih observation in group Gk • The estimated density function is given by the 
multivariate kernel density estimation technique. 

(9) 

The estimated discriminant function is given by 

(10) 

This classification rule minimizes the total number of misclassifications [31]. 
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2.5. Comparing Two Proportions For Significance 
The following statistical test was used for comparing two proportions 

[33]. 

Let PI = XI I nl and P2 = X 2 I n2 be the estimates of two proportions, 

PI and P2' where Xi is a count for a sample of size ni . If we want to test 

the hypothesis H 0 : PI = P2' with alternate hypothesis H A : PI > P2 then 
A A 

Z= PI - P2 

pq +pq 
nl n2 

where 

and 

q=l-p. 

When n l = n2 ' as in our case, then we get the following reductions: 

where n is the common sample size, and 

- PI + P2 P= 
2 

Assuming roughly normal distributions for PI and P2' we can determine the 
proportion of the normal curve which is greater than or equal to the 
computed value of Z. This proportion is the level of significance. It is most 
conveniently found in a table of proportions of the normal curve (one-tailed) 
by looking up the proportion corresponding to the Z value. If the level of 
significance is less than a specified limit (usually 5%), the null hypothesis is 
rejected. 

3. CASE STUDY 
The software engineering data used in this study was derived from a 

telecommunications system with about 12 million lines of code written in a 
Pascal-like proprietary language. About 7000 modules, all of which have 
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undergone some revision since their prior releases, were the source for the 
data set. In this context, a module is a set of source files designated as such 
by designers. 

The source code was measured by a version of the Datrix metric analyzer 
[2] customized for the proprietary programming language of the subject 
software. The metric data was collected for another purpose, and was 
subsequently made available for this study. The nine metrics listed in Table 1 
were selected for study from about fifty metrics collected by the metric 
analyzer. Selected metrics were limited to those that could be derived from 
design and pseudocode documentation and to those with properties suitable 
for modeling [6,15]. These metrics can be collected from pseudocode or 
source code. They are drawn (at least, theoretically) from call graphs (to 
measure the connectivity and interdependency of modules) and control-flow 
graphs (to measure the logical complexity of modules). 

The control-flow graph terminology, although standard, may require 
some explanation here. A vertex of a flow graph (for the design of a 
procedural computer program) is a conditional (if-then) or a sequential 
declarative (executable) statement, and the transfer of control from one 
vertex to another is called an arc (represented graphically as an arrow). A 
loop is a control structure having a cycle of control from a vertex (usually 
containing a conditional test) back to itself. A control structure embedded 
within another control structure (for example, a while loop inside another 
while loop) is said to have nesting level 1. Cyclomatic complexity is a widely 
known [28] quantitative measure of the logical complexity of a program 
[23]. For a control flow graph with one entry and one exit, cyclomatic 
complexity is the number of decision nodes plus one. Zuse presents an in
depth study of its properties [34]. 

For the training and test sets used to build our model, the nine metrics 
were matched with the corresponding number of faults reported in the testing 
of each module (when applying the completed model in normal use, the 
number of faults will not be available). The frequency distribution of faults 
was skewed toward the low end - approximately half of the modules had 
zero reported faults (50.7%) and a few had many faults. The distinction 
between fault-prone and not fault-prone modules is necessarily subjective, 
but it ought to be defined to correspond with a practical difference in the 
software development environment to which it is applied, for example, the 
percentage of modules to which a manager intends or is able to devote extra 
attention and resources. In our case, the threshold between these two classes 
was placed by software development managers at 3. Thus, modules with less 
than three reported faults were considered not fault-prone (86.3%), and 
modules with three or more faults were considered fault-prone (13.7%). 
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Metrics from Call Graph 

Unique procedure calls 

Total procedure calls 

Distinct include files 

Metrics from Control Flow Graph 

McCabe's cyclomatic complexity 

Total loops 

Total if-then structures 

Total nesting level over all arcs 

Total vertices within conditional structures 

Total arcs + vertices within loop structures 

Table 1. Software metrics used to build classification models. 

Given the nine software design metrics, principal components analysis 
retained four domains under the stopping rule that we retain components 
which account for 95% or more of the total variance. Table 2 shows the 
relationship between the original metrics and the domain metrics. Each table 
entry is the correlation between the metrics. The largest correlation in each 
row is bold. 

Metric DJ Dz 
Total vertices within 
conditional structures 0.884 0.313 
Total nesting level 0.853 0.362 
Total if-then structures 0.665 0.601 
Total procedure calls 0.360 0.853 
Unique procedure calls 0.359 0.838 
McCabe's CYclomatic complexity 0.617 0.632 
Total loops 0.290 0.407 
Total arcs + vertices within loops 0.418 0.316 
Distinct include files 0.003 0.004 
Eigenvalues 2.85 2.69 
% Variance 31.67% 29.89% 
Cumulative 31.67% 61.56% 

Changed Modules 

Table 2. Domain Pattern. 

D3 D4 

0.275 0.009 
0.335 0.012 
0.374 0.013 
0.307 0.005 
0.367 0.001 
0.416 0.005 
0.841 0.046 
0.827 0.019 
0.030 0.999 
0.12 1.00 

23.56% 11.11% 
85.12% 96.23% 
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We developed evolutionary neural network models according to our 
methodology. For each of the classifications of class 2 from 225 correct to 
236 correct the best class 1 classifications using ENNs are shown in the 
confusion matrices in Table 3. The crossover method is identified in column 
1. All of the best results, it should be noted, come from models built with 
uniform crossover. For each entry in Table 3, Table 4 presents in the same 
order the neural net and GA parameters used to develop the ENN model. The 
column "max units" is the maximum number of hidden units to which the 
search space was limited. The column "layers" gives the number of units in 
the input, hidden, and output layers. The column marked TJ2 is the learning 
rate for connections between the input layer and the hidden layer; the one 
marked TJ, the learning rate for connections between the hidden layer and 
the output layer. Those marked a , "pop", "gen", "Xover", and "mut." are, 
respectively, the momentum, the population size, the maximum number of 
generations, the crossover rate, and the mutation rate. In half of these 
models, the chromosome length was 33, using the representation scheme of 
prior work [12] - the maximum units was 128 and TJ2 was fixed at 0.5. In 

one of these, a was fixed at 1.0. For all of these models except one, the 
selection method was fitness proportionate. Tournament selection of size 2 
was used to build the model represented by the fifth table entry. The other 
half of the models used a chromosome length of 41 bits. 

The stepwise model selection process found the first three domain 
metrics significant at the 5% significance level, but not D 4 , and therefore, 

the inputs to the discriminant model were D1 , D2 , and D3 . 

The discriminant procedure used the fit data set to estimate the 
" " multivariate density functions, J; ,/2' and thus, the discriminant function 

per Equation (lO). We empirically determined the kernel density estimation 
smoothing parameter to be A = 0.005. The discriminant function was then 
used to classify each module in the validation data set. 

The best classification results obtained using evolutionary neural nets 
and discriminant analysis are shown in Table 5. To simulate subsystem 
performance, results were also obtained on randomly created subsets of the 
validation data. 

It is fair to say that, in any large data collection process, some of the data 
will be noise - erroneous data. If we assume that the noise in the data set is 
sparse and not uniformly distributed, it is likely that proper subsets of the 
data have less noise. These plausible assumptions may help to explain the 
better performance of the neural net seen in Table 5. Neural nets, because of 
the distributed nature of their computation, are tolerant of training noise but 
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perform better when noise is reduced in the task environment. A statistical 
model, however, can be expected to be accurate only to the extent that the 
random sample data on which it is built is representative of the population. 
Therefore, a statistical model built with data containing substantial noise 
should show no significant improvement in performance tests when the noise 
is reduced and the probability distribution of the data is altered. This inherent 
difference in the ability to handle noise may be an explanation for the 
indisputable difference in performance. The increasingly better neural net 
results for overall classification on progressively smaller subsets (Table 5) 
appear to strongly support this hypothesis. 

In Table 6 the errors (as real numbers rather than percentages) on class 1, 
class 2, and overall for each approach on the full set and the random subsets 
of Table 5 are compared for level of statistical significance. Our null 
hypothesis is H 0 : PI = P2 and the alternate hypothesis is H A : PI > P2 ' 

where PI and P2 are the error proportions to be compared for the 
discriminant analysis and ENN approaches, respectively. The superior 
performance of ENNs on the full set is most significant on class 2 error and 
on overall error because, when the discriminant analysis results approach the 
ENN results on class 1 error, the models diverge considerably in 
performance on class 2 error. 

Real number encoding of the chromosome did not produce significantly 
better classification results than binary encoding. The results were similar in 
extensive trials of the two representation schemes - on our data, for our 
problem, for our real number implementation. 
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Type of Count confusion Percent confusion [% right % wrong] 
crossover matrix matrix 

0.8-uniform [1489 
84 

515] 
236 

[74.30 
26.25 

25.70] 
73.75 

[74.23 25.77] 

0.8-uniform [1485 
85 

509] 
235 

[74.60 
26.56 

25.40] 
73.44 

[74.44 25.56] 

O.5-uniform [1500 
86 

504] 
234 

[74.85 
26.88 

25.15] 
73.12 

[74.61 25.69] 

0.8-uniform [1506 
87 

498] 
233 

[75.15 
27.19 

24.85] 
72.81 

[74.83 25.17] 

O.5-uniform [1521 
88 

483] 
232 

[75.90 
27.50 

24.10] 
72.50 

[75.43 24.57] 

0.8-uniform [1503 
89 

501] 
231 

[74.61 
27.81 

23.39] 
72.19 

[74.61 25.39] 

0.8-uniform [1525 
90 

479] 
230 

[76.10 
28.12 

23.90] 
71.88 

[75.52 24.48] 

O.5-uniform [1524 
91 

488] 
229 

[76.05 
28.44 

23.95] 
71.56 

[75.43 24.57] 

0.8-uniform [1528 
92 

480] 
228 

[76.25 
28.75 

23.75] 
71.25 

[75.56 24.44] 

O.5-uniform [1540 
93 

464] 
227 

[76.85 
29.06 

23.15] 
70.94 

[76.03 23.97] 

0.8-uniform [1551 
94 

453] 
226 

[77.40 
29.38 

22.60] 
70.62 

[76.46 23.54] 

[1566 438] 0.5-uniform 
95 225 

[78.14 
26.69 

21.86] 
70.31 

[77.07 22.93] 

Table 3. The Best ENN Classifications. 
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Number Counting Percent confusion [% right % wrong] 
of cases confusion matrix 

matrix 

The evolutionary neural network results 

[1521 483] [75.90 24.10] [75.43 24.57] 2324 
88 232 27.50 72.50 

[776 227] [77.37 22.63] [77.11 22.89] 1162 
39 120 24.53 75.47 

[395 112] [77.91 22.09] [77.45 22.55] 581 
19 55 25.68 74.32 

[1~1 53] [78.28 21.72] [79.31 20.69] 290 
39 15.22 84.78 

[1~2 22] [82.26 17.74] [82.07 17.93] 145 
17 19.05 80.95 

The discriminant analysis results 

[1444 560] [72.06 27.94] [70.48 29.52] 2324 
126 194 39.38 60.62 

[750 253] [74.78 25.22] [73.24 26.76] 1162 
58 101 36.48 63.52 

581 [362 145] 
29 45 

[71.40 
39.19 

28.60] 
60.81 

[70.05 29.95] 

[188 56] [77.05 22.95] [75.17 24.83] 290 
16 30 34.78 65.22 

[92 32] [74.19 25.81] [70.34 29.66] 145 
11 10 52.38 47.62 

Table 5. The experimental results. 
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set no. class DA error ENN error no. of cases significance 

1 0.2794 0.2410 2004 0.0028 

2 0.2522 0.2423 1003 0.3050 

3 0.2860 0.2158 507 0.0049 

4 0.2295 0.2213 244 0.4129 

5 0.2581 0.2283 124 0.2912 

1 2 0.3938 0.2750 320 0.0007 

2 2 0.3648 0.2830 159 0.0594 

3 2 0.3919 0.2500 74 0.0322 

4 2 0.3478 0.2391 46 0.1271 

5 2 0.5238 0.1667 21 0.0075 

overall 0.2952 0.2457 2324 0.0001 

2 overall 0.2676 0.2478 1162 0.1379 

3 overall 0.2995 0.2203 581 0.0010 

4 overall 0.2483 0.2241 290 0.2451 

5 overall 0.2965 0.2207 145 0.0708 

Table 6. Significance tests for discriminant analysis and ENNs. 

4. CONCLUSIONS AND FUTURE DIRECTIONS 
Clearly, the discriminant analysis model did not outperform the ENN 

model on the data sets of the present study. The discriminant model is 
limited by one degree of freedom (the smoothing parameter) for adjustment 
in the range of results. The ENN model, however, has numerous degrees of 
freedom including, but not limited to, the population size, the number of 
generations, the crossover rate, the mutation rate, and the minimum 
acceptance rates in the fitness function. Ultimately, the comparison is 
between a deterministic statistical algorithm and a directed stochastic one. 
The latter has the advantage of adaptability. 

The results shown in Table 3, for which uniform crossover was used, are 
all improvements over those published previously [11]. For example, the best 
previous class 1 identification for 232 correct identifications was 1499. The 
best corresponding result in this study is 15.21. These results establish the 
suitability of ENNs as a software engineering tool. 

While our earlier work dealt with the curse of parametrization in 
designing neural nets, the present work has explored the blessings of higher 
level parametrization for optimizing the design of neural nets. 
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Neural net design requires decisions about the number of layers, the 
number of hidden units, the learning parameter, the momentum, the update 
method, the transfer function, to name a few. All of these make the search 
space for the optimum neural network very large, making the search by 
manual control intractable. When this is left to a genetic algorithm, the 
search is automated. The solutions it produces may well be satisfactory for 
many managerial purposes. 

In the training and test data, the accuracy of the number offaults depends 
on consistent human reporting practices. The fault reports are imperfect in 
that it is unclear to what extent standardized fault definitions were 
consistently applied. For example, two reported faults may be caused by the 
same piece of code. The accuracy of the metrics data depends on the 
correctness of the metrics analyzer software and the consistency between 
versions. Since only synthetic software engineering problems come with 
perfect data, there is a need for real-world methods of learning from 
imperfect data (noisy or incomplete or inconsistent data). The results 
obtained show what is possible using ENNs - even with imperfect data. 

In the software engineering data set, the data are partly human-supplied, 
partly automatically generated discrete variables characterizing objects 
which are human-contrived logical constructs. These discrete quantities are 
linked to fault counts which are used to partition the data set to accord with 
two interval classes separated by a threshold which are given names which 
are made to imply quality. It may be the case that the employed software 
metrics insufficiently characterize the two classes to be identified. A set 
including additional product metrics may improve the model. Pooling 
product, process, and resource metrics may lead to a better characterization 
and a model with greater predictive accuracy. Using number of code lines 
added or deleted from a module may produce more accurate data than the 
number of faults found. These are important areas for future investigation. 

The evolutionary neural network approach appears promising for a broad 
range of software engineering problems where historical data are available. 
With the accumulating mass of information on past software development 
projects, it becomes possible to develop evolutionary data mining techniques 
to draw latent lessons from it all. Although genetic algorithms and other 
evolutionary computation methods have been little used in most software 
engineering domains, the rapidly growing records of success in other fields 
should be noted for the examples they provide. 

Future work may include comparison of evolutionary neural networks to 
other machine-learning classification approaches. This classification 
technique could also be compared to a prediction technique combined with a 
simple decision rule. One would also do well to compare any machine
learning approach with human parameter choices. Finally, future work may 
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also include validation of the practical usefulness of the approach III an 
industrial software development setting. 
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ABSTRACT 

This work introduces the Fuzzy Model for Software Quality Evaluation and 
its implementation the AdeQuaS Fuzzy tool. The model proposed here 
comprises a five-stage evaluation process, and it may involve three distinct 
situations. In the first situation, the evaluation objective is to establish a 
quality standard for the software product or application domain in question. 
In the second one, the quality evaluation of a software product is executed, 
based upon a pre-defined quality standard. In the third, a quality estimation 
of a software product is found when there is not quality standard available. 
The AdeQuaS Fuzzy tool, which is based on the Fuzzy Model, has the 
objective of supporting the stages of software evaluation process, in order to 
get more effective results about the quality degree of subjective attributes 
through the judgment of a group of specialists. Besides, it is presented two 
applications. The first is the evaluation process to e-commerce websites 
quality. The second is an evaluation of software requirements specifications 
quality. 

KEYWORDS 
Software quality evaluation, Software Quality Measures, Quality Evaluation 
Model, Quality Evaluation Tool, Fuzzy Theory. 

1. INTRODUCTION 

Software evaluation structures aim primarily to estimate software quality 
using basic attributes set to underline its main features. The information 
about the object under analysis must be arranged orderly, so that specific 
software characteristics can be readily identified to optimize the decision 
making process [Boloix 1995]. The decision-making process can be seen as 
the selection of alternatives that are "good enough", or the choice of action 
courses so as to attain a certain goal. This process involves uncertainties 
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and, thus, it is necessary that we have the ability to handle imprecise, vague 
information, taking into account different views, attitudes and beliefs of the 
involved parts [Ribeiro 1996]. Therefore, it is important to establish the 
connection between the information and the decision made by a certain 
individual, who is expected to choose one of many possible actions, in 
different areas [Simonelli 1996]. 

Since the decision-making process is centered in human beings, as well 
as the software evaluation in itself, we find inherent subjectivities and 
inconsistencies in the problem definition. Thus, fuzzy sets are potentially 
adequate to deal with this problem, since [Ibrahim and Ayyub 1992]: (i) they 
are capable of representing attributes, (ii) they have convenient ways to 
combine the attributes that can be defined, vaguely or precisely, and (iii) 
they can handle different degrees of importance for each attribute 
considered. 

Just like many others areas of human knowledge, the software quality 
evaluation involves the appreciation of multiples attributes, as judged by a 
group of specialists. Each specialist has his or her own opinion and estimates 
a rank for each attribute, according to either to his or her perception or to the 
depth of his or her understanding of the problem. Thus, there is a great 
interest on obtaining an aggregation process, which can consolidate the 
consensus among the specialists involved in the analysis. 

In the process of software quality evaluation, it is not sufficient to 
identify the attributes that are determinant for the quality. It is also important 
to determine the procedures that one must follow to control the development 
process and attain the desired quality level. This is accomplished through the 
application of some metrics, in an organized and well-planned way, which 
makes the developers more conscious of both the relevance of management 
and the commitment with a quality standard. 

A model for quality evaluation must support the use of software quality 
metrics [Fenton and Pfleeger 1997; Kitchenham et al. 1996; Moller 1993, 
Schneidewind 1992], so that we can conveniently achieve our goals. In this 
work, we will present the Fuzzy Model for Software Quality Evaluation 
(FMSQE) [Belchior 1997] to evaluate the software quality, because it has 
already been satisfactorily and efficiently used in several applications 
[Albuquerque 2001; Branco Jr. and Belchior 2001; Campos et al. 1998]. Its 
use will be done through the AdeQuaS Fuzzy tool, which adds much 
functionality in an evaluation process. 

This paper is organized in five sections. Section 2 gives the general 
vision of the process of software quality evaluation, focusing the quality 
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model and metrics use. The section 3 presents how the Fuzzy Theory can be 
used in software quality. Moreover, the FMSQE is described through its 
stages. The fourth section presents the ADEQUAS tool. In addition, two 
evaluation results are showed: e-commerce websites quality and software 
requirements specifications. Finally, in section 5, the conclusions are drawn. 

2. SOFTWARE QUALITY EVALUATION 

The quality requirements specification is one of the arduous stages of an 
evaluation process [ Boehm and Hoh 1996; Rocha et al. 2001]. Its result is 
the model quality that will be used in the evaluation. The quality model 
corresponds to a relevant attributes set of a certain product that has to be 
adequately adapted to the evaluation context [Pfleeger 1998; Pressman 
2000]. 

A general quality model is proposed by ISO/lEe 9126-1 [ISO 2001], 
which can be applied to any kind of software. It is divided in two parts: (i) 
internal quality and external quality, and (ii) quality in use. 

For internal quality and external quality, characteristics and 
subcharacteristics are described, related to internal operation and its 
behavior into an external environment. For quality in use, characteristics are 
described, related to operational context in the user's point of view. 

The characteristics and subcharacteristics have to be observed under 
certain conditions, according to the evaluation purpose. They are: 

• Functionality: refers to the presence of functions that satisfy the user's 
needs. Includes: suitability, accuracy, interoperability, security and 
functionality compliance; 

• Reliability: corresponds to maintenance of appropriated performance. 
Includes: maturity, fault tolerance, recoverability and reliability 
compliance; 

• Usability: refers to using, understanding and learning facility. Includes: 
understandability, learnability, operability, attractiveness and usability 
compliance; 

• Efficiency: means a well use of resources with maintenance of 
performance. Includes: time behavior, resource utilization and efficiency 
compliance; 

• Maintainability: refers to the modification and correction facility. 
Includes: analyzability, changeability, stability, testability and 
maintainability compliance; 
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• Portability: means the environment change adaptability. Includes: 
adaptability, installability, co-existence, replaceability and portability 
compliance. 

The evaluation process presents the stages that must be followed by the 
participants. The ISO/IEe 14598 [ISO 1998] defines the process in four 
stages: 

• Establishing the evaluation requirements; 
• Specifying evaluation; 
• Projecting evaluation; 
• Executing evaluation. 

On the first step, it is necessary to establish the evaluation requirements, 
so that the evaluation goals, the object to be evaluated, and the quality model 
will be identified. 

The next step is to specify the evaluation through metrics definition and 
punctuation, as well as its judgment. Each metric has to be carefully 
quantified and related to a quality characteristic. The punctuation must be 
mapped in a satisfaction scale, that indicates if the software is within the 
stated limits between what is acceptable or not. 

Next, projecting the evaluation consists of planning the procedures to be 
executed by the evaluator, including action methods and time schedule. 

By executing the evaluation, the metrics related to the object have to be 
collected and, subsequently, compared with a predetermined satisfactory 
punctuation. 

The Fuzzy Model stands out from other quality models because: 

• It includes all the stages of evaluation process, from the definition until 
the presentation of results, according to ISO 14598 [ISO 1998]; 

• It gets the importance degree of the judgment of each specialist, 
according to his or her professional and academic profile; 

• It shows, in a quantitative way, the imprecise concepts and qualitative 
attributes; 

• It gets a quality index, which indicates the quality of the software. 

In next section, we will give a brief overview of how to Fuzzy Theory 
can be applied in software quality evaluations, so as to provide a better 
understanding of our work. In addition, the Fuzzy Model for Software 
Quality Evaluation is described. 
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The Fuzzy Set Theory has been used in several areas of human 
knowledge as the link between the imprecise (subjective) models of the real 
world and their mathematical representations [Araujo 2000; Dubois and 
Prade 1980]. In Software Engineering, many applications have been 
developed, such as the following measure techniques: f-COCOMO [Idri et 
al. 2000; Ryder 1998], Function points [Gray 1997; Lima Jr. et at. 2001], 
McCall Method [Pedrycz and Peters 1998] and Delphi Method [Ishikawa et 
at. 1993]. 

The Fuzzy Logic is an extension of the traditional logic that excludes the 
dualistic vision of true and false simultaneously exclusive. "In fact, between 
the sure of to be and the sure of not to be, there are infinite unsure degrees" 
[Sousa 1995]. Starting from this presupposition, between the true (1) and 
false (0) are considered infinite values in the interval [0,1] that indicates the 
true degree (or membership degree) of a certain set element. For instance, it 
can be considered a tones scale of gray between the black and the white. 

A fuzzy set is characterized by a membership function, which maps the 
elements of a domain, space or discourse universe X for a real number in [0, 
1]. Formally, A : X ~[O, 1]. Thus, a fuzzy set is presented as a set of ordered 
pairs in which the first element is x E X, and the second, JlACx), is the degree 
of membership or the membership function of x in A, which maps x in the 
interval [0, 1], or, A = {(x, JlACx)) I x E X} [20]. The membership of an 
element within a certain set becomes a question of degree, substituting the 
actual dichotomic process imposed by set theory, when this treatment is not 
suitable. In extreme cases, the degree of membership is 0, in which case the 
element is not a member of the set, or the degree of membership is 1, if the 
element is a 100% member of the set [20]. 

In this theory's view, each quality attribute can be seen as a linguistic 
variable, related with a set of linguistic terms, associated with membership 
functions, in a reference set previously established. Each quality attribute 
will be a composition of linguistic terms, obtained in an evaluation process. 

The linguistic terms Ti, for i = 1, 2, ... , n, will be represented by LR
type normal triangular fuzzy numbers Ni (ai, mi, bi) [Bardossy et al. 1993; 
Dubois and Prade 1980, 1991; Hapke et al. 1994; Hsu and Chen 1996; 
Lasek 1992; Lee 1996a, b; Romer and Kandel 1995; Ruoning and Xiaoyan 
1992], which denote the importance degree of each attribute considered. It is 
important to remark that ai < hi and ai :$; mi or mi :$; bi. The a and b values 
identify, respectively, the inferior and superior limits of the triangle base. 
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Their membership degree is equals 0 (,uJ(a) = 0 and ,uACb) = 0). The value of 
m corresponds to the triangle height, where ,uJ(m) = 1 [Zadeh 1988]. The 
value of n can be set to meet the requirements of the project, the peculiar 
features of the application domain, or the quality management staff's 
requirements. 

In the similar way, a trapezoidal fuzzy number can be represented by N 
(a, m, n, b). The a and b values identify the lower and upper limits of the 
larger base of the trapezoid. The m and n values are, respectively, the lower 
and upper limits of the smaller base of the trapezoid [Dubois and Prade 
1991]. 

Each fuzzy number represents an importance degree and uses a linguistic 
term as a meaning. For such point of view, based on [Baldwin 1979; Hsu 
and Chen 1996; Kacprzyket et a/. 1992; Lee 1996a, b; Palermo and 
Rocha 1989], in Table 1 is shown an example of a linguistic terms scale with 
four values, which can be used in the quality evaluation of a software 
product. Each value can be transfonned to a nonnal triangular fuzzy number 
using fuzzification. This scale will be used in this paper as example of fuzzy 
model and evaluation tool application, described shortly afterwards. 

The set of linguistic terms shown above has the following membership 
functions represented in Figure 1, and adapted from Lee [Lee 1996a, b]. 

Scale 

° 
2 

3 

4 

Fuzz Number 
N = (0.0, 0.0, 

1.0) 
N = (0.0, 1.0, 

2.0) 
N = (1.0, 2.0, 

3.0) 
N = (2.0,3.0, 

4.0) 
N = (3.0, 4.0, 

4.0) 

Lin uistic Term 
No relevance 

Slightly relevant 

Relevant 

Very relevant 

Indispensable 

Table 1. Scale Example for Quality Attribute Evaluation using Normal Fuzzy 
Numbers. 

The FMSQE inherits the fuzzy theory robustness. It actuates as a 
mechanism that is able to interpret results and summarize infonnation 
through ruled procedures to quality evaluation. 
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1.0 r\--""""7'<""---.,..--------, 

0.8 \ 
0.6 \ 
0.4 
0.2 
Oi'--t--"------.->.L...---+--:>L----r"~ 

No Relevance 

--- Slightly relevant 

--- Relevant 

_._._ .. Very relevant 

--- Indispensable 

Figure 1. Membership functions for linguistic terms [Belchior 1997]. 
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This model involves many stages of an evaluation process, since the 
quality model determination until the assessment execution [ISO 1998]. 
Besides, it allows getting the consensus degree of a group of specialists, 
considering the importance degree of the judgment, based on experience 
levels of each one. 

Attaining its objectives, the FMSQE, which is described in details in 
[Belchior 1997], is defined in five steps. Such objectives may involve three 
distinct situations: 

• Quality Standard (QS) Determination for software product or 
application domain: specialists on a certain product (or an application 
domain) determine the importance degree of each attribute, in order to 
get a satisfactory quality level of the product. It means that the weight 
assigned to each attribute by a specialist has to portrayal how the 
product ought to be. Thus, in this case, we are not evaluating a certain 
product state, but the ideal quality standard that it should present. In this 
context, the "quality standard" can be understood as a guide to quality 
evaluation in an specific application domain. 

• Evaluation of a software product quality, based on a predefined QS: 
each specialist judges the quality attributes set, considering the software 
state. The outcome of such appraisal is compared with the specific 
predefined QS to the product or the application domain that is being 
evaluated. A quality index for each considered attribute is generated, 
and thus the measurement of the final product quality is performed. The 
indexes mean the percentage that the product attains according to the 
quality standard. 

• Evaluation of a software product, without predefined QS: the results will 
be investigated, taking into account only the specialists' appraisal. This 
procedure generates a set of useful data that can be used by the 
development staff or by the product quality manager. These data can 
help them to carry on the product development or serve as a parameter to 
improve a final product. 
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The FMSQE, presented in Figure 2, extends the Rocha Model [Rocha 
1983] by the fuzzy theory application in order to facilitate the quantification 
of qualitative concepts. The main concepts are: 

• Quality characteristics: is an attribute set of a software product that 
allows describing and evaluating this product. A software quality 
characteristic can be detailed in multiple levels of subcharacteristics. 
The lowest subcharacteristic level (metric) is called primitive 
subcharacteristic and it is susceptible to evaluation. 

• Evaluation processes: determines the process and the instruments to be 
used, in order to measure the presence degree of a specific metric; 

• Metrics: are the product evaluation results, according to primitive 
subcharacteristics, through fuzzy linguistic terms, mapped by fuzzy 
numbers; 

• Aggregated measurements: are the metric aggregation results, gotten 
from the evaluation of the primitive subcharacteristics. They are also 
primitive subcharacteristics aggregation results into subcharacteristics or 
characteristics and into the final quality value of the software product; 

• Fuzzy functions: maps the primitive or aggregated quality attributes, 
through linguistic terms, quantifying them. 

Quantitative Relations Logic Relations 

Interpretative 
Relations 

consist 0 ...... 
,.-----...z..., 

Aggregated 

: 
.... 

consist of 

consist of 

Figure 2. Fuzzy Model for Software Quality Evaluation. 

The stages of FMSQE are the following: 
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First Stage 

It consists of the identification of the object to be evaluated, the 
considered quality attributes set and the institutions that the product will be 
tested. 

• Establishing the object to be evaluated: in this stage, it should be 
determined which software product will be evaluated. It can be 
evaluated intermediary products or the final product 

• Defining the quality attributes set: The set of attributes is defined according 
to the evaluation's object, the application domain and the development 
technology. Its consists of an hierarchical tree of software quality attributes. 
Two situations may occur. In the first one, the attributes have already been 
defined in previous works. There are several attributes sets based on 
scientific [Kacprzyk et al. 1992], financial, educational, medical, specialists 
systems, information systems and object-oriented software. In the second 
one, the attributes have not been defined yet, and it must be proceeded their 
identification. This task can be accomplished through the use of the tool 
currently in development; 

• Selecting the institution(s) that will support the research: can be (i) just 
one institution: when an institution performs its own quality attributes 
evaluation of a software product, or (ii) several institutions: when the 
data is collected in order to be defined the quality standard of a certain 
software product, in a specific application domain. 

Example: 

• Evaluation object: Software Requirements Specifications (SRS) 
• Set of attributes: Clunie [1997] defined the hierarchical tree of software 

quality attributes that has three levels: objectives, factors, and 
subfactors. There are three objectives distributed in the follow:. 

• Representation reliability: 2 factors and 8 subfactors; 
• Conceptual reliability: 2 factors and 5 subfactors; 
• Utilizability: 4 factors and 12 sub factors. 
• Institutions where the survey was applied: 2 companies that has large 

experience in SRS elaboration, and 1 university. 

Second Stage 

It is the choice of the all the specialists who will participate in the 
evaluation process. 

• Defining the specialists' profile: in this stage, it will be gotten the 
specialists' profile [Fenton and Pfleeger 1997], Ei (i = 1,2, ... , n). The 
specialists will participate of the investigation process, through the 
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Specialist Profile Identification Questionnaire (SPIQ), in order to point 
out the relative importance of each one. Generally speaking, every 
person, either direct or indirectly, who is or has been involved with 
products that are similar to the object under analysis, can be chosen as a 
specialist. The SPIQ is constituted of n questions (iI, i}, ... , in) which 
objective is to evaluate each specialist, involving essentially his or her 
experience in system development and his or her training in computer 
SCIence; 

• Determining the specialist's weight: it should be calculated the relative 
importance degree of each specialist, by the weight WEi generation 
through SPIQ data and taking into account the following criteria: (i) 
each SPIQ contains information about just one specialist, (ii) the total 
score of each specialist, tSPIQi' is calculated according to the signs 
contained in the SPIQ results [Belchior 1997], and (iii) the weight of 
each specialist WEi, which is the his or her relative weight in relation to 
the other specialists (weighted mean), is defined as: 

tSPIQi 
WEi=-------'~ 

'ItSPIQi 
;=1 

Example: 

First, specialists with experience in SRS are selected. Each specialist 
answers the SPIQ with seven questions. The profile of the specialists, Ei, 
was calculated through the SPIQ punctuation. Next, the relative weight of 
each specialist is calculated in relation of the sum of punctuation of the 
others specialists. 

Third Stage 

It consists of the rank determination of each quality attribute, identified 
in the First Stage. 

The investigation consists of obtaining from the selected specialists the 
rank of each attribute, in order to get the appraisal of each one relatively to 
each measurable quality attribute, through the set of linguistic terms 
characterized by fuzzy numbers Ni (ai, mi, bi), previously designed. 

At this stage, the specialist must have been informed that the 
investigation process is in progress either to determine a certain Quality 
Standard (QS), or just to evaluate the state of art of a particular software 
product. This information is necessary so that the specialist can make his or 
her appraisal coherently. This stage comprises the following activities: 
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• Defining of the investigation procedure: this procedure can consist of 
the assembling of a questionnaire or any other investigation device, and 
in the definition of the suitable application techniques, using importance 
degrees (of the linguistic terms) previously set; 

• Applying the investigation device: the specialists, who were selected in 
previous stage, evaluate through the investigation device. 

Example: 

In this stage, the assessment questionnaire (AQ), which consists of a list 
of relevant attributes on SRS with their, was elaborated. The AQ consist of 
a list of relevant attributes in SRS (obtained in Stage 1) and their possible 
answers (linguistic terms associated to fuzzy numbers). After elaboration, 
the AQ is distributed among the specialists. 

Fourth Stage 

It is the moment that occurs the treatment of the data provided by the 
specialists in the evaluation of each measurable quality attribute considered 
(metric). 

The individual prognoses from each specialist for the directly 
measurable quality attributes (metrics) are combined, generating a consensus 
of the specialists, for each metric evaluated. This consensus is formally 
expressed through a characteristic membership fuzzy function N [Hsu and 
Chen 1996]: 

N=f(Nb N2, ... , Nn) 

• Calculating the agreement degree: the agreement degree is calculated 
[Hsu and Chen 1996, Chen and Hsy 1993], A(N;, Nj), combining the 
appraisals of the specialists, Ei and Ej , through the ratio of the 
intersection area to the total area of their membership functions: 

_ _ ! (min ¥IN, (x) ,,uN/x)} )dx 
A(H;,N) = f 

(max hi (x),,uN
j 
(x)})dx 

• Assembling the agreement matrix: after having calculated all the 
agreement degrees between each pair of specialists Ei and Ej , an 
agreement matrix should be assembled [Zwick et al. 1987], AM, which 
indicates the consensus among the specialists: 
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AI2 Alj Aln 
M M M M M 

AM= Ail Ai2 Aij Ain 
M M M M M 

AnI An2 Anj 1 

Once the matrix is assembled, it must be observed the following points: 

1. If Cij = 0, so there is not intersection between the ith and the jth 
specialist. In this case, it is necessary get more information from these 
specialists (according to the evaluation's convenience), in order to make 
their opinions converge to a point or, in other words, to find an 
intersection between them. 

2. After having collected the additional information referred to item (i), if 
any concordance degree is still zero, it is taken into matrix AM anyway, 
because, in the process of aggregation, the values that are equal to zero 
(those which point out to a disagreement among the specialists) will be 
assigned zero weight. 

3. It must be paid attention to cases that there is a great disparity among the 
answers (low degree of agreement among the specialists), because it can 
mean that they did not understand conveniently the definition of the 
object of investigation [Dyer 1992]. In this case, item (i) must be redone, 
as many times as necessary to reach a higher consensus among the 
specialists. 

• Calculating the relative agreement: using the data given by AM, it is 
calculated the relative agreement (RAi) of each specialist involved in the 
process, through the root quadratic mean of the agreement degree among 
them: 

1 n 
RAi= -L;A2 

n -I j=i U 
I"'·; 

This procedure assures that the RAi determination will tend to higher 
indexes of consensus among the specialists in charge of the evaluation; 

• Calculating the degree of relative agreement: the relative agreement 
degree (RADi) of a specialist, relatively to all the others, is obtained 
through the weighted mean of RAi from each specialist: 

RA· 
RADi=-_In 

I. RA· 
i=l I 
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• Calculating the specialists' consensus coefficient: the consensus 
coefficient, obtained for each specialist (SCCi) will take into 
consideration both the RADi and the weight WEi, of each specialist [Hsu 
and Chen 1996]: 

RADj . wSj scc; = -n---'---'=--

.'f.(RADj· wSj ) 
1=1 

• Evaluating the metrics quality: the outcome of the evaluation of each 
metric quality is given by N, that is also a normal triangular fuzzy 
number, where • is the algebraical fuzzy product [Hsu and Chen 1996; 
Kaufmann and Gupta 1991]: 

n 

N= L(SCCieNi) 
i=1 

Example: 

In Table 2 is shown the fuzzy numbers (the specialists choose the 
linguistic term associated to these fuzzy numbers) that represent the values 
of the factor "Conciseness". 

Specialists 
Fuzzy Number 

N(a,m,b) 

(2.00, 3.00, 4.00) 
2 (2.00,3.00,4.00) 
3 (3.00,4.00,4.00) 
4 (3.00,4.00,4.00) 
5 (3.00, 4.00, 4.00) 
6 (2.00, 3.00, 4.00) 
7 (1.00,2.00,3.00) 
8 (3.00,4.00,4.00) 
9 (2.00,3.00,4.00) 
10 (2.00,3.00,4.00) 
11 (3.00,4.00,4.00) 
12 (2.00, 3.00, 4.00) 
13 (3.00,4.00,4.00) 
14 (2.00, 3.00, 4.00) 
15 (3.00,4.00,4.00) 
16 (3.00,4.00,4.00) 

Table 2. Fuzzy numbers that the specialists choose in relation to factor 
"Conciseness" . 
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Each element of the agreement matrix is calculated through the 
agreement of all the possible pairs of specialists, Ei e EJ> as shown in Table 
3. 

The relative agreement of the specialist E, is calculated as follow: 

The degree of relative agreement of the specialist E,: 

0.6501 
RADI = = 0.06391 

10.1723 

The consensus coefficient of specialist E, and of the specialist E'6: 

0.06391e 0.0592 
SCC! = = 0.0621 

0.0610 

The metrics quality evaluation is equal the follow result: 

N = {0.0621. Nl]+ K + [0.0792. Nl6n 

{
[(0.0621 e 2.0)+K +(0.0792e3.0)];} 

N = [(0.0621 e 3.0) + K + (0.0792 e 4.0) 1 
[(0.0621 e 4.0) + K + (0.0792 e 4.0)] 

N = (2.55 ;3.55;3.99) 
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Agreement Matrix 
E/ E/ Ei Ei EJ EI EJ Ei Eg/ EgI Elf! EI/ Eli E13/ EIJ Ell EIJ 
E E E E E E E E Ei E E E E E E E E 

E/EI 1.0 1.0 0.2 0.2 0.2 1.0 
0.1 

0.2 1.0 1.0 0.2 1.0 0.2 1.0 0.2 0.2 
4 

E/E2 1.0 1.0 0.2 0.2 0.2 1.0 
0.1 

0.2 1.0 1.0 0.2 1.0 0.2 1.0 0.2 0.2 
4 

E/E3 0.2 0.2 1.0 1.0 1.0 0.2 0.0 1.0 0.2 0.2 1.0 0.2 1.0 0.2 1.0 1.0 

E/E4 0.2 0.2 1.0 1.0 1.0 0.2 0.0 1.0 0.2 0.2 1.0 0.2 1.0 0.2 1.0 1.0 

E/E5 0.2 0.2 1.0 1.0 0.2 0.2 
0.1 

1.0 0.2 0.2 1.0 0.2 1.0 0.2 1.0 0.2 
4 

E/E6 1.0 1.0 0.2 0.2 1.0 1.0 0.0 0.2 1.0 1.0 0.2 1.0 0.2 1.0 0.2 1.0 

E/E7 
0.1 0.1 

0.0 0.0 0.0 
0.1 

1.0 0.0 
0.1 

0.14 0.0 0.14 0.0 0.14 0.0 0.0 
4 4 4 4 

E/Es 0.2 0.2 1.0 1.0 1.0 0.2 0.0 1.0 0.2 0.2 1.0 0.2 1.0 0.2 1.0 1.0 

E/E9 1.0 1.0 0.2 0.2 0.2 1.0 
0.1 

0.2 1.0 1.0 0.2 1.0 0.2 1.0 0.2 0.2 
4 

E/EIO 1.0 \.0 0.2 0.2 0.2 \.0 
0.1 

0.2 1.0 1.0 0.2 \.0 0.2 \.0 0.2 0.2 
4 

E/E11 0.2 0.2 1.0 1.0 1.0 0.2 0.0 1.0 0.2 0.2 \.0 0.2 1.0 0.2 1.0 1.0 

E/E12 1.0 1.0 0.2 0.2 0.2 1.0 
0.1 

0.2 1.0 1.0 0.2 1.0 0.2 1.0 0.2 0.2 
4 

E/E13 0.2 0.2 1.0 1.0 1.0 0.2 0.0 1.0 0.2 0.2 1.0 0.2 1.0 0.2 1.0 1.0 

E/EI4 1.0 1.0 0.2 0.2 0.2 1.0 
0.1 

0.2 1.0 1.0 0.2 1.0 0.2 1.0 0.2 0.2 
4 

E/E I5 0.2 0.2 1.0 1.0 1.0 0.2 0.0 1.0 0.2 0.2 1.0 0.2 1.0 0.2 1.0 1.0 

E/EI6 0.2 0.2 1.0 1.0 1.0 0.2 0.0 1.0 0.2 0.2 1.0 0.2 1.0 0.2 1.0 1.0 

Table 3. Matrix of agreement between the specialists E; e Ej • in relation to factor 
"Conciseness" . 

Thus, the fuzzy number that represent the factor Conciseness is N=(2.55, 
3.55,3.99). The same procedure is executed to all others quality attributes. 

Fifth Stage 

It consists of the aggregation of the software quality attributes, at each 
hierarchical level of the quality model. 

At this stage, it is accomplished the aggregation of the quality attributes 
of type lV, generating a characteristic membership fuzzy function for each 
subset of quality attributes that means the aggregated ones. Each aggregated 
attribute evaluated, N, composed of its constituent attributes, NCb Nc2, ... , 
Ncn, will be formally represented as: 
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N = f(l'iJCl> Ne2, ... , Nen) 

e Establishing the quality standard: the establishment of the quality 
standard (QS) for a certain software product or a specific application 
domain requires the calculation of the weight Wi [Belchior 1997; Liou et 
al. 1992]. It means the contribution degree of each attribute comprising 
the aggregated attribute evaluated. The weight of each attribute, Wi, is 
obtained through the calculation of the weighted mean of the importance 
degrees of each constituent attribute, wi, which is calculated by 
defuzzying its correspondent fuzzy number Ni (aj, mj, bJ. Therefore: 

i. Wi = mj, which corresponds to a membership degree whose 
value is equal to 1. This value means the crisp number of the quality 
attribute. 

11. Wi = Wi I ~Wi 
e Calculating the degree of aggregated agreement: we calculate the 

agreement degree, A (Ni, Aj) of the quality attributes that are being 
aggregated (which are fuzzy numbers lV); 

e Assembling the aggregation agreement matrix: once all the Cij of the 
attributes of the subset that is being aggregated have been calculated, the 
aggregation agreement matrix (AAM) is generated. If Cij = 0, so there is 
not intersection between the attributes i and j, and, in this case, the 
degree on disagreement is calculated, Cij, among these attributes. This 
value must be contained in the interval [-1,0]: 

- d 
Cij=--er 

D 

where: 

1. d is the shortest distance between two fuzzy numbers considered, 
that is, d = aj - bi or d = ai - bj (the smaller absolute value of d). 

2. D is the greater distance between the higher and the lower linguistic 
term in the set of linguistic terms considered, Nn and NI , 

respectively. Therefore, D = an - b l . 

3. The ratio between the areas of the fuzzy numbers Ni, and N.i is r, 
where ° < r $; 1. Thus 

fe,llNieX»dx feJlNjeX»dx 
r = x or 

JCJlN;Cx»dx 
r = -=:x,--__ _ 

JCJlNi(X»dx 
x x 
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• Assembling the aggregation matrix: the new aggregation matrix is 

assembled, which comprises the values of Cij and C ij, that are the 
degrees of the aggregation states, Eij, replacing the matrix AAM; 

• Calculating the relative state of aggregation: the relative state of 
aggregation (RSA) is obtained, examining the agreement or disagreement 
of each attribute that are being aggregated, through the use of two 
procedures: 

When there are any disagreement degree (c ij) in the AM, it should 
initially be calculated the "rsa" for each attribute, through the weighted 
mean of the agreement degree and the disagreement degree of that attribute, 
along with the others that are being aggregated. Thus, it can be quantified 
the extent that the attribute agrees and disagrees relatively to the others, on 
the process of aggregation. 

1 n 
rsai = --L Eli 

n -1 j=l 
j#-i 

This procedure allows us to view the state of each attribute in the 
aggregation process. It means how much each attribute contributes in the 
composition of the new aggregated attribute. When the value of the "rsa" of 
a certain aggregating attribute is non-positive, we can argue whether this 
attribute should or should not belong to that branch of the attribute 
composition hierarchy of that particular software product. This can be useful 
information for the validation of the hierarchical tree of software quality 
attributes. 

Since the attributes that are being aggregated belong, in fact, to the 
hierarchical branch of the quality attribute tree in question, we proceed to 
the calculation of the RSA, evaluating the quadratic mean of the aggregation 
states degrees, Eij, of their aggregating attributes: 

1 n 2 
RSAi = - LEi) 

n j=l 

In this case, the negative degrees (disagreement) are treated and they 
influences in the same way as the positive ones. This procedure intends to 
produce a compensatory value for each attribute's contribution in the 
process of aggregation, through the Fuzzy Model proposed. Thus, preserving 
the particular composition characteristics of the attributes that means their 
location in the hierarchical tree of quality software attributes, established by 
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the organization's quality management staff, it should be executed the 
process of aggregation. 

For example, if a certain software quality attribute comprises two other 
attributes having different importance degrees, for a certain product and, if 
the importance degree of one of these attributes is low and the other is high, 
it means that the percentages of their contributions to the composition of the 
aggregated attribute considered are, respectively, low and high. Applying 
procedure (U) above, we can obtain a medium importance degree for the 
aggregated attribute. Therefore, the aggregated attributed evaluated has a 
medium importance degree, and comprises two attributes the importance 
degree of which are low and high. 

Nevertheless, if, during the analysis of the results, it is realized that the 
aggregation process is not be adequate for the product that is being 
evaluated, we must justify the reason of the aggregation can not be 
accomplished as such, relating just the importance degrees of each attribute 
that would be aggregated. 
• Calculating the relative state of aggregation: the relative state of 

aggregation degree (RSAD) of each aggregated attribute is obtained 
through the evaluation of the weighted mean of its constituent attributes: 

RSAi 
RSADi =--n 

I RSAi 
i=1 

• Calculating the attribute consensus coefficient: the attribute consensus 
coefficient (A CCi) , obtained for each attribute that comprises the one 
that is being generated, will take into account both the RSAD and the 
weight Wi of each attribute. In case it has not still been established a 
quality standard (QS) or it was already determined the QS software for 
the product that is being evaluated, or for its application domain, we 
must consider Wi = 1, that is, ACCi = GRSDi: 

RSADi. Wi 
Ace = -n----

l:(RSADi. Wi) 
i=l 

• Evaluating the aggregated attribute: the evaluation result of each 
aggregated quality attribute is given by N, which is also a fuzzy number, 
where. is the algebraical fuzzy product [Kaufmann and Gupta 1991], 
formally written as: 

_ n _ 
N= L(ACCeNi) 

i=! 



www.manaraa.com

A Fuzzy Model and the AdeQuaS Fuzzy Tool 119 

Based on the results obtained from the application of this fuzzy model 
in software quality evaluation, we can define quality indexes to guide in 
the evaluation of new software products, according to the quality 
standard established. 

Example: 

This stage is very similar to the previous one. In fourth stage, the result 
is gotten through the fuzzy numbers that represent the answers of the 
specialists. In this stage, the result is obtained, initially, through the 
aggregation of fuzzy numbers calculated in fourth stage, and, after, through 
the aggregation of fuzzy numbers calculated in each hierarchical level of the 
tree of quality attributes. 

3.1. Definition of software quality indexes 

When there is a quality standard defined for the software product, or its 
application domain, we can compare it with the results obtained in the fuzzy 
model application. So, we obtain a quality index, that indicates whether the 
evaluated software product matches the quality standard or not, as well as 
the percentage of that match. 

We can determine the quality index of the software product through the 
following successive actions: 

• Redefinition of the quality attribute characteristic function: we redefine 
the fuzzy function of each quality attribute of triangular type Ni (aj, mi, 
bi), obtained at the definition of the quality standard, as the quality 
standard fuzzy function, Q i (ai, mi, iii i, bi) that is a trapezoidal normal 
fuzzy number. 

The mapping of Ni to Q i will result in the function Q i (aj, mj, bu, bu), 

where n the upper limit of the previously defined referential set. This 
mapping is possible because we can consider that any value that is higher 
than the quality standard (situated on the right side of the characteristic 
function) is also of quality and, consequently, utterly acceptable. 

• Calculation of the quality index: the quality index, qk, for each attribute 
k that is being evaluated, is given by: 

Ix (min {.uQi(X), ,uNk(x)})dx 
qk=~--~~~~~~ 

Ix (pfik(x»dx 

Once q E [0.1], when q = 1, it means that the evaluated attribute reaches 
the quality pattern; if q = 0, then the evaluated element is not up to the 
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standard; if 0 ::::;; q ::::;; I, the attribute is found within the limits of the 
standard, and it reaches q% of the quality standard. 

In the calculation of the quality index for aggregated attributes, if any of 
its constituent attributes has q = 1, we consider the value of QS for this 
constituent attribute in our calculations. 

All this stages are implemented and can be applied using the AdeQuaS 
Fuzzy tool, which is described in the following sections. 

4. THE ADEQUAS FUZZY TOOL 

The AdeQuaS Fuzzy tool is an implementation of the FMSQE that has 
the objective of support its evaluation process stages. In order that, it is 
comprised of two modules: AdeQuaS-Analyzer and AdeQuaS-Assessor. 

The AdeQuaS-Analyzer is the main module, where the most important 
quality evaluation activities are executed, such as: (i) defining evaluation 
and establishing the purposes, (ii) identifying the evaluation object, (iii) 
choosing and recording the specialists, who are the evaluation process 
participants, (iv) elaborating specialists profile identification questionnaire 
(SPIQ), (v) establishing quahty requirements, through the assessment 
questionnaire (AQ) elaboration, and (vi) generating reports with the 
attributes aggregation results. 

The module AdeQuaS-Assessor has the objective of facilitating the 
evaluation research, being used by the specialist. It is complementary to and 
dependent on the main module. For that reason, it consists of a viewer of 
SPIQ and AQ, which are predefined on module AdeQuaS-Analyzer. Besides, 
the specialist could modify or correct his record, if necessary. The tasks, 
which can be executed by the evaluator, are: (i) viewing the assessment 
information and the object definition, (ii) checking and correcting his own 
record data, (iii) answering the SPIQ, and (iv) answering the AQ 

4.1. The AdeQuaS Tool 

The Figure 3 presents the AdeQuaS tool on the evaluation process, 
focusing in the Analyzer module and the Assessor module. 

Initially, the evaluation is defined. The AQ elaboration could be 
undergone two situations: 
• The AQ could be based on a pre-existent quality standard (QS) of an 

application domain, which the objective is to confront the evaluation 
results with the quality degrees defined in the chosen QS; 
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• The AQ could be elaborated based on the definition of relevant quality 
requirements. 

Analyzer module 
-------------------------------

Assessment <IelllllllO 

{"" ......, aluat ion object {"" ....... 

....... ./ ...... 
and purpose -H • Evaluat ion 

rt' QualilY 
all ribute .. Dala 

Assessor module I ....... ./ eciaiisl choice ..... 
Evaluation Data V~\1 

• - Spccmh ts ~ SPIQ ans~ring I .... ~} SPIQ cIa rallon I Data 
model I ....... .-' AQ an "'ring I I ". I 

I 

I 
I 

r. Q elaboral ion I , .. , 
{"" ....., , 

I 

'- -' I Assesso r module 2 
Consolid:ued Specialist. • Datn I ... 

~ Evaluation Data Vte\\1 Data collect 

'- .. 1 - Spectah Is ~ SPIQ ans~ring I'" .. Data Analysis Data .... 
{""- Colleled dala 11 

AQ ansYA::ring I 
""------"" proce ing 

'-- Quality 
Standards .. 
y II 

Allribme I 
A cssor module n 

aggregallon Evaluation Data VJe\\ I {"" 

Q gener:ltini Speclali IS - I ~ I" ..... + Data SPIQ ons" ring -Results generating 
II AQ 3ns .... ermg 1 

------------------------------

Figure 3. The AdeQuaS Fuzzy tool framework. 

The characteristics and subcharacteristics contained on ISO/IEe 9126 
[ISO 2001] are available in the tool, which can be used. Besides, it can be 
also used the quality standard characteristics of many application domains or 
other characteristics proposed by the responsible for assessment definition. 

After the assessment definition, the modules AdeQuaS-Assessor, jointly 
the information derived from the data definition, are distributed among the 
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specialists. At this moment, they can begin the evaluation. While the 
evaluators will be finishing their judgments, the data is sent and 
incorporated into the AdeQuaS-Analyzer. 

At the end of evaluation collect, the data analysis could be executed 
through the data processing and the attribute aggregation. Those are the 
stages 4 and 5 of the FMSQE. After that, the evaluation results are finally 
concluded. 

If the situation consists on importance degrees determination of a 
product or an application domain, the quality standard is generated at the 
end of the evaluation process. The quality standards will be used as a base to 
the next evaluations. 

The QS generating provide more functionality, once they can be used to 
evaluate a software product with same or similar context. It is easy to 
identify because all generated QS are stored into categories that describe 
which subject they are about. 

All the quality standards are categorized according to certain domain 
ontology, into AdeQuaS database. The categorization process is one of the 
activities in the beginning of the QS generation, which has the objective to 
char,acterize the application domain adequately and in detail. After the 
categorization, the following activity is to feed the quality attributes 
database. In this case, the AdeQuaS tool allows the partial or total reuse of 
each attribute stored in the database. At the end, it offers the options: 

• The use of the attributes of software quality, created from ISO/lEe 9126 
[ISO 2001], also called of standard hierarchical tree, which is presented 
as default; 

• The reuse of attributes already stored, which has the same category of 
the product to be evaluated. For instance: let's consider that attributes of 
website quality and others of educational software are stored in 
database. If we intend to evaluate a educational Website, the AdeQuaS 
will suggest that the new AQ are created from the aforementioned ones, 
jointly with the standard hierarchical tree; 

• The reuse of QS, which have some common characteristics, according to 
the categorization; 

• The reuse of attributes stored, independently of their categorization. 

4.2. The AdeQuaS-Analyzer Module 

The module AdeQuaS-Analyzer can manage many evaluations at the 
same time. Each evaluation must be identified by a name and recorded in a 
chosen work directory. 
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The assessment definition includes: (i) evaluation data, (ii) object to be 
evaluated data, (iii) involved specialists record, (iv) SPIQ elaboration, (v) 
linguistic terms definition, and (vi) AQ elaboration. 

The evaluation data includes assessment process initial date, responsible 
and general-purpose specification. 

The object data, as shown in Figure 4, includes object name, version and 
responsible, as well as important features to the assessment evaluation, such 
as: 

• Object type: could be specified whether the object is the quality standard 
establishment or the software product evaluation. This specification 
determines which situation the assessment is involved. In fact, it makes 
clear if the context is the Situation 1 (as those described in section 3) of 
the FMSQE. 

• If it would be chosen the "Software Product" option, it must be filled the 
following options in: (i) Software product situation: identifies whether it 
will be executed an assessment of an intermediate or a final product, and 
(ii) Instrument: determines whether the evaluation will be based on a 
predefined quality standard or an assessment questionnaire. It makes 
clear whether the context involves the Situation 2 or 3 of the FMSQE. 

Figure 4. Object definitions. 

Then, the specialists must be chosen. The Figure 5 presents the 
specialists record window. Each specialist of the defined group to an 
evaluation will receive the AdeQuaS-Assessor in order to proceed with the 
judgment. 
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Figure 5. Specialists group choice. 

The SPIQ elaboration is built according to a tree format with until two 
levels of questions, as instanced in Figure 6. Each item has an associated 
score that will be used to calculate the specialist's weight. 

Figure 6. Elaboration of the Specialist Profile Identification Questionnaire. 

The assessment questionnaire (AQ) consists of the quality requirements 
specification, related to the product in question, specified in a hierarchical 
way. The Figure 7 shows the record of e-commerce Website quality form, 
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defined in [Albuquerque 2001], that obeys the hierarchical form of 
attributes. 

Figure 7. Quality Requirements Specification. 

By concluding the evaluation research, the results can be viewed, 
through the following options: 

• Evaluator profile: views the specialist weight, according to the Stage 2 
calculations of the FMSQE; 

• Attribute aggregation per level: shows the aggregation results of a 
specific level of attributes tree. In this option, the Stage 5 calculations of 
the FMSQE are executed until the chosen level. 

4.3. The AdeQuaS-Assessor Module 

The module AdeQuaS-Assessor was developed to speed the assessment 
research. The research could be executed in many institutions, or in just one 
institution, with one or more evaluators. 

The main objective is collecting the specialists' assessments, even if 
they would be geographically distributed, in order to the AdeQuaS-Analyzer 
could get the data appropriately. 

The AdeQuaS-Assessor is basically a viewer. The assessment definition 
will be available to the specialists, in order to fill them in the context. The 
information is given as previously shown in Figure 4. 
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The evaluation is started with the SPIQ fulfilling, which will determine 
the importance of the specialists' opinion, based on their experience level. 
The SPIQ fulfilling is shown in Figure 8. 

Figure 8. The SPIQ fulfilling. 

Next, the attributes judgment is executed by the QA fulfilling, viewed in 
Figure 9. 
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Figure 9. The AQ fulfilling. 
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4.4. Case Study 

Using the AdeQuaS Fuzzy tool, two evaluation processes was 
reproduced. The first was showed in [Belchior 1997] that refers to an 
evaluation of Software Requirements Specifications (SRS) . The second was 
developed in [Albuquerque 2001], which consists of establishment of a 
quality standard to e-commerce websites. 

First Stage 

They consist of the establishment of quality standards and the objective 
of the survey was to obtain from each selected specialist the degree of 
importance of each one of the relevant attributes, according to the 
application domain. 

In the Software Requirements Specifications evaluation, 16 specialists, 
from 3 different institutions with a large experience in software 
development, participated in the process. On the other hand, the survey of 
the e-commerce websites evaluation was developed with 30 specialists. 

Second Stage 

The SPIQ has seven questions. The specialist's profiles and weights, 
which are obtained through the completion of the SPIQ, are presented in 
Figure 10 and Figure 11. These weighted values will be used in the 
aggregation stages, influencing in the final result of the evaluation. The 
values are showed in decreasing order of experience. 
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Figure 10. Specialists Profile Result on SRS evaluation. 

Third Stage 

The complete set of the quality attributes of the SRS is defined in 
[Belchior 1997] and of the e-commerce websites in [Albuquerque 2001]. 
The results are shown until two levels and they are classified as factors and 
subfactors. The sub factors are organized inside of the factors. The fuzzy 
numbers obtained after the execution of the stages of FMSQE aggregations 
are included. 
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Figure 11. Specialists Profile Result on the e-commerce websites evaluation. 

Fourth and Fifth Stages 

The Table 4 presents a subset of quality attributes to Software 
Requirements Specifications (SRS) that is related to the objective 
"Representation Reliability". 
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Software Quality Attributes to ERS 

Factor: Communicability 

Sub factor: Method use correction 

Subfactor: Terminology Uniformity 

Sub factor: Abstract Level Uniformity 

Subfactor: Documentation Modularity 

Sub factor: Conciseness 

Subfactor: Conformity 

Factor: Manipulability 

Subfactor: Availability 

Sub factor: Traceability 

SRS to QS 

N = (2.42, 3.42, 
3.91) 

N= (2.47,3.47, 
3.93) 

N = (2.66, 3.66, 
4.00) 

N = (1.55, 2.56, 
3.50) 

N = (2.30, 3.30, 
3.94) 

N = (2.54, 3.54, 
3.85) 

N = (2.43,3.43, 
3.99) 

N = (2.74, 3.75, 
3.98) 

N = (2.92,3.93, 
4.00) 

N = (2.56, 3.56, 
3.95) 

Table 4. Quality Attribute Evaluation to SRS [Belchior 1997]. 

In [Belchior 1997], the results of the SRS evaluation were obtained with 
statistics methods. They were compared with the results presented by the 
tool (Figure 12) and we observed that AdeQuaS got results more precise. 
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Figure 12. SRS Results View. 
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It is important to remark that the Availability subfactor was considered 
the most important. The result obtained indicates that, in Software 
Requirement Specifications, availability is the most relevant attribute. This 
tendency confirms the importance that many users could easily handle the 
specification in its updated version, through its development process. This 
subfactor obtained the defuzzification value of 3.93, which means 7% very 
relevant and 93% indispensable [Albuquerque, 2001]. In the same way, the 
Table 5 presents a set of quality attribute to e-commerce websites. The 
results presented by the tool appear in Figure 13. 

E-commerce Websites Quality 

Factor: Usability 

Sub factor: Efficiency 

Subfactor: User friendliness 

Subfactor: Navigability 
Sub factor: Maintainability 

Subfactor: Technology suitability 

Sub factor: Reusability 

Sub factor: Implementation feasibility 

Sub factor: Profitability 

Sub factor: Involvement Capacity 

Factor: Conceptual Reliability 

Sub factor: Functionality 

Sub factor: Security 

Sub factor: Reliability 

Sub factor: Integrity 

Subfactor: Trustworthiness 

Sub factor: Content adequacy 

Factor: Representation Reliability 

Sub factor: Readability 

Sub factor: Standards conformance 

Sub factor: Easy of manipulation 

Websites to QS 

N = (2.05, 3.05, 3.81) 

N= (2.27,3.28,3.87) 

N = (1.80, 2.79,3.56) 
N = (1.58, 2.58, 3.43) 
N = (2.98,3.98,3.81) 

N = (2.15, 3.14, 3.88) 

N = (2.08,3.08,3.86) 
N = (2.12, 3.11, 3.76) 

N = (2.08,3.07,3.89) 

N = (1.89, 2.89,3.66) 

N = (2.23,3.22,3.81) 

N = (2.23, 3.22, 3.85) 

N = (2.79,3.79,3.97) 
N = (2.13.3.13,3.81) 

N = (2.24,3.24,3.76) 

N = (2.29, 3.29, 3.85) 

N = (1.95, 2.95, 3.70) 

N = (1.94,2.94,3.71) 

N = (2.06,3.06,3.81) 

N = (2.99,3.99,3.75) 

N = (1.72,2.72,3.53) 

Table 5. Quality attribute evaluation to e-commerce websites quality [Albuquerque 
2001]. 

This result portrays the web context, wherein electronic Commerce is 
inserted. It is important to remark that the Security subfactor was considered 
the most important. The result obtained indicates that, in e-commerce 
websites, security is fundamental, especially when it comes to electronic 
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payments, which cannot be vulnerable to any kind of attack, and when it 
comes to the subject of site authentication itself. 

The websites that don't pay enough attention to those three items 
especially, which are taken as indispensable safety requirements, may not 
even be accessed by possible commercial transactions through the Internet, 
or may not be accessed later by potential users. This factor obtained the 
defuzzification value of 3.79, that is 21.37% very relevant and 78.63% 
indispensable [Albuquerque 2001]. 
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Figure 13. E-commerce websites quality results view. 

This model has been satisfactory used to evaluate others application 
domains or software development stages, like: 

• Software Project Management Quality Evaluation [ Branco Jr. and 
Belchior 2001]; 

• Software Component Quality [Simao 2002]. 

5. CONCLUSION 

The Fuzzy Model for Software Quality Evaluation has some relevant 
characteristics, which some of them are considered necessary by Bardossy et 
al. [1993]: 
1. Agreement preservation: if all estimates are identical, the combined 

result will be the common estimate; 
2. Order independence: the result does not depend on the order with which 

individual opinion or estimate are pooled; 
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3. Joint influence of degree of concordance and specialist weight: if a 
specialist have a small agreement degree the final weight attribute to his 
or her opinion will be smaller than the original weight correspondent to 
the specialist experience; and 

4. Fuzzy number preservation: if all opinions are normal triangular fuzzy 
numbers, the aggregation will also be a normal triangular fuzzy number. 

Some evaluation problems were minimized by the FMSQE, once it acts 
as an instrument to aggregate attributes, to get the evaluators' consensus and 
to get the degree that represents quantitatively the software quality level. 
Although this model is flexible to be used in many situations, its use requires 
a reasonable effort. 

The AdeQuaS Fuzzy tool, an evaluation process automation fuzzy tool 
based on the FMSQE, makes transparent to the participants most arduous 
tasks in the model. Also it brings a greater functionality on FMSQE use, 
allowing the use of stored quality characteristics and quality standards. 

Besides of a quicker evaluation application and result generation, the 
tool makes possible to obtain more accurate and reliable results. The 
presented benefits increased the practicability of the process execution, 
promoting greater trust in the quality improvement. 

The e-commerce websites evaluation, which was executed as an 
application of the AdeQuaS Fuzzy tool, allows analyzing the importance of 
its relevant characteristics, confirming that the factor Security is one of the 
most important characteristics with the best score of the evaluation. 
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ABSTRACT 
Although a number of approaches have been taken to quality prediction for 
software, none have achieved widespread applicability. Our aim here is to 
produce a single model to combine the diverse forms of, often causal, 
evidence available in software development in a more natural and efficient 
way than done previously. We use Bayesian Belief Networks as the 
appropriate formalism for representing this evidence. We can use the 
subjective judgements of experienced project managers to build the 
probability model and use this model to produce forecasts about the software 
quality throughout the development life cycle. Moreover, the causal or 
influence structure of the model more naturally mirrors the real world 
sequence of events and relations than can be achieved with other formalisms. 
The paper focuses on the particular model that has been developed for 
Philips Consumer Electronics, using expert knowledge from Philips 
Research Labs. The model is used especially to predict defect rates at 
various testing and operational phases. To make the model usable by 
software quality managers we have developed a tool (AID) and have used it 
to validate the model on 28 diverse projects from within Philips. In each of 
these projects, extensive historical records were available. The results of the 
validation are encouraging. In most cases the model provides accurate 
predictions of defect rates even on projects whose size was outside the 
original scope of the model. 

1. INTRODUCTION 
Important decisions need to be made during the course of developing 

software products. Perhaps the most important of these is the decision when 
to release the software product. The consequences of making an ill-judged 
decision can be potentially critical for the reputation of a product or its 
supplier. Yet, such decisions are often made informally, rather than on the 
basis of more objective and accountable criteria. 
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Software project and quality managers must juggle a combination of 
uncertain factors, such as use of tools, skill and experience level of 
personnel, development methods and testing strategies to achieve the 
delivery of a quality product to budget and on time. Each of these uncertain 
factors influences the introduction, detection and correction of defects at all 
stages in the development life cycle from initial requirements to product 
delivery. 

In order to achieve software quality during development special 
emphasis needs to be applied to the following three activities in particular: 

• Defect prevention; 
• Defect detection; 
• Defect correction. 

The decision challenge during software development is to apply finite 
resources to all of these activities, and based on the division of resources 
applied, predict the likely quality that will be achieved when the product is 
delivered. To date the majority of software projects have tended to rely upon 
the judgement of the project or quality manager. Unfortunately, where 
mathematical or statistical procedures have been applied their contribution 
has been marginal at best [Fenton and Neil, 1999]. We will briefly outline 
the problems with current approaches in Section 2. 

Our aim here is to extend the work introduced in [Fenton and Neil, 1999] 
and produce a single model to combine the diverse forms of, often causal, 
evidence available in software development in a more natural and efficient 
way than done previously. We use graphical probability models (also known 
as Bayesian Belief Networks) as the appropriate formalism for representing 
this evidence. We can use the subjective judgements of experienced project 
managers to build the probability model and use this model to produce 
forecasts about the software quality throughout the development life cycle. 
Moreover, the causal or influence structure of the model more naturally 
mirrors the real world sequence of events and relations than can be achieved 
with other formalisms. 

After outlining the problems with current approaches to defect 
prediction, we will provide an introduction to probabilistic modelling. We 
will then describe the probabilistic model for defect prediction that has been 
built for use in Philips software development organisations, and provide 
results from initial validation studies. 
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2. THE PROBLEMS WITH SOFTWARE DEFECT 
PREDICTION 

In this paper we examine the general issues relating to software defect 
prediction. However, it is worth phrasing the problem in general terms to 
emphasise that the longer-term goal is to apply Bayesian Networks (BNs) to 
other quality characteristics, like reliability and safety [Neil et al 1996, 
Fenton and Neil 2000]. 

There are two different viewpoints of software quality as defined by 
Fenton and Pfleeger [Fenton and Pfleegar 1997]. The first, the external 
product view, looks at the characteristics and sub-characteristics that make 
up the user's perception of quality in the final product - this is often called 
quality-in-use. Quality-in-use is determined by measuring external properties 
of the software, and hence can only be measured once the software product is 
complete. For instance quality here might be defined as freedom from 
defects or the probability of executing the product, failure free, for a defined 
period. 

The second viewpoint, the internal product view, involves criteria that 
can be used to control the quality of the software as it is being produced and 
that can form early predictors of external product quality. Good development 
processes and well-qualified staff working on a defined specification are just 
some of the pre-requisites for producing a defect free product. If we can 
ensure that the process conditions are right, and can check intermediate 
products to ensure this is so, then we can perhaps produce high quality 
products in a repeatable fashion. 

Unfortunately the relationship between the quality of the development 
processes applied and the resulting quality of the end products is not 
deterministic. Software development is a profoundly intellectual and creative 
design activity with vast scope for error and for differences in interpretation 
and understanding of requirements. The application of even seemingly 
straightforward rules and procedures can result in highly variable practices 
by individual software developers. Under these circumstances the 
relationships between internal and external quality are uncertain. Typically 
informal assessments of critical factors will be used during software 
development to assess whether the end product is likely to meet 
requirements: 
• Complexity measures: A complex product may indicate problems in the 

understanding of the actual problem being solved. It may also show that 
the product is too complex to be easily understood, de-bugged and 
maintained. Assessing the complexity of software programs and designs 
has remained central to much of software measurement since the topic's 
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inception in the early 1970s. Useful examples of empirical validation of 
complexity measures can be found in [Cartwright and Shepperd 1997, 
Basili et al 1996, Koshgoftaar and Munson 1990]. 

• Process maturity: Development processes that are chaotic and rely on the 
heroic efforts of individuals can be said to lack maturity and will be less 
likely to produce quality products, repeatedly. 

• Test results: Testing products against the original requirements can give 
some indication of whether they are defective or not. However the results 
of the testing are likely only to be as trustworthy as the quality of the 
testing done. 

The above types of evidence are often collected in a piecemeal fashion 
and used to inform the project or quality manager about the quality of the 
final product. However there is often no formal attempt, in practice, to 
combine these evidences together into a single quality model. 

A holy grail of software quality control could be the identification of one 
simple internal product measurement that provides an advanced warning of 
whether or not the goals for the external product characteristics will be 
achieved. Unfortunately, in software engineering the causal relationships 
between internal and external quality characteristics are rarely 
straightforward. We will illustrate this with one simple example. More 
detailed analyses of naIve regression models for software engineering can be 
found in [Fenton and Neil 1999], and [Fenton and Ohlsson 2000]. 

Suppose we have a product that has been developed using a set of 
software modules. A certain number of defects will have been found in each 
of the software modules during testing. Perhaps we might assume that those 
modules that have the highest number of defects during testing would have 
the highest risk of causing a failure once the product was in operation? That 
is, we might expect to see a relationship similar to that shown in Figure 2.1. 
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Figure 2.1. A hypothetical plot of pre-release against post-release defects for a 
range of modules. Each dot represents a module. 

What actually happens? It is hard to be categorical. However, two 
published studies indicate quite the opposite effect - those modules that were 
most problematic pre-release had the least number of faults associated with 
them post-release. Indeed, many of the modules with a high number of 
defects pre-release showed zero defects post-release. This effect was first 
demonstrated by [Adams 1984], and replicated by [Fenton and Ohlsson 
2000]. Figure 2.2 is an example of the sort of results they both obtained. 
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Figure 2.2. Actual plot of pre-release against post-release defects for a range of 
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modules. 

So, how can this be? The simple answer is that faults found pre-release 
gives absolutely no indication of the level of residual faults unless the 
prediction is moderated by some measure of test effectiveness. In both of the 
studies referenced, those modules with the highest number of defects pre
release had had all their defects "tested out". In contrast, many of the 
modules that had few defects recorded against them pre-release clearly 
turned out to have been poorly tested - they were significant sources of 
problems in the final implemented system. 

Typically, the search is for a simple relationship between some predictor 
and the number of defects delivered. Size or complexity measures are often 
used as such predictors. The result is a "naIve" model that could be 
represented by the graph of Figure 2.3. 

The difficulty is that whilst such a model can be used to explain a data 
set obtained in a specific context, none has so far been subject to the form of 
controlled statistical experimentation needed to establish a causal 
relationship. Indeed, the analysis of Fenton and Neil suggests that these 
models fail to include all the causal or explanatory variables needed in order 
to make the models generalisable. Further strong empirical support for these 
arguments is demonstrated in [Fenton and Ohlsson, 2000]. 

Figure 2.3. Graphical representation ofa naive regression model between some 
predictor S (typically a size measure), and the number of software defects D. 

The model of Figure 2.3 can simulate the model of Figure 2.4 under 
certain circumstances. However, the latter has greater explanatory power, 
and can lead to quite a different interpretation of a set of data. One could take 
"Smoking" and "Higher Grades" at high school as an analogy. Just looking 
at the covariance between the two variables, we might see a correlation 
between smoking and achieving higher grades. However, if "Age" is then 
included in the model, we could have a very different interpretation of the 
same data. As a student's age increases, so does the likelihood of their 
smoking. As they mature, their grades also typically improve. The 
covariance is explained. However, for any fixed age group, smokers may 
achieve lower grades than non-smokers. 

We believe that the relationships between product and process attributes 
and numbers of defects are too complex to admit straightforward curve 
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fitting models. In predicting defects discovered in a particular project, we 
would certainly want to add additional variables to the model of Figure 2.4. 
For example, the number of defects discovered will depend on the 
effectiveness with which the software is tested. It may also depend on the 
level of detail of the specifications from which the test cases are derived, the 
care with which requirements have been managed during product 
development, and so on. 

Figure 2.4. The influence of S on D is now mediated through a common cause 
PS. This model can behave in the same way as that of Figure 2.3, but only in 

certain specific circumstances. 

We believe that graphical probabilistic models are the best candidate for 
situations with such a rich causal structure. Our primary reason for saying 
this is that we believe the influences on, for example, the presence of residual 
defects are too complex and varied to allow the development of effective and 
generalis able regressions using the sparse data that is available in the 
software engineering domain. Instead, we propose an alternative approach in 
which expert judgement can be used to help develop an initial model. This 
model can then be refined and revised while in use, to improve the accuracy 
of its predictions. 

3. INTRODUCTION TO BAYESIAN NETWORKS 

3.1. Conditional probability 
The foundation for Bayesian Networks (BNs) is probability theory. 

Probabilities conform to three basic axioms: 

• peA), the probability of an event (outcome/consequence ... ), A, is a 
number between 0 and 1; 

• peA) = 0 means A is impossible, p(A)=l means A is certain; 
• peA or B) = peA) + pCB) provided A and B are disjoint. 

However, merely to refer to the probability p(H) of an event or 
hypothesis is an oversimplification. In general, probabilities are context 
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sensitive. For example, the probability of suffering from certain forms of 
cancer is higher in Europe than it is in Asia. Strictly, the probability of any 
event or hypothesis is conditional on the available evidence or current 
context. This can be made explicit by the notation p(R I E), which is read as 
"the probability ofH given the evidence E". In the coin example, R would be 
a "heads" event and E an explicit reference to the evidence that the coin is a 
fair one. If there was evidence E' that the coin was double sided heads, then 
we would have p(R IE') == 1.0. 

As soon as we start thinking in terms of conditional probabilities, we 
begin to need to think about the structure of problems as well as the 
assignment of numbers. To say that the probability of an hypothesis is 
conditional on one or more items is to identify the information relevant to the 
problem at hand. To say that the identification of an item of evidence 
influences the probability of an hypothesis being valid is to place a 
directionality on the links between evidences and hypotheses. 

Often a direction corresponding to causal influence can be the most 
meaningful. For example, in medical diagnosis one can in a certain sense say 
that measles "causes" red spots (there might be other causes). So, as well as 
assigning a value to the conditional p('red spots' I measles), one might also 
wish to provide an explicit graphical representation of the problem. In this 
case it is very simple (Figure 3.1). 

Figure 3.1. A very simple probabilistic network. 

Note that to say that p('red spots' I measles) = p means that we can 
assign probability p to 'red spots' if measles is observed and only measles is 
observed. If any further evidence E is observed, then we will be required to 
determine p('red spots' I measles, E). The comma inside the parentheses 
denotes conjunction. 

Building up a graphical representation can be a great aid in framing a 
problem. A significant recent advance in probability theory has been the 
demonstration of a formal equivalence between the structure of a graphical 
model and the dependencies that are expressed by a numerical probability 
distribution. In numerical terms, we say that event A is independent of event 
B if observation of B makes no difference to the probability that A will 
occur: peA I B) == peA). In graphical terms we indicate that A is independent 
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of B by the absence of any direct arrow between the nodes representing A 
and B in a graphical model. 

So far, we have concentrated on the static aspects of assessing 
probabilities and indicating influences. However, probability is a dynamic 
theory; it provides a mechanism for coherently revising the probabilities of 
events as evidence becomes available. Conditional probability and Bayes' 
Theorem playa central role in this. We will use a simple example to 
illustrate Bayesian updating, and then introduce Bayes' Theorem in the next 
section. 

Suppose we are interested in the number of defects that are detected and 
fixed in a certain testing phase. If the software under test had been developed 
to high standards, perhaps undergoing formal reviews before release to the 
test phase, then the high quality of the software would in a sense "cause" a 
low number of defects to be detected in the test phase. However, if the 
testing were ineffective and superficial, then this would provide an 
alternative cause for a low number of defects being detected during the test 
phase. (This was precisely the common empirical scenario identified in 
[Fenton and Ohlsson, 2000]). 

This situation can be represented by the simple graphical model of 
Figure 3.2. Here the nodes in the graph could represent simple binary 
variables with states "low" and "high", perhaps. However, in general a node 
may have many alternative states or even represent a continuous variable. 
We will stay with the binary states for ease of discussion. 

Figure 3.2. Some subtle interactions between variables captured in a simple 
graphical model. Node TE represents "Test Effectiveness", SQ represents 

"Software Quality" and DD represents "Defects Detected. 
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It can be helpful to think of Figure 3.2 as a fragment of a much larger 
model. In particular, the node SQ ("Software Quality") could be a synthesis 
of, for example: review effectiveness; developer's skill level; quality of input 
specifications; and, resource availability. With appropriate probability 
assignments to this model, a variety of reasoning styles can be modelled. A 
straightforward reasoning from cause to effect is possible. If TE (test 
effectiveness) is "low", then the model will predict that DD (defects 
discovered and fixed) will also be low. If earlier evidence indicates SQ 
(software quality) is "high", then again DD will be "low". 

However, an important feature is that although conditional probabilities 
may have been assessed in terms of effect given cause, Bayes' rule enables 
inference to be performed in the "reverse" direction - to provide the 
probabilities of potential causes given the observation of some effect. In this 
case, if DD is observed to be "low" the model will tell us that low test 
effectiveness or high software quality are possible explanations (perhaps 
with an indication as to which one is the most likely explanation). The 
concept of "explaining away" will also be modelled. For example, if we also 
have independent evidence that the software quality was indeed high, then 
this will provide sufficient explanation of the observed value for DD and the 
probability that test effectiveness was low will be reduced. 

This situation can be more formally summarised as follows. If we have 
no knowledge of the state DD then nodes TE and SQ are marginally 
independent - knowledge of the state of one will not influence the 
probability of the other being in any of its possible states. However, nodes 
TE and SQ are conditionally dependent given DD - once the state of DD is 
known there is an influence (via DD) between TE and SQ as described 
above. 

We will see in the next section that models of complex situations can be 
built up by composing together relatively simple local sub-models of the 
above kind (See also [Neil et ai, 2000]). This is enormously valuable. 
Without being able to structure a problem in this way it can be virtually 
impossible to assess probability distributions over large numbers of 
variables. In addition, the computational problem of updating such a 
probability distribution given new evidence would be intractable. 

3.2. Bayes' theorem and Conditional Dependence 
As indicated in the previous section, probability is a dynamic theory; it 

provides a mechanism for coherently revising the probabilities of events as 
evidence becomes available. Bayes' theorem is a fundamental component of 
the dynamic aspects. 



www.manaraa.com

146 Software Engineering with Computational Intelligence 

As mentioned earlier, we write peA I B) to represent the probability of 
some event (an hypothesis) conditional on the occurrence of some event B 
(evidence). If we are counting sample events from some universe n, then we 
are interested in the fraction of events B for which A is also true. In effect we 
are focusing attention from the universe n to a restricted subset in which B 
holds. From this it should be clear that (with the comma denoting 
conjunction of events): 

(AIB)= p(A,B) 
P pCB) 

This is the simplest form of Bayes' rule. However, it is more usually 
rewritten in a form that tells us how to obtain a posterior probability in a 
hypothesis A after observation of some evidence B, given the prior 
probability in A and the likelihood of observing B were A to be the case: 

peA I B) = pCB I A)p(A) 
pCB) 

This theorem is of immense practical importance. It means that we can 
reason both in a forward direction from causes to effects, and in a reverse 
direction (via Bayes' rule) from effects to possible causes. That is, both 
deductive and abductive modes of reasoning are possible. 

However, two significant problems need to be addressed. Although in 
principle we can use generalisations of Bayes' rule to update probability 
distributions over sets of variables, in practice: 

1. Eliciting probability distributions over sets of variables is a major 
problem. For example, suppose we had a problem describable by seven 
variables each with two possible states. Then we will need to elicit (27_1) 
distinct values in order to be able to define the probability distribution 
completely. As can be seen, the problem of knowledge elicitation is 
intractable in the general case. 

2. The computations required to update a probability distribution over a set 
of variables are similarly intractable in the general case. 

Up until the late 1980's, these two problems were major obstacles to the 
rigorous use of probabilistic methods in computer based reasoning models. 
However, work initiated by Lauritzen and Spiegelhalter [1988] and Pearl 
[1988] provided a resolution to these problems for a wide class of problems. 
This work related the independence conditions described in graphical models 
to factorisations of the joint distributions over sets of variables. We have 
already seen some simple examples of such models in the previous section. 
In probabilistic terms, two variables X and Yare independent if p(X,Y) = 
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p(X)p(Y) - the probability distribution over the two variables factorises into 
two independent distributions. This is expressed in a graphic by the absence 
of a direct arrow expressing influence between the two variables. 

We could introduce a third variable Z, say, and state that "X is 
conditionally independent of Y given Z". This is expressed graphically in 
Figure 3.3. An expression of this in terms of probability distributions is: 

p(X,Y I Z) = p(X I Z)p(Y I Z) 

Figure 3.3. X is conditionally independent ofY given Z. 

A significant feature of the graphical structure of Figure 3.3 is that we 
can now decompose the joint probability distribution for the variables X, Y 
and Z into the product of terms involving at most two variables: 

p(X,Y,Z) = p(X I Z)p(Y I Z)p(Z) 

In a similar way, we can decompose the joint probability distribution for 
the variables associated with the nodes DD, TE and SQ of Figure 4.2 as 

p(DD, TE, SQ) = p(DD I TE,SQ)p(TE)p(SQ) 

This gives us a series of example cases where a graph has admitted a 
simple factorisation of the corresponding joint probability distribution. If the 
graph is directed (the arrows all have an associated direction) and there are 
no cycles in the graph, then this property is a general one. Such graphs are 
called Directed Acyclic Graphs (DAGs). Using a slightly imprecise notation 
for simplicity, we have [Lauritzen and Spiegelhalter, 1988]: 

3.2.1. Proposition 

Let U = {XI, X2, ... , Xn} have an associated DAG G. Then the joint 
probability distribution p(U) admits a direct factorisation: 

n 

p(U) = IT p(Xi I pa(Xi» 
i=1 
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Here pa(Xi) denotes a value assignment to the parents of Xi. (If an arrow 
in a graph is directed from A to B, then A is a parent node and B a child 
node). 

The net result is that the probability distribution for a large set of 
variables may be represented by a product of the conditional probability 
relationships between small clusters of semantically related propositions. 
Now, instead of needing to elicit a joint probability distribution over a set of 
complex events, the problem is broken down into the assessment of these 
conditional probabilities as parameters of the graphical representation. 

The lessons from this section can be summarised quite succinctly. First, 
Bayesian network graphs may be used to represent qualitative influences in a 
domain. Secondly, the conditional independence statements implied by the 
graph can be used to factorise the associated probability distribution. This 
factorisation can then be exploited to (a) ease the problem eliciting the global 
probability distribution, and (b) allow the development of computationally 
efficient algorithms for updating probabilities on the receipt of evidence. We 
will now describe how these techniques have been exploited to produce a BN 
model for software defect prediction. 

3.3. Evidence Propagation in Bayesian Networks 
Once a BN is built it can be executed using an appropriate propagation 

algorithm, such as the Hugin algorithm [Jensen 1996]. This involves 
calculating the joint probability table for the model (probability of all 
combined states for all nodes) by exploiting the BN's conditional probability 
structure to reduce the computational space. Even then, for large BNs that 
contain undirected cycles the computing power needed to calculate the joint 
probability table directly from the conditional probability tables is enormous. 
Instead, the junction tree representation is used to localise computations to 
those nodes in the graph that are directly related. The BN graph is 
transformed into the junction tree by collapsing connected nodes into cliques, 
eliminating cyclic links between cliques and by creating separators to 
communicate probability updates between the cliques when new evidence is 
observed. The key point here is that propagating the effects of observations 
throughout the BN can be done using only messages passed between - and 
local computations done within - the cliques of the junction tree rather than 
the full graph. The graph transformation process is computationally hard but 
it only needs to be produced once off-line. Propagation of the effects of new 
evidence in the BN is performed using Bayes' theorem over the compiled 
junction tree. For full details see [Jensen 1996]. 
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Once a BN has been compiled it can be executed and exhibits the 
following two key features: 

• The effects of observations entered into one or more nodes can be 
propagated throughout the net, in any direction, and the marginal 
distributions of all nodes updated; 

• Only relevant inferences can be made in the BN. The BN uses the 
conditional dependency structure and the current knowledge base to 
determine which inferences are valid. 

4. THE BAYESIAN NETWORK FOR DEFECT 
PREDICTION 

We will now look at how Bayesian Networks (BNs) can be applied to 
quality prediction. '"(he network we will describe was developed as a pilot 
study. However, the results that we obtained were quite positive - indeed 
rather more successful than we were expecting. The important point to 
mention at the outset is that the network was developed using experience 
form one part of a multinational organisation (Philips Electronics) in one 
continent (Europe). It was then validated using data from a different part of 
that organisation, in a different continent (India). Although these were two 
parts of the same organisation, it provides us with some confidence that the 
approach we are about to describe is capable of generalisable prediction 
models. 

Assessing and controlling software quality is hard. You cannot hold it or 
touch it, yet its behaviour has an impact on all of our lives. We all are 
stakeholders in the drive to improve the quality of the software that we work 
with, yet few of us are able to explicate precisely how we define measures to 
discriminate between "poor" quality and "high" quality products. 

This may seem strange as quality control is a precise science in most 
other industries, and an important product discriminator. There are, however, 
a number of reasons for this. Consider three main aspects of quality control 
in traditional manufacturing: 

• The control of manufacturing defects 
• The assessment of mean time to failure of a product through wear or 

agemg 
• The use of statistical sampling to provide quality predictions with well

defined uncertainties 

In general, these have limited applicability in software engineering. The 
main reason for this is that in software engineering we are concerned with 
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controlling the design process and not the manufacturing process. We want 
to: 

• Know how to control the design and development process so that design 
faults and weaknesses are minimised 

• Assess the likelihood that failures to meet the quality requirements of 
users (through design and development faults) will be manifest in a 
specific context of use - and, ideally, how that likelihood might vary as 
the context of use (inevitably) changes over time 

• Develop quality measurement and assessment techniques that can be 
applied in cases where a specific design and development process may 
only be applied to a small number of projects - perhaps even just an 
individual project. 

The model we describe focuses on one specific quality characteristic -
what we may call maturity, or freedom from defects. We will construct a 
model which we hypothesise contains the most important casusal influences 
on the presence of defects in a software module. Note that the model focuses 
specifically on functionality related defects, and not faults in performance or 
other quality requirements. The latter will be addressed in the next phase of 
this research programme. 

BN models are a good candidate solution for an effective model of 
software defect prediction for the following reasons: 
1. They can easily model causal influences between variables in a specified 

domain; 
2. The Bayesian approach enables statistical inference to be augmented by 

expert judgement in those areas of a problem domain where empirical 
data is sparse; 

3. As a result of the above, it is possible to include variables in a software 
reliability model that correspond to process as well as product attributes; 

4. Assigning probabilities to reliability. predictions means that sound 
decision-making approaches using classical decision theory can be 
-supported. 

Our goal was to build a module level defect prediction model that could 
then be evaluated against real project data. Although it was not possible to 
use members of Philips' development organisations directly to perform 
extensive knowledge elicitation, PRL were able to act as a surrogate because 
of their experience from working directly with Philips business units. This 
had the added advantage that the BN could be built relatively quickly. 
However, the fact that the probability tables were in effect built from 
"rough" information sources and strengths of relations necessarily limits the 
precision of the model. 
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The remainder of this section will provide an overview of the model to 
indicate the product and process factors that are taken into account when a 
quality assessment is performed using it. 

4.1. Overall structure of the Bayesian Network 
The BN is executed using the generic probabilistic inference engine 

Hugin (see http://www.hugin.com for further details). However, the size and 
complexity of the network were such that it was not realistic to attempt to 
build the network directly using the Hugin tool. Instead, Agena Ltd used two 
methods and tools that are built on top of the Hugin propagation engine: 

• The SERENE method and tool [Fenton, 1999], which enables: large 
networks to be built up from smaller ones in a modular fashion; and, 
large probability tables to be built using pre-defined mathematical 
functions and probability distributions. 

• The IMPRESS method and tool [Neil, 1999], which extends the 
SERENE tool by enabling users to generate complex probability 
distributions simply by drawing distribution shapes in a visual editor. 

The resulting network takes account of a range of product and process 
factors from throughout the lifecycle of a software module. Because of the 
size of the model, it is impractical to display it in a single figure. Instead, we 
provide a first schematic view in terms of sub-nets (Figure 4.1). This 
modular structure is the actual decomposition that was used to build the 
network using the SERENE tool. 

The main sub-networks (sub-nets) in the high-level structure correspond 
to key software life-cycle phases in the development of a software module. 
Thus there are sub-nets representing the specification phase, the specification 
review phase, the design and coding phase and the various testing phases. 
Two further sub-nets cover the influence of requirements management on 
defect levels, and operational usage on defect discovery. The final defect 
density sub-net simply computes the industry standard defect density metric 
in terms of residual defects delivered divided by module size. 

This structure was developed using the software development processes 
from a number of Philips development units as models. A common software 
development process is not currently in place within Philips. Hence the 
resulting structure is necessarily an abstraction. Again, this will limit the 
precision of the resulting predictions. Work is in progress to develop tools to 
enable the structure to be customised to specific development processes. 

The arc labels in Figure 4.1 represent 'joined' nodes in the underlying 
sub-nets. This means that information about the variables representing these 
joined nodes is passed directly between sub-nets. For example, the 
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specjication quality and the defect density sub-nets are joined by an arc 
labelled 'Module size'. This node is common to both sub-nets. As a result, 
information about the module size arising from the specification quality sub
net is passed directly to the defect density sub-net. We refer to 'Module size' 
as an 'output node' for the specification quality sub-net, and an 'input node' 
for the defect density sub-net. The figures in the following sub-sections show 
details of a number of sub-nets. In these figures, the dark shaded nodes with 
dotted edges are output nodes, and the dark shaded ones with solid edges are 
input nodes. 
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~eci&atioll 
review 

R.o ,idut.l 
opocilil.tion 

dehcts 

Design and coding 
process 

defects 

N.w 
nquir.., .. ,4s 

Figure 4.1. Overall network structure. 
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4.2. The specification quality sub-net 
Figure 4.2 illustrates the Specification quality sub-net. It can be 

explained in the following way: specification quality is influenced by three 
major factors: 

• the intrinsic complexity of the module ~this is the complexity of the 
requirements for the module, which ranges from "very simple" to "very 
complex"); 

• the internal resources used, which is in tum defined in terms of the staff 
quality (ranging from "poor" to "outstanding"), the document quality 
(meaning the quality of the initial requirements specification document, 
ranging from "very poor" to "very good"), and the schedule constraints 
'which ranges from "very tight" to "very flexible"; 

• the stability of the requirements, which in tum is defined in terms of the 
novelty of the module requirements (ranging from "very high" to "very 
low") and the stakeholder involvement (ranging from "very low" to 
"very high"). The stability node is defined in such a way that low novelty 
makes stakeholder involvement irrelevant (Philips would have already 
built a similar relevant module), but otherwise stakeholder involvement 
is crucial. 

The specification quality directly influences the number of specification 
defects (which is an output node with an ordinal scale that ranges from 0 to 
10 - here "0" represents no defects, whilst "10" represents a complete 
rewrite of the document). Also, together with stability, specification quality 
influences the number of new requirements (also an output node with an 
ordinal scale ranging from 0 to I 0) that will be introduced during the 
development and testing process. The other node in this sub-net is the output 
node module size, measured in Lines of Code (LOC). The position taken 
when constructing the model is that module size is conditionally dependent 
on intrinsic complexity (hence the link). However, although it is an indicator 
of such complexity the relationship is fairly weak - the Node Probability 
Table (NPT) for this node models a shallow distribution. 

4.3. The Requirements match sub-net 
The Requirements match sub-net (Figure 4.3) contains just three nodes. 

These could have been incorporated into the specification quality sub-net, 
but we have separated them out as a sub-net to highlight the overall 
importance that we attach to the notion of requirements match. This crucial 
output variable (ranging from poor to very good) represents the extent to 
which the implementation matches the real requirements. It is influenced by 
the number of new requirements and the quality of configuration and 
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traceability management. When there are new requirements introduced, if 
the quality of configuration and traceability management is poor then it is 
likely that the requirements match will be poor. This will have a negative 
impact on all subsequent testing phases (hence this node is input to three 
other sub-nets that model testing phases). For example, if the requirements 
match is poor then no matter how good the internal development is, when it 
comes to the integration and independent testing phases the testers will 
inevitably be testing the wrong requirements. 

- - . 
spec. defects 

new rqmts ..: 

Figure 4.2. Specification quality sub-net. 
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........ _-_._-------. 
,"~" 

newrqmls ) 

-------------- ~--~.,--~,,~~' 

rqmls. match 

Figure 4.3. Requirements match sub·net. 

4.4. The Specification Review and Test Process sub-nets 
The Specification Review, Unit, Integration and Independent testing 

process, and Operational usage sub-nets are all based on a common testing 
idiom (Figure 4.4). The basic structure of each is that they receive defects 
from the previous life-cycle phase as 'inputs' , and the accuracy of testing and 
rework is dependent on the resources available. The 'output' in each case is 
the unknown number of residual defects, which is simply the number of 
inserted defects minus the number of discovered defects. 
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.. -------

doc quality 

In!. testIng quality resources 

Figure 4.4. Integration testing process sub-net. This is an example of the generic 
testing idiom. 

4.5. Design and coding process sub-net 
The Design and coding process sub-net (Figure 4.5) is an example of the 

so-called "process-product" idiom. Based on various input resources 
something is being produced (namely design and code) that has certain 
attributes (which are the outputs of the sub-net). The inputs here are 
specification quality (from the specification quality sub-net), development 
staff quality and resources. These three variables define the design and 
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coding quality. The output attributes of the design and coding process are the 
design document quality and the crucial number of code defects introduced. 
The latter is influenced not just by the quality of the design and coding 
process but also by the number of residual specification defects (an input 
from the specification sub-net). 

resources 

dealgn doc quality 

Figure 4.5. Design and coding process sub-net - an example of the "process
product" idiom. 

4.6. Defect density sub-net 
The final sub-net is the Defect density sub-net (Figure 4.6). This sub-net 

simply computes the industry standard defect density metric in terms of 
residual defects delivered divided by module size. Notice that defect density 
is an example of a node that is related to its parents by a deterministic, as 
opposed to a probabilistic, relationship. This ability to incorporate 
deterministic nodes was an important contribution of the SERENE project. 
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Figure 4.6. The Defect density sub-net. 

4.7. The probability tables 
The work on BNs outlined in Section 3 means that the problem of 

building such models now factorises into two stages: 
• Qualitative stage: consider the general relationships between the 

variables of interest in terms of relevance of one variable to another in 
specified circumstances; 

• Quantitative stage: numerical specification of the parameters of the 
model. 

The numerical specification of the parameters means building Node 
Probability Tables (NPTs) for each of the nodes in the network. However, 
although the problem of eliciting tables on a node-by-node basis is 
cognitively easier than eliciting global distributions, the sheer number of 
parameters to be elicited remains a very serious handicap to the successful 
building of BNs. We will outline some of the techniques we used to handle 
this problem in this sub-section. 

Note that for reasons of commercial sensitivity, the parameter values 
used in this paper may not correspond to the actual values used. 

The leaf nodes (those with no parents) are the easiest to deal with since 
we can elicit the associated marginal probabilities from the expert simply by 
asking about frequencies of the individual states. For example, consider the 
leaf node novelty in Figure 4.2. This node has five states "very high", "high", 
"average", "low", "very low". Suppose the expert judgement is that modules 
typically are not very novel, giving the following weights (as surrogates for 
the probability distribution), respectively, on the basis of knowledge of all 
previous modules in a development organisation: 

5,10,20,40,20 
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These are turned into probabilities 0.05, 0.11, 0.21, 0.42, 0.21 (note the 
slight change of scale to normalise the distribution). 

The NPTs for all other leaf nodes were determined in a similar manner 
(by either eliciting weightings or a drawing of the shape of the marginal 
distribution). 

The NPTs for nodes with parents are much more difficult to define 
because, for each possible value that the node can take, we have to provide 
the conditional probability for that value with respect to every possible 
combination of values for the parent nodes. In general this cannot be done by 
eliciting each individual probability - there are just too many of them (there 
are several million in total in this BBN). Hence we used a variety of methods 
and tools that we have developed in recent projects SERENE [1999] and 
IMPRESS [1999]. For example, consider the node specification quality in 
Figure 4.2. This has three parent nodes resources, intrinsic complexity, and 
stability each of which takes on several values (the former two have 5 values 
and the latter has 4). Thus for each value for specification quality we have to 
define 100 probabilities. Instead of eliciting these all directly we elicit a 
sample, including those at the 'extreme' values as well as typical, and ask the 
expert to provide the rough shape of the distribution for specification quality 
in each case. We then generate an actual probability distribution in each case 
and extrapolate distributions for all the intermediate values. To see how this 
was done, Table 1 shows the actual data we elicited in this case. The first 
three columns represent the specific sample values and the final column is 
the rough shape for the distribution of "specification quality" given those 
values. 

In the "best case" scenario of row 2 (resources good, stability high, 
complexity low) the distribution peaks sharply close to 5 (i.e. close to "best" 
quality specification). If the complexity is high (row 3) then the distribution 
is still skewed toward the best end, but is not as sharply peaked. In the "worst 
case" scenario of row 3 (resources bad, stability low, complexity high) the 
distribution peaks sharply close to I (i.e. close to "worst" quality 
specification) . 

On the basis of the distributions drawn by the expert we derive a 
function to compute the mean of the specification quality distribution in 
terms of the parents variables. For example, in this case the mean used was: 

Min (resource_effects, (5 *resource _ effects+intrinsic _ complexity+5 
*stability_effects) / II) 

In this example, to arrive at the distribution shapes drawn by the expert, 
we make use of intermediate nodes as described in Section 4.2. For example, 
there is an intermediate node stability which is the parent of the node 
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stability effects. The stability effects node NPT is defined as the following 
beta distribution that is generated using the IMPRESS tool: 

Beta (2.25 * stability - 1.25, -2.25 * stability + 12.25, 1, 5) 

Figure 4.7 shows the actual distribution in the final BBN (using the 
Hugin tool) for the node specification quality under a number of the 
scenarios of Table 1. This figure provides a good consistency check - there 
is an excellent match of the distributions with those specified by the expert . 
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Figure 4.7. Actual distributions for specification quality for various scenarios. 

Resources Stability Intrinsic complexity Specification quality 
(1 to 5 where I is (I to 3 where I is (I to 5 where I is most 

I 2 3 4 5 
worst 5 is best) worst 3 is best) complex, 5 least) 

5 3 1 --A 
5 3 5 A 
1 1 1 /"-
1 2 3 ~ 
1 3 5 ~ 
5 1 1 ~ 
1 1 5 ~ 
Table 1. Eliciting the probability table for specification quality. 
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4.8. Some comments on the BN 
The methods used to construct the model have been illustrated in this 

section. The resulting network models the entire development and testing 
life-cycle of a typical software module. We believe it contains all the critical 
causal factors at an appropriate level of granularity, at least within the 
context of software development within Philips for single site, single team 
projects. 

The node probability tables (NPTs) were built by eliciting probability 
distributions based on experience from within Philips. Some of these were 
based on historical records, others on subjective judgements. For most of the 
non-leaf nodes of the network the NPTs were too large to elicit all of the 
relevant probability distributions using expert judgement. Hence we used the 
novel techniques, that have been developed recently on the SERENE and 
IMPRESS projects, to extrapolate all the distributions based on a small 
number of samples. By applying numerous consistency checks we believe 
that the resulting NPTs are a fair representation of experience within Philips. 

There are two major concerns with the model as it stands. We address 
the first to an extent in developing the network into a tool that can be used 
for validation studies. However, the second can only be addressed as further 
experience is gained with real useage of the tool. 

The first concerns the measurement scales on many of the nodes. One or 
two of the nodes have objective measurement scales (such as lines of code 
for "module size", although even here one needs to be precise about how this 
is measured). However, an ordinal scale of I (worst case) to 5 (best case) is 
more often used. This leaves scope for subjective judgement of the values of 
these nodes in any particular project. We handled this in the user interface 
that was developed for the validation studies by providing definitions for 
each of the values of a measurement scale. Consider for example, the node 
for configuration and traceability management. Here we define the worst 
case state as "requirements and design documents are no longer maintained 
once coding has started", the best case as "requirements, design and code are 
maintained with tool support for establishing and maintaining traceability 
links". We do need to study further the validity of these categories and their 
respective orderings, and the scope for intra- and inter-subject variability in 
the value assignments. So, and this is important, we cannot claim this as a 
definitive model. Rather, the success of the validation studies indicate that it 
is a good foundation for further evolution. 

This leads us on to the second point. The model captures a (limited) 
corpus of experience in software engineering. To the extent that we talk 
about "causal influences", we are hypothesising a "theory" of software 
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engineering (in fact, of a limited sub-domain of software engineering). To 
that extent, we must be prepared to revise it and extend it as our experience 
matures. A key motive for building our model as a Bayesian Network is that 
it is revisable, both in terms of its structure and its parameters. Rather then 
try to learn a model purely from data in a domain where the number of 
potential influences is vast, and the data from controlled evaluations of the 
effects of each influence is minimal, we start with a plausible model that is 
set up so that it can be revised as further data and experience is gained. This, 
for example, is a motivation behind the specific use of beta-distributions in 
the NPTs. These are one of a class of conjugate distributions. That is, the 
distribution posterior to revision by data has the same form as prior to 
revision. In introduction to learning Bayesian Networks can be found in 
[Krause, 1998] which has extensive references to the machine learning 
techniques that are now open to us. 

As it stands, the BN can be used to provide a range of predictions and 
"what-if' analyses at any stage during software development and testing. It 
can be used both for quality control and process improvement. However, two 
further areas of work were needed before the tool could be considered ready 
for extended trials. Firstly and most importantly, the network needed to be 
validated using real-world data. Secondly a more user-friendly interface 
needed to be engineered so that (a) the tool did not require users to have 
experience with BNs, and (b) a wider range ofreporting functions could be 
provided. The validation exercise will be described in the next section in a 
way that illustrates how the probabilistic network was packaged to form the 
AID tool (AID for "Assess, Improve, Decide"). 

5. VALIDATION OF THE AID TOOL 

5.1. Method 
The Philips Software Centre (PSC), Bangalore, India, made validation 

data available. We gratefully acknowledge their support in this way. PSC is a 
centre for excellence for software development within Philips, and so data 
was available from a wide diversity of projects from the various Business 
Divisions within PSC. 

Data was collected from 28 projects from three Business Divisions: 
Mainstream Consumer Electronics, Philips Medical Systems and Digital 
Networks. This gave a spread of different sizes and types of projects. Data 
was collected from three sources: 
• Pre-release and post-release defect data was collected from the 

"Performance Indicators" database. 
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• More extensive project data was available from the Project Database. 
• Completed questionnaires on selected projects. 

In addition, the network was demonstrated in detail on a one to one basis 
to three experienced quality/test engineers to obtain their reaction to its 
behaviour under a number of hypothetical scenarios. 

The data from each project was entered into the BN model. For each 
project: 
1. The data available for all nodes prior to the Unit Test sub-net was 

entered first. 
2. Available data for the Unit Test sub-net was then entered, with the 

exception of data for defects discovered and fixed. 
3. If pre-release defect data was available, the predicted probability 

distribution for defects detected and fixed in the unit test phase was 
compared with the actual number of pre-release defects. No distinction 
was made between major and minor defects - total numbers were used 
throughout. The actual value for pre-release defects was then entered. 

4. All further data for the test phases was then entered where available, 
with the exception of the number of defects found and fixed during 
independent testing ("post-release defects"). The predicted probability 
distribution for defects found and fixed in independent testing was 
compared with the actual value. 

5. If available, the actual value for the number of defects found and fixed 
during independent testing was then entered. The prediction for the 
number of residual defects was then noted. 

Unfortunately, data was not available to validate the operational usage 
sub-net. This will need data on field call-rates that is not currently available. 

Given the size of the BN, this was insufficient data to perform rigorous 
statistical tests of validity. However, it was sufficient data to be able to 
confirm whether or not the network's predictions were reliable enough to 
warrant recommending that a more extensive controlled trial be set up. 

5.2. Initial Validation Results 
The network was used to make predictions of numbers of defects found 

during unit test, integration test and independent testing of the module once it 
had been integrated into a product. These predictions were compared against 
the actual values obtained. Data from an initial validation run is presented in 
Table 2. 
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With the exception of three predictions, there is good agreement between 
the predictions and the actual defect numbers when available. Note, however, 
that: 
1. The sample size is too small to use any statistical measures of validity; 
2. The AID predictions are quite imprecise, deliberately so at this stage in 

its evolution, and so is not capable of drawing particularly fine 
distinctions between projects. In particular, there was little 
discrimination between the quality of the projects once they had been 
released to independent test, although this may also be a reflection of the 
repeatability of the development processes at PSC. 

Unit Test Independent Test 
Project ID Predicted Actual Predicted Actual 

defects defects defects defects 
PI 100-150 122 20-40 31 
P2 100-150 141 40-60 NA 
P3 40-60 7 20-40 22 
P4 60-80 11 20-40 46 
P5 100-150 142 20-40 NA 
P6 100-150 370 20-40 NA 

Table 2. Comparison of predicted versus actual defects for six projects. 

Projects P3 and P4 showed significant differences between the predicted 
and actual defects discovered, or at least, reported, during unit test. This 
reflects a possible difficulty with use of the tool in practice, since many 
defects at unit test are fixed without going through a formal reporting 
process. 

The largest discrepancy was, however, with the project P6. This project 
contained a significant User Interface component, and as validation 
progresses we continue to see that such projects do consistently produce 
more incident reports than are predicted by AID. The explanation for this is 
not immediately apparent, and clearly the causes are not currently captured 
in the AID tool. 

5.3. Emergent behaviour from complex modules 
One of the major values of AID is as a tool for exploring the possible 

consequences of changes to a software process, or the constraints on a 
product's development. The ability of Bayesian networks to handle quite 
complex reasoning patterns is one of the reasons why the tool is proving so 
successful in this regard. We end with one example, which also illustrated 
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how our model does handle the sort of effects that were discussed in Section 
2. 

Table 3 lists the median values of "Defects found at Unit Test" and 
"Defects Delivered" for a variety of values for the intrinsic problem 
complexity of the software module under development. Look at the first row; 
the predictions for the number of defects found during unit test. For a very 
simple module, we get an increase in the number of defects found over the 
prior, and a decrease for a very complex module. 

Defects found in 
Unit Test 
Defects 

delivered 

Intrinsic Complexity of the Software Module 
Prior "Very Simple" "Very Complex" 

90 125 30 

50 30 70 

Table 3. Median values for three different scenarios. 

At first sight, this seems counter intuitive - we might expect simpler 
modules to be more reliable. The explanation is that the more complex 
modules are harder to test than the simpler modules. With their greater 
ability to "hide" faults, fewer faults will be detected unless there is a 
compensating increase in the effectiveness with which the module is tested. 
No such compensation has been applied in this case and the low prediction 
for defects detected and fixed for the "very complex" case indicates that 
typically such modules are relatively poorly tested. 

This is borne out when we look at the respective figures for residual 
defects delivered, in the second row of the table. Now we see a reversal. The 
prediction for the "very complex" module indicates that it will contain more 
residual defects than the "very simple" module (a median of70, compared to 
a median of 30). So our model naturally produces the qualitative behaviour 
of the real world data from our earlier experiment. That is, the better-tested 
modules yield more defects during unit test and deliver fewer defects. For the 
more poorly tested modules, the converse is the case. (Note that the table 
misses out data from the Integration and Independent Test Phases. When this 
is included the total number of defects - found plus delivered - is greatest for 
the "Very Complex" module). 

5.4. An example run of AID 
We will use screen shots of the AID Tool to illustrate both the 

questionnaire based user interface, and a typical validation run. 
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One of the concerns with the original network is that many of the nodes 
have values on a simple ordinal scale, range from "very good" to "very 
poor". This leaves open the possibility that different users will apply 
different calibrations to these scales. Hence the reliability of the predictions 
may vary, dependent on the specific user of the system. We address this by 
providing a questionnaire based front-end for the system. The ordinal values 
are then associated with specific question answers. The answers themselves 
are phrased as categorical, non-judgemental statements. 

The screen in Figure 5.1 shows the entire network. The network is 
modularised so that a Windows Explorer style view can be used to navigate 
quickly around the network. Check-boxes are provided to indicate which 
questions have already been answered for a specific project. 
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Figure 5.1. The entire AID network illustrated using a Windows Explorer style 
view. 

The questions associated with a specific sub-net can then be displayed. A 
question is answered by selecting the alternative from the suggested answers 
that best matches the state of current project. Figure 5.2 shows the question 
and alternative answers for the Configuration and Traceability Management 
node in the Requirements Control sub-network. 

For this example project, answers were available for 13 of the 16 
questions preceding "defects discovered and fixed during unit test". Once the 
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answers to these questions were entered, the predicted probability 
distribution for defects discovered and fixed during unit test had a mean of 
149 and median of 125 (See Figure 5.3 - in this figure the monitor window 
has been displayed in order to show the complete probability distribution for 
this prediction. Summary statistics can also be displayed.). The actual value 
was 122. Given that the probability distribution is skewed, the median is the 
most appropriate summary statistic, so we actually see an apparently very 
close agreement between predicted and actual values. This agreement w~s 
very surprising as although we were optimistic that the "qualitative 
behaviour" of the network to be transferable from organisation to 
organisation, we were expecting the scaling of the defect numbers to vary. 
Note, however, that the median is an imprecise estimate of the number of 
defects - it is the centre value of its associated bin on the histogram. So it 
might be more appropriate to quote a median of"100-150" in order to make 
the imprecision of the estimate explicit. 
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Figure 5.2. The question associated with the Configuration and Traceability 
Management node. 

The actual value for defects discovered and fixed was entered. Answers 
for "staff quality" and "resources" were available for the Integration Test and 
Independent Test sub-networks. Once these had been entered, the prediction 
for defects discovered and fixed during independent test had a mean of 51, 
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median of 30 and standard deviation of 45 (see figure 5.4). The actual value 
was 31. 

As was the case with unit test, there was close agreement between the 
median of the prediction and the actual value. "Test 3" was developed by 
PSC as a module or sub-system for a specific Philips development group. 
The latter then integrated "Test 3" into their product, and tested the complete 
product. This is the test phase we refer to as Independent Test. 

The code size of Test 3 was 144 KLOC. The modules (perhaps sub
system is a better term given the size) used in the validation study ranged in 
size from 40-150 KLOC. The probabilistic reliability model incorporates a 
relatively weak coupling between module size and numbers of defects. The 
results of the validation continue to support the view that other product and 
process factors have a more significant impact on numbers of defects. 
However, we did make one modification to the specification quality sub-net 
as a result of the experience gained during the validation. Instead of 
"Intrinsic Complexity" being the sole direct influence on "Module Size", we 
have now explicitly factored out "Problem Size" as a joint influence with 
"Intrinsic Complexity" on "Module Size". 
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Figure 5.3. The prediction for defects discovered and fixed during Unit Test for 
project "Test 3". 



www.manaraa.com

Software Quality Prediction Using Bayesian Networks 

025 

020 

0.15 

010 

I 1-
0.05 

000 

Figure 5.4. The prediction for defects discovered and fixed during Independent 
Test for project "Test 3". 
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Overall there was a high degree of consistency between the behaviour of 
the network and the data that was collected. However, a significant amount 
of data is needed in order to make reasonably precise predictions for a 
specific project. Extensive data (filled questionnaire,plus project data, plus 
defect data) was available for seven of the 28 projects. These seven projects 
showed a similar degree of consistency to the project that will be studied in 
the next sub-section. The remaining 21 projects show similar effects, but as 
the probability distributions are broader (and hence less precise) given the 
significant amounts of "missing" information, the results are supportive but 
less convincing than the seven studied in detail. 

It must be emphasised that all defect data refers to the total of major and 
minor defects. Hence, residual defects may not result in a "failure" that is 
perceptible to a user. This is particularly the case for user-interface projects. 

Note also that the detailed contents of the questionnaires are held in 
confidence. Hence we cannot publish an example of data entry for the early 
phases in the software life cycle. Defect data is reported here, but we must 
keep the details of the project anonymous. 

A disadvantage of a reliability model of this complexity is the amount of 
data that is needed to support a statistically significant validation study. As 
the metrics programme at PSC is relatively young (as is the organisation 
itself), this amount of data was not available. As a result, we were only able 
to carry out a less formal validation study. Nevertheless, the outcome of this 
study was very positive. Feedback was obtained on various aspects of the 
functionality provided by the AID interface to the reliability model, yet the 
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results indicated that only minor changes were needed to the underlying 
model itself. We are now preparing for a more extended trial using a wider 
range of projects. 

There is a limit to what we can realistically expect to achieve in the way 
of statistical validation. This is inherent in the nature of software 
engineering. Even if a development organisation conforms to well defined 
processes, they will not produce homogenous products - each project will 
differ to an extent. Neither do we have the large relevant sample sizes 
necessary for statistical process control. It is primarily for these reasons that 
we augment empirical evidence with expert judgement using the Bayesian 
framework described in this paper. As more data becomes available, it is 
possible to critique and revise the model so that the probability tables move 
from being subjective estimates to being a statement of physical properties of 
the world (see, e.g. [Krause, 1998]). However, in the absence of an extensive 
and expensive reliability testing phase, this model can be used to provide an 
estimate of residual defects that is sufficiently precise for many software 
project decisions. 

5.6. Future Work 
The scale of new software systems is such that it is increasingly 

necessary to develop them across distributed environments. Philips, for 
example, has teams on three different continents all working on the same 
major projects in a number of instances. Such distributed projects raise new 
and urgent concerns about how to manage and monitor quality and risks. To 
address this important concern Agena, QinetiQ, Philips and the Israel 
Aircraft Industry are currently working on a 2.4m Euro project - MODIST 
[Elliot 2001] to develop a BN-based tool to support software managers and 
engineers improve their software development processes as well their 
product quality in distributed environments. 

6. SUMMARY 
We have described a BN for software defect prediction. This model can 

be used for assessing Qngoing projects, but also for exploring the possible 
effects of a range of software process improvement activities. If costs can be 
associated with process improvements, and benefits assessed for the 
predicted improvement in software quality, then the model can be used to 
support sound decision making for SPI (Software Process Improvement). 

The model performed very well in our preliminary validation 
experiments. In addition, Agena developed a user interface for the tool that 
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enables it to be easily used in a variety of different modes for product 
assessment and SP!. 

We must emphasise that this is an initial model. As discussed in Section 
4, it should be viewed as a hypothesis representing a "theory" of software 
development in a sub-domain of software engineering (single-roof, single 
team software development of software modules). The use of a Bayesian 
approach provides us with an initial model in a domain that is notoriously 
sparse in sound empirical data. As continued experience is gained, the model 
can be revised using sound statistical techniques. Indeed, such a model could 
provide a valuable basis for the design of experiments in empirical software 
engineering (by for example, controlling certain nodes in the network and 
predicting outcomes on the result nodes). 

Although we anticipate that the model will need additional refinement as 
experience is gained during extended trials, we are confident that it will 
make a significant contribution to sound and effective decision-making in 
software development organisations. Future refinements to the method and 
the approach are being done on the CEC ESPRIT funded MODIST project 
[Elliot 2001]. 
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ABSTRACT 
Online Adaptive Systems in general, and learning neural nets in particular 
cannot be validated using traditional verification and validation techniques, 
because they evolve over time, and past learning data influences their 
behavior. In this paper we discuss a framework for reasoning about online 
adaptive systems, and see how this framework can be used to perform V\& V 
on such systems. 
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1. INTRODUCTION: POSITION OF THE PROBLEM 

1.1. On-Line Learning: An Emerging Paradigm 
Adaptive Systems are systems whose function evolves over time, as they 

improve their performance through learning. The advantage of adaptive 
systems is that they can, through judicious learning, react to situations for 
which the designer did not make specific provisions. If learning and 
adaptation are allowed to occur after the control system if deployed, the 
system is called online adaptive system. 

Online adaptive systems are attracting increasing attention in application 
domains where autonomy is an important feature, or where it is virtually 
impossible to analyze ahead of time all the possible combinations of 
environmental conditions that may arise. The controlled processes (as well as 
the control law) are often non-linear and subject to noise, disturbances, time 
delays and other un-modeled dynamics. Therefore, it is more advantageous 
to learn the system's behavior, rather than attempt its precise functional 
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description. Examples of autonomous control applications are long term 
space missions where communication delays to ground stations are 
prohibitively long, and we have to depend on the systems' local capabilities 
to deal with unforeseen circumstances [15]. Examples of systems dealing 
with complex environmental conditions include flight control systems, which 
deal with a wide range of parameters, and a wide range of environmental 
factors. These systems must maintain flight safety and criticality equivalent 
to traditional human piloted systems. Other proposed applications include 
collision avoidance systems, multi-vehicle cooperative control, intelligent 
scheduling in manufacturing [11], control systems for automobile steering 
based on feature recognition in images [10], etc. 

In recent years several experiments evaluated adaptive computational 
paradigms (neural networks, AI planners) for providing fault tolerance 
capabilities in control systems following sensor andlor actuator faults 
[28,29]. Experimental success suggests significant potential for future use. 
More recently, a family of neural networks, referred to as DCS (Dynamic 
Cell Structure) [16], have been used by NASA for on-line learning of 
aerodynamic derivatives [37] in a flight control system of an F-15. In the 
intelligent flight control system, the online neural learning DCS network 
provides the aircraft model's adaptation to the changes that may occur during 
the flight. The network is trained to the error in flight, i.e., the difference 
between the derivative values computed by a regression-based derivative 
estimator, and those provided by the preflight approximation algorithm 
(implemented by another neural network, which does not change in flight). 
The topology representing properties of the DCS network proved to be 
capable of providing the flight controller with the best available estimates of 
the aircraft's stability and control derivatives, while yielding a dramatically 
more compact way to store them. These advances were made possible by the 
fact that a DCS network eventually acquires ("learns") the connectivity 
structure, which represents the relation of topological proximity of points 
from the flight envelope. 

The critical factor limiting wider use of neural networks and other soft
computing paradigms in process control applications, is our (in)ability to 
provide a theoretically sound and practical approach to their verification and 
validation. In this paper, we present a framework for reasoning about on-line 
learning systems, which we envision as a candidate technology for their 
verification and validation. 

1.2. Verifying On-Line Learning Systems 
While they hold great technological promise, on-line learning systems 

pose serious problems in terms of verification and validation, especially 
when viewed against the background of the tough verification standards that 
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arise in their predominant application domains (flight control, mission 
control). Adaptive systems are inherently difficult to verify/ validate, 
precisely because they are adaptive. Specifically, consider that methods for 
software product verification are generally classified into three families [4]: 

• Fault Avoidance methods, which are based on the premise that we can 
derive systems that are fault-free by design. 

• Fault Removal methods, which concede that fault avoidance is 
unrealistic in practice, and are based on the premise that we can remove 
faults from systems after their design and implementation are complete. 

• Fault Tolerance methods, which concede that neither fault avoidance nor 
fault removal are feasible in practice, and are based on the premise that 
we can take measures to ensure that residual faults do not cause failure. 

Unfortunately, neither of these three methods is applicable as-is to 
adaptive systems, for the following reasons: 

• Fault Avoidance. Formal design methods [14,20,27] are based on the 
premise that we can determine the functional properties of a system by 
the way we design it and implement it. While this holds for traditional 
systems, it does not hold for adaptive systems, since their design 
determines how they learn, but not what they will learn. In other words, 
the function computed by an online adaptive system depends not only on 
how the system is designed, but also on what data it has learned from. 

• Fault Removal: Verification. Formal verification methods [1,25,22,26] 
are all based on the premise that we can infer functional properties of a 
software product from an analysis of its source text. While this holds for 
traditional systems, it does not hold for adaptive systems, whose 
behavior is also determined by their learning history. 

• Fault Removal: Testing. All testing techniques [12,21,24] are based on 
the premise that the systems of interest will duplicate under field usage 
the behavior that they have exhibited under test. While this is true for 
traditional deterministic systems, it is untrue for adaptive systems, since 
the behavior of these systems evolves over time. We have observed in 
[2] that adaptive systems fail to meet this requirement (of maintaining or 
enhancing their behavior) even when they converge. 

• Fault Tolerance. Fault tolerance techniques [3,32,33,36] are based on the 
premise that we have clear expectations about the functions of programs 
and programs parts, and use these expectations to design error detection 
and error recovery capabilities. With adaptive systems, it is not possible 
to formulate such expectations because the functions of programs/ 
program parts are not known at design time. 

Because on-line learning systems are most often used in life-critical (e.g. 
flight control) and mission-critical (e.g. space) applications, they are subject 
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to strict certification standards, leaving a wide technological gap between the 
requirements of the application domain and the capabilities of available 
technologies; our aim in this paper is to attempt to narrow this gap. First, we 
survey existing approaches. 

1.3. Existing Approaches 
Traditional literature typically describes adaptive computational 

paradigms with respect to their use, as function approximators or data 
classification tools .. In most cases, their correctness is measured in terms of a 
misclassification rate on specific data sets, or by their ability to interpolate 
and/or extrapolate between known function values. This evaluation 
paradigm may work well only for applications where the system learns 
on a "training set" and remains unchanged in operational usage. In an attempt 
to discuss verification and validation of neural networks, LiM in Fu [17] 
interprets verification to refer to correctness and interprets validation to refer 
to accuracy and efficiency. He establishes correctness by analyzing the 
process of designing the neural network, rather than the functional properties 
of the final product. An intuitively similar, but more elaborate approach has 
been described by Gerald Peterson [31]. Peterson describes the opportunities 
for verification and validation of neural networks in terms of the activities in 
their development life-cycle, as shown in Figure 1. 

If a problem is judged to be solvable by a neural network (feasibility 
phase), training data is gathered. Verification of the training data includes the 
analysis of appropriateness and comprehensiveness. This step is not fully 
applicable to on-line learning applications since training data are related to 
the real-time evolution of the system state, rather than the design choice. 
Verification of the training process typically examines the convergence 
properties of the learning algorithm in terms of achieving the desired optimal 
problem solution. Evaluation of interpolation and extrapolation capabilities 
of the network and domain specific verification activities set the stage for the 
overall verification and validation. The strong emphasis on domain specific 
knowledge, its formal representation and mathematical analysis is suggested 
in [19] too. Del Gobbo and Cukic propose the analysis of the neural network 
with respect to conditions implying the existence of the solution (for function 
approximation) and the reachability of the solution from any possible initial 
state. Their third condition can be interpreted as condition for preservation of 
the learned information. 

While meaningful and well organized, Peterson's approach provides little 
guidance on the choice of specific rigorous V & V techniques. Proposed 
techniques are mostly based on empirical evaluation through simulation 
and/or experimental testing. In an on-going effort, a group of researchers at 
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NASA Ames Research Center are defining life-cycle V & V methods 
applicable to systems which have (an) integrated adaptive software 
component(s) [7]. In some cases, neural networks are modified to provide 
support for testing based (or on-line) validation of results. For example, 
Leonard et. al. [23] suggest a new architecture called Validity Index. A 
Validity Index network is a derivative of Radial Basis Function (RBF) 
network with the additional ability to calculate confidence intervals for its 
predictions based on the probability density of the "similar" training data 
observed in the past. 

In a recent survey of methods for validating on-line learning neural 
networks, O. Raz [34] calls this approach on-line monitoring and novelty 
detection and attributes to it a significant potential for the future use. The 
other promising research direction, according to Raz, is periodic rule 
extraction from an on-line neural network and partial (incremental) re
verification of these rules using symbolic model checking. Practical hurdles 
associated with this approach include determining the frequency of rule 
extraction and impracticality of near real-time model checking of complex 
systems. LiMin Fu [17] discuss the verification and validation of neural nets, 
where he interprets verification to refer to correctness and interprets 
validation to refer to accuracy and efficiency. He establishes correctness by 
analyzing the process of designing the neural net, rather than the functional 
properties of the final product. 
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Figure 1. Neural Network Construction Lifecyc1e. 

2. TENETS OF A REFINEMENT-BASED APPROACH 

2.1. Characterizing Our Approach 
Our approach to the verification of on-line learning systems can be 

summarized in the following premises: 
• We establish the correctness of the system, not by analyzing the process 

by which the system has been designed, but rather by analyzing the 
functional properties of the final product, and the evolution of these 
systems can be controlled to preserve/ enhance selected properties. 

• Qualifying the first premise, we capture the functional properties of the 
system not by the exact function that the system defines at any stage in 
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its learning process, but rather by a functional envelope, which captures 
the range of possible functions of the system for a given learning history. 
This concept will be more formally defined in section 3.1. 

• In order to make testing meaningful, we need to ensure that the system 
evolves in a way that preserves or enhance its behavior under test. We 
call this monotonic learning, and we investigate it briefly in section 4.1. 
Of course, on-line learning systems are supposed to get better as they 
acquire more learning data, but our definition of better is very specific: it 
means that the functional envelope of the system grows increasingly 
more refined with learning data (in the sense of refinement calculi 
[5,8,13,18,39]). 

• In order to support some form of correctness verification, we must 
recognize that the variability of learning data and the focus on functional 
envelope (rather than precise function) weaken considerably the kinds of 
functional properties that can be established by correctness verification. 
Typically, all we can prove are minimal safety conditions; we refer to 
this as safe learning (proving that learning preserves safety conditions), 
and we discuss it briefly in section 4.2. 

In the sequel, we introduce some mathematical background, which we 
use in the remainder of the paper. 

2.2. Specification Structures 
The verification and validation of systems, whether adaptive or not, can 

only be carried out with respect to predefined functional properties, which 
we capture in specifications. In this paper, we model specifications by means 
of binary relations. A relation R from set X to set Y is a subset of the 
Cartesian product X x Y . A homogeneous relation on S is a relation from 
S to S. We use relations to represent specifications. Among relational 
constants we cite the identity relation, denoted by I, and the universal 
relation, denoted by L. Among operations on relations we cite the product, 
which we represent by R oR' or by RR' (when no ambiguity arises), the 

complement, which we represent by R, the inverse, which we represent by 
" R, and the set theoretic operations of union and intersection. 

We wish to introduce an ordering between (relational) specifications to 
the effect that a specification is greater than another specification if and only 
if it captures stronger functional requirements. We refer to this ordering as 

the refinement ordering, we denote it by R :l R' and we define it as 

RLI R'LI (RYR')=R'. 
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The following definition and proposition give the reader some intuition 
for the meaning of the refinement ordering. 

Definition 1 

A program P on space S is said to be correct with respect to 

specification R on S if and only if [£J.;;;J R where [EJ is the function 
defined by program P. 

Proposition 1 

Specification R refines specification R' if and only if any program 
correct with respect to R is correct with respect to R'. 

Figure 2 illustrates, in set theoretic terms, the meaning of the refinement 
ordering, by showing the graphs of two relations Rand R' on the same sets. 
R refines R' because it has a larger domain and has fewer images for each 
argument. By contrast, Q does not refine Q' nor does Q' refine Q. 

As a complement to studying ordering properties of the refinement 
relation, we also investigate lattice properties [9). In [6], we have derived 
two propositions pertaining to the lattice properties of the refinement 
ordering. We present them here without proof, but with some discussion of 
their intuitive meaning. 

Proposition 2 

Two relations Rand R' have a least upper bound (also called the join) 
with respect to the refinement ordering if and only if they satisfy the 
condition (called the consistent condition): 

RL I R'L = (R I R')L. 

When they do satisfy this condition, their join is denoted by (R U R') 
and is defined by 

(R U R') = R I R'L Y R' I RL Y (R I R'). 

The consistency condition means that Rand R' can be satisfied 
(refined) simultaneously, i.e. that they have an upper bound. As for the 
expression of the join, suffice it to say that (R U R') represents the 
specification that captures all the functional features of R (upper bound of 
R) and all the functional features of R' (upper bound of R') and nothing 
more (least upper bound). A crucial property of joins, for our purposes, is 
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that an element A refines R U R' if and only if it refines simultaneously 
Rand R , In other words, the join of R and represents the sum of all the 
functional features of Rand R' . This sum can be derived only if Rand R' 
do not contradict each other (re: the consistency condition). We argue in [6] 
that complex specifications can be structured in terms of simpler sub
specifications using the join operator. 

In addition to discussing least upper bounds (joins), we also discuss 
greatest lower bounds (meets), which are introduced in the following 
proposition. 

Proposition 3 

Any two relations Rand R' have a greatest lower bound (also called 
the meet), which is denoted by (R n R') and defined by 

(R n R') = RL I R'L I (R Y R'). 

The meet of two relations Rand R' is a specification that refined by R 
(lower bound of R), refined by R' (lower bound of R'), and is maximal 
(greatest lower bound): in other words, it captures all the functional features 
that are common to Rand R' . 

The following lemma, which presents trivial lattice identities, will be 
generalized later for our purposes. 

Lemma 1 

The following identities hold in any lattice: 

• (A:J B) v (A :J C) logically implies A :J (B n C) 

• (B:J A) v (C :J A) logically implies (B n C):J A 

The first clause stems readily from the transitivity of the refinement 
ordering, and the lattice identities. The second clause can be proved by 
observing that the left hand side provides that is a A lower bound for Band 
C, hence it is refined by the greatest lower bound. 
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Figure 2. Refinement Ordering in Pictures. 

3. A COMPUTATIONAL MODEL FOR ON-LINE 
LEARNING SYSTEMS 

3.1. An Abstract Model 
Before we discuss the specifics of the verification methods we propose, 

we first introduce an abstract computational model for adaptive systems and 
their evolution through learning. Figure 3 depicts the abstract model we have 
of an online adaptive system; this model is purposefully generic, to support a 
wide range of possible implementations (RBF, DeS, MLP), and to enable us 
to focus on relevant computational features (as opposedto being distracted by 
implementation specific details). Our model includes the following features: 

• Set X represents the set of inputs that may be submitted to the adaptive 
system. 

• Set Y represents the set of outputs that the adaptive system may return 
as output. 
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• Set H represents the set of learning data histories that are submitted to 
the adaptive system for learning; typically, this set is nothing but the set 
of sequences of the form (x,y), where x E X and y E Y. We let & 

represent the empty sequence (as an element of H). 
• Function F is the function which, to each learning history h in H 

associates a function Fh from X to Y that captures the behavior of the 

adaptive system after receiving learning data h. According to this 
definition, the initial behavior of the adaptive system before any learning 
history is received is Fc' 

• Function R is the function which, to each learning history h in H 
associates a relation Rh from X to Y that captures the learned 

behavior of data h, and nothing else. Whereas Fh may include behavior 

that stems from its initialization, or stems from extrapolations, or stems 
from default options, Rh remains undefined or under-defined until 
learning data intervenes. 

In order to elucidate the meaning of relation Rh , for history h, we 

consider the following development scenario for adaptive systems. An 
adaptive system is defined by some learning rule, which maps a learning 
history h into a function Fh ; the learning algorithm is also defined by 

means of implementation-specific parameters, including randomly chosen 
parameters. For the sake of abstraction, we denote the vector of 
implementation-specific parameters by a variable, say A" and we let A be 
the set of possible values for A,. To fix our ideas, we can think of A as 
representing a family of possible implementations of the learning algorithm, 
and of A, as a specific implementation within the selected family; also, we 

denote by FhA the function that captures the behavior of the adaptive system 

whose parameters vector is A" upon receiving learning data h. With this 
background in mind, we let Rh be defined as follows: 

Rh = n AEA FhA 

By virtue of the definition of meet, n AEA FhA can be interpreted to 

represent the functional information that is common to all possible 
implementations of the learning algorithm, for all possible values of A,. 
While FhA is dependent on A, Rh is dependent on A. 
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As a corollary of this definition, consider the initial values of Fh). and 

Rh for h = E, i.e. at the beginning of the learning process. Whereas F/ 
represents the (mostly arbitrary) initialization of the function of the adaptive 

system, Rc represents the information that all instances of Fe).' for all 

values of A in A have in common. In effect, Rc captures all the functional 

information that stems from A, and that is specific to the family of learning 
algorithms being used. 

The definition of Rh yields the following proposition, which we present 

without proof (the proof is a trivial lattice identity). 

Proposition 4 

For all A E A, we have: 

Vh: F/ =:J Rh • 

This proposition stems readily from the definition of Rh as the meet of 

all Fh , for all h : the meet of many terms is lower than anyone term. 

H 

F 

x Y 
-Rh --. 

X_ F Y 
h --. 

Figure 3. Abstract Computational Model. 
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3.2. A Concrete Model: The Back-Propagation Learning 
Algorithm 

In this section, we consider the back-propagation learning algorithm, and 
we analyze it to show that it fits the abstract computational model that we 
have presented above. The back-propagation algorithm was first developed 
by Werbos in 1974 [38] but attracted little attention initially. It was later 
independently rediscovered by Parker [30] in 1982 and by Rumelhart, Hinton 
and Williams [35] in 1986. The version we present below, taken from [17], is 
due to [35]. 

• Weight Initialization. Set all weights and node thresholds to small 
random numbers. Note that the node threshold is the negative of the 
weight from the bias unit (whose activation level is fixed at 1). 

• Calculation of Activation. 

1. The activation level of an input unit is determined by the instance 
presented to the network. 

2. The activation level OJ ofa hidden and output unit is determined by 

OJ = a(LWjiOi - OJ), 

where Wji is the weight from an input 0i' OJ is the node threshold, 

and a is the sigmoid function: 

• Weight Training. 

1 
a(a) =--

1 +e-a 

1. Start at the output units and work backward to the hidden layers 
recursively. Adjust weights by 

Wji(t + 1) = Wji(t) + flWji 

where Wji(t) is the weight from unit i to unit j at time t and flWji is 

the weight adjustment. 

3. The weight change is computed by 

flWji = 1]l5j Oi , 

where 1] is a trial-independent learning rate 0 < 0 < 1 and l5j is the 

error gradient at unit j. Convergence is sometimes faster by adding a 
momentum term: 

Wji (t + 1) = Wji (t) + 1]l5j Oi + a(Wji (t) - Wji (t -1)), 
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where 0 < a < 1. 

4. The error gradient is given by: 

• For the output units: 

5. = 0 . (1 - 0 . )(T. - 0 . ) 
J .I .1.1 J 

where Tj is the desired (target) output activation and OJ is the 

actual output activation at output unit j . 

• For the hidden units: 

5 j =O/1-0j )L5k WIg' 
k 

where 5k is the error gradient at unit k to which a connection 

points from hidden unit j . 

5. Repeat iterations until convergence in terms of the selected error 
criterion. An iteration includes presenting an instance, calculating 
activations, and modifying weights. 

We interpret this algorithm as defining function Fh (see section 3) by 

induction on the complexity (length) of h. If we recognize that Fh is not 

entirely determined by h but is also dependent on the arbitrary initial 
parameters (and their subsequent manipulations) then we rewrite this 

function as FhA, where A is the vector of weights 

Also, we recognize that the range of values that weights can take evolves 
as the algorithm proceeds, hence the term A in the equations of section 3 
should, in fact, be indexed with h; to acknowledge this, we write it as A h • 

Consequently, we find: 

• A &' the initial set of possible weights, is defined by the Weight 
Initialization step in the back-propagation algorithm. The initial values 
of the weights are usually chosen rather small, since large weights cause 
the activation functions to saturate early, and cause the network to be 
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stuck in a very flat plateau or a local minimum near the starting point. 
Typically, the initial values of weights are chosen as random values 

. - 0.5 + 0.5 D T f 
umformly distributed between and , where r anln 0 a 

Fanln Fanln 
unit is the number of units which are fed forward into this unit [17]. 

• Aho(X,y) is obtained from Ah by applying the function detailed in the 

Weight Training step of the back-propagation algorithm. Specifically, if 
we let WT be the function detailed in this step, which has the form 

(

WJi (t + 1)] _ ~j;(I) 
... -WT 

5. 
5. } 

} O. 
} 

then Aho(x,y) can be defined as follows: 

In light of this, we rewrite the characterization of Rh as follows: 

In particular, if we take h = &, we find that A e is the set of all 

admissible initial weights, and Re is the meet of all possible functions F/" 
for all admissible initial weights. Under some weak conditions (which are 
discussed in the sequel), we find a simple expression for Re : 

This formula is intuitively appealing: Re is the set of all input output 

pairs (x,y) such that (x,y) is in F/" for some admissible initial weighting 

A " Note that while Fe). reflects the arbitrary choice of an initial weighting, 

Re does not; it only reflects the learning algorithm and the specific network 

architecture. More generally, we intend Rh to reflect the learning algorithm, 
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the network architecture, and the learning data - but not to reflect any 
arbitrary choice o/random weights. Note also, on the expression above, that 

while FhA is deterministic, Re is (very) non-deterministic; Rh is obtained 

from FhA by abstracting away the arbitrary determinacy of FhA. 

In order to assess the variability of the system function with respect to 
the choice of initial weights, we have run an experiment on a simple back
propagation neural network with one hidden layer, and have submitted to it 
learning data about the exclusive or function. Also, we have selected the 

initial weights, and have observed how these affect the function FhA for 

various values of h. Specifically, h is a sequence of epochs, where each 
epoch is made up of the four sets of inputs (combinations of two Boolean 
variables) along with their corresponding outputs by the exclusive or 
function. The column labeled "10" in figure 4 represents the learning 
sequence h made up of ten epochs. By abuse of notation, we can represent 
h by the number of epochs in h . We can make the following observations: 

• The initial weights have a large impact on the evolution of FhA. 
• This impact lasts well into the future, and does not completely disappear 

even after several thousand epochs. 

For the purposes of our study, this means that Rh remains distinct from 

FhA even for a long learning sequence h. Figure 4 also allows us to 

visualize the difference between FhA and Rh: For example FhA maps input 

(1,1) into 0.95718, whereas Rh also maps it into, among others, 

0.70029,0.50565,0.51080. 
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(I, I) 0.95718 0.88763 0.64715 0.572 J3 0.50737 0.12861 0.04999388 

(1,0) 0.88929 0.75727 0.49946 0.48526 0.5 1578 0.88881 0.95669980 

(0,1) 0.88985 0.76 J31 0.50934 0.48949 0.5 1579 0.88868 0.95675480 
(0,0) 0.74329 0.58170 0.41602 0.45580 0.50102 0.09960 0.03909299 

W -0.5 7560*' 

(I, I) 0.70029 0.58756 0.53496 0.52377 0.51087 0.14863 0.04999296 
(1,0) 0.60074 0.51103 0.48290 0.48596 0.49385 0.87160 0.95670090 
(0,1) 0.60987 0.52 J3 7 0.48944 0.48869 0.49424 0.87141 0.95675580 
(0,0) 0.55051 0.49504 0.48686 0.49964 0.51760 0.11487 0.03909090 

W -0.0 8926** 
(I, I) 0.50565 0.50740 0.50880 0.50976 0.51116 0.50880 0.04999402 
(I,OL 0.48353 0.48525 0.48714 0.48836 0.48878 0.49985 0.95669870 
(0,1) 0.49364 0.49367 0.49203 0.49037 0.48888 0.50006 0.95675415 
(0,0) 0.51421 0.51434 0.51342 0.51227 0.51134 0.5 \613 0.03909125 

Wo* 8942 ** 
(1,1) 0.51080 0.51098 0.51101 0.51096 0.51118 0.50909 0.04999226 

(I,OL 0.48304 0.484 \6 0.48627 0.48794 0.48876 0.49888 0.95670134 
(0,1) 0.49480 0.49397 0.49197 0.49027 0.48885 0.49911 0.95675653 
(0,0) 0.51010 0.51027 0.51051 0.51073 0.51137 0.51662 0.03908928 

* : Random values range from -0.3 to +0.3. 
** : Iteration times when network comes to convergence. 

Figure 4. One Hidden Layer MLP NN for XOR Problem Trained by BP 
Algorithm with Different Initial Weights. 

4. VERIFICATION OF ON-LINE LEARNING SYSTEMS 
Given that we have derived the functional envelope of a an on-line 

learning system (as relation Rh ), we discuss now how we can infer 

functional properties of the system. We discuss two methods in tum: 
Monotonic Learning and Safe Learning. 

4.1. Monotonic Learning 
The idea of monotonic learning is to ensure that the adaptive system 

learns in a monotonic fashion, so that whatever claims we can make about 
the behavior of the system prior to its deployment are upheld while the 
system evolves through learning. Of course, we can hardly expect Fh to be 

monotonic with respect to h, since there is no way to discriminate between 
information of Fh that stems from learning and information that stems from 

arbitrary choices. In addition, whenever FhA. is total (which is fairly 

common), it is in fact maximal in the refinement ordering, hence cannot be 
further refined. We can, however, expect Rh to be monotonic, in the 
following sense. 
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Definition 2 

An adaptive system is said to exhibit monotonic learning if and only if 
for all h in H, and for all (x,y) in X x Y , 

Rh.(x,y) :::J R 
- h 

where h· (x,y) is the sequence obtained by concatenating h with (x,y). 

Rh.(x,y) 

Figure 5. Monotonic Learning Increases Rh , Not Necessarily Fh . 

Figure 5 illustrates in what sense monotonicity of R does not 
necessarily imply monotonicity of F . The challenge of this approach is to 
analyze what kinds of restrictions we must impose on the learning algorithm 
in order to ensure the monotonicity of R, or, alternatively, what kinds of 
learning algorithms ensure this property. Note that the refinement ordering is 
reflexive, hence nothing precludes us from a situation where Rh.(x,y) = Rh . 

One possible way to ensure monotonicity is to compare Rh.(X,y) against Rh 

for refinement, and to discard (x,y) whenever the former does not strictly 
refine the latter. In practice this will work only if discarding learning data is 
an exceptional occurrence, rather than a routine occurrence. 

The interest of monotonic learning is that whatever properties can be 
established by analyzing the adaptive system at any stage of its learning are 
sure to be preserved (in the sense of refinement) as the system learns. In 
particular, all the properties of Re (before learning starts) are maintained as 

the system learns. More significantly, any behavior that is exhibited at the 
testing phase is sure to be preserved (i.e. duplicated or refined) in field usage. 
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Traditional certification algorithms observe the behavior of a software 
product under test, and make probabilistic/ statistical inferences on the 
operational attributes of the product (reliability, availability, etc). The crucial 
hypothesis on which these probabilistic/ statistical arguments are based is 
that the software product will reproduce under field usage the behavior that it 
has exhibited under test. This hypothesis does not hold for adaptive neural 
nets, because they evolve their behavior (learn) as they practice their 
function. Of course, one may argue that they evolve their behavior for the 
better; but better in the sense of a neural net (convergence, stability) is not 
necessarily better in the sense of correctness verification (monotonicity with 
respect to the refinement ordering). Concretely, a neural net may very well 
satisfy the test oracle in the testing phase, and fail to satisfy it in the field 
usage phase, even though it converges. See Figure 6. 

In principle, to apply monotonic learning we need to derive a closed 
form expression of Rh , then we derive the condition provided in definition 2 

and prove it. Because it is rather impractical to derive a closed form of Rh , 

this approach is unrealistic. As a substitute, we submit sufficient conditions 
for monotonic learning, starting with the following proposition. 

Proposition 5 

If the following conditions holds, 

'it A:3A': FhA(x,y) ~ FA' 
h ' 

then the pair(x,y)provides monotonic learning with respect to learning 
history h. 
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Oracle Range 

Rh Range, under test 

Behaviour 
.... o(~ ___ under test 

Rh Range, in field 

Behaviour 
.... o(E-___ in fie Id 

Figure 6. Convergence does Not Ensure Monotonicity. 

Proof. We must prove that under the condition cited above, 

Rh.(x,y) :::J R 
- h 

To this effect, we proceed by logical implications, starting from our 
hypothesis. 

V A:3A': Fh~(X,y) ::J FA' 
- h 

~ { Definition of meet, transitivity} 

V A:3A': FhA(x,y) ;;;;J I A'E M A, 

~ {Definition} 

V XU': Fh~(X,Y) :::J R 
- h 

~ {Lattice identity } 

V XU': I AFh~(X,Y) ;;;;J Rh 

~ {Definition} 

Rh.(x,y) ;;;;J R 
h' 

qed 
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We have found that often, function FhA. is total for all h and all A ; this 

gives weight to the following proposition, which gives another (weaker, but 
no less general) sufficient condition of monotonic learning. 

Proposition 6 

If F/ is total for any history h and any initial weights A, and the 

following condition holds, 

V XU': Fh~(x,y) ::J FA.' 
- h' 

then the pair(x,y)provides monotonic learning with respect to learning 

history h. 

Proof. We consider the condition 

\I X3.1t': FhA.eX,Y) ~ FA.' 
h ' 

Because both terms of this inequation are function, this condition is 
equivalent to 

V X:lA': Fh~(x,y) => Ft, 

Because both functions are total, this condition can further be simplified 
as: 

qed 

In other words, the learning pair (x,y) produces monotonic learning if 

and only if appending to learning history h produces the same outcome as 
starting with some other initial weight A' and applying the learning history 
h. Presumably, A' would have been a better initial weight than A, since we 
get the same function for one less learning pair. This condition is not 
suggesting to choose a better A, but rather is giving a sense to our concept 
of monotonic learning, which provides that as we learn more and more (i.e. 

as h increases in length), the range of possible values for function FhA. 

decreases. Note that there is no condition to the effect that every value of 
FhA. can be attained (by means of changing .It) for history h· (x, y) ; hence 

the condition of corollary 5 is ensuring that the range of possible values for 



www.manaraa.com

194 Software Engineering with Computational Intelligence 

FhA (which is the range of relation Rh ) shrinks as h expands. We will 

discuss applications of this proposition in section 5. 

4.2. Safe Learning 
The main idea of safe learning is to ensure that as the adaptive system 

evolves through learning, it maintains some minimal safety property S. In 
other words, in addition to maintaining the identity 

VhVA,Fh
A ~ Rh , 

which stems from the modeling of the system, we also require that the 
system maintains the following property 

Vh,Fh ~ S 

to ensure the safe operation of the adaptive system as it evolves through 
learning. By virtue of the lattice-like structure of the refinement ordering, we 
infer that F must satisfy: 

VhVA,Fh
A ~ (RhU'). 

See figure 7. 

Figure 7. Safe Learning. 
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This can be satisfied if and only if Rh and S do indeed have a join, i.e. 

if and only if they satisfy the consistency condition. The aggregate of 
conditions that characterize the safe learning of the adaptive system can be 
written as: 

Vh,RhLI SL=(RhI S)L 

Vh,Fh ~ (Rh U S). 

These conditions can be maintained by placing restrictions on the 
learning algorithms that can be deployed, or by controlling learning data that 
gets fed into the adaptive system, as per the following inductive argument: 

2. As the basis of induction, these conditions hold for h = E , since is the 
minimal element of the lattice of refinement. 

6. Given that they hold for h, we can ensure that they hold for h.(x,y)by 
accepting entry (x, y) only if it does not violate these conditions. 

4.3. Inductive Alternatives 
Most traditional program verification methods tackle the complexity of 

the task at hand by doing induction on some dimension of program structure 
(control structure, data structure, depth of recursion, etc). Likewise, while the 
two methods we present here appear attractive, we have no doubt that they 
are complex in practice, because they rely on an explicit formulation of the 
functional envelope of the system. Hence we are focusing our attention on 
means to use induction in such a way that we can apply these methods 
without having to derive Rh • The key to the inductive approach is the ability 

to derive inductive relationships between Rh and Rh.(X,y)' In the case of the 

neural net we have discussed in section 3.2, we know the relation between 
successive weights (as defined by the Weight Training function, WT), the 
relation between a set of weights (A ) and the corresponding system function 

(F/ ) and we know how the functional envelope Rh is derived from system 

functions (by taking the meet for all values of A). We must infer from this 

the relation between Rh and Rh.(x,y) . See figure 8. 
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F n 
..1,0' &" • FAn • Rh 

e 

1 
wr* 

F n 
A, h >- F)., » Rh h 

1 wr 1 ? 

F n 
WT(A), .. WT()") • Rh.(x,y) 
h·(x,y) Fh-(x,y) 

Figure 8. Inductive Structure. 

5. ILLUSTRATION: A SIMPLE MULTI LAYER 
PERCEPTRON 

We consider a simple Multi Layer Perceptron (MLP) with the simplest 
of architectures: one input layer, one hidden layer and one output layer, each 
containing a single neuron; see Figure 9. We want to use this example to 
discuss the condition of monotonicity; to this effect, we first write the 

expression of FhA . We find, 

where 

• Function (j is defined by 

1 
(j(t) = _/ 

l+e 

• The vector (::) obtained by backpropagation starting from initial 

weights ,{" after the learning sequence h . 
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x--~{)~ 
Figure 9. Architecture ofa (Very) Simple Multi Layer Perceptron. 

In order to articulate how the vector of weights (::) is derived from 

the initial weights (l ) and from the learning history ( h ), we write 

where function Wh is defined inductively (on h) by 

• We (A-) = l. 

• W.;<,y) (A) ~ WT(W,(A).(;) , 

where WT is, in tum, defined by 

(
W] + 17xa(w]x)(1- a(w]x»a(w2a(w]x»(1- a(w2 a(w] x»)(y - a(w2a(w]X»)W2) 

W2 + 17a(w]x)a(w2a(w]x»(1- a(w2a(w]x»)(y - a(w2 a(w] x») 

where 17 is the learning rate. 

By inspection of the formula of FhA, we infer that FhA is total (since a 

is total), hence we use proposition 6, which provides the following sufficient 
condition for monotonicity: 

V X3l': FhA(x,y) 

We interpret this condition as: 

V X3l': (Vt : Fh~x,y) (t) = FhA' (t». 
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Referring back to the formula of FhA, we find that a sufficient (perhaps 

also necessary) condition of monotonicity is: 

In the sequel, we characterize cases under which this condition is 
satisfied; for each case, we present a brief argument, then discuss the 
significance of the case. 

• The first learning pair produces monotonicity. If we take h = £, we 
find: 

V,{:lA': Wh'(X,y) (A) = Wh(A') 

<=:> {Because h = £ } 

VXU': Wh-(x,y) (A) = A' 

<=:> {By definition of Wh } 

If .13.1': WT(W,(A).(;) = A' 

<=:> {Because h = £ } 

If .13.1': WT(A'(:) = A' 

<=:> { WT is a total function} 
true 

Given that monotonicity means in effect that the new learning pair 
refines (enhances) prior knowledge, there is no doubt that the first pair 
always does (by contrast with subsequent pairs, which may conflict with 
prior knowledge). 

• Duplication produces monotonicity. If we let h be a sequence of length 
1, and let the new learning pair be a copy of the first pair, then we satisfy 
the condition of mono tonicity. Formally, 

VA::lA': Wh-(x,y) (A) = Wh(A') 

<=:> {By definition of Wh } 

If .13.1': WT(W, (A), (; ) = W, (A') 
<=:> {Because h = (x,y) = £. (x,y) } 
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VA3A': WT(Wh(A),(:) = WT(W«..l')t) 

<=> {By definition of Wh } 

V..l3..l': WT(Wh (..1),(:) = WT(..lt) 

<= {A sufficient condition} 
\7-13-1': -1'= Wh (-1) 

<=> { WT is a total function} 
true 

Repeating the same learning data does not create contradiction. 

• Convergence produces monotonicity. We interpret convergence to be the 
situation where the new learning pair does not cause any change to the 
vector of weights. Fonnally, 

Under this hypothesis, the condition of monotonicity 

\7 -13-1': FhA(x,y) _ FA' 
- h 

holds vacuously for -1'= -1. The idempotence of WT holds in 
particular when the learning process has converged (for the submitted 
learning data). Also, the fonnula of WT for our sample example 
provides that we have idempotence whenever the learning pair (x,y) 
satisfies the conditions: 

6. CONCLUSION 

W 
x=O,y=0"(_2). 

2 

On-line learning systems in general, and their neural net implementations 
in particular are gaining increasing acceptance in control applications, which 
are often characterized by complexity and criticality. A significant obstacle 
to their acceptance and usefulness/ usability is the lack of adequate 
verification/certification methods and techniques, as all traditional methods 
and techniques are inapplicable. In this paper we are presenting a tentative 
computational model for on-line learning systems and we use this model to 
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sketch verification methods. Among the main contributions of our work, we 
cite: 

• An abstract computational model that captures the functional properties 
of an evolving adaptive system by abstracting away random factors in 
the function of the system, to focus exclusively on details that are 
relevant to the learning algorithm and the learning data. 

• The integration of this computational model into a refinement logic, 
which establishes functional properties of adaptive systems using 
refinement-based reasoning. 

• The introduction of two venues for verifying adaptive systems: one 
based on monotonic learning (the adaptive equivalent of testing), and 
one based on safe learning (the adaptive equivalent of proving). 

• The introduction of a (sketchy, so far) framework for inductive reasoning 
on adaptive systems; this framework is based on the proposed 
computational model, and aims to support the adaptive equivalent of the 
inductive methods of program proving. 

• Some preliminary exploration of monotonic learning, whereby we 
provide sufficient conditions for monotonic learning, discuss them, and 
illustrate them. 

While this work is still in its infancy, we feel that it has introduced some 
meaningful concepts and has opened original venues for further exploration, 
by taking a refinement-based approach.We envisage the following extensions 
to this work: 

• Experiment, be it on small examples, with the derivation of the 
functional envelope (Rh ) of the system, and analyze what the conditions 

of monotonic learning and safe learning mean in practice. While it is 
easy to compute relation Rh extensionally, by listing some of its pairs 

(as we have done in figure 4), it is not trivial to derive a closed form 
expression of it. 

• Investigate means to obviate the need to derive an explicit closed form 
expression for Rh , by exploring inductive arguments that allow us to 

ensure monotonic learning and safe learning without computing the 
functional envelope. 

• Fine-tune the proposed computational model and investigate its 
applicability to other forms of on-line learning systems (other than the 
back-propagation algorithm). 

• Derive tighter sufficient conditions for monotonicity, and further analyze 
the condition of safe learning. 

• Explore inductive proof methods for adaptive systems, along the lines of 
the framework proposed in this paper. 
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This research is currently under way. Cutting across all the research 
directions is the issue of scaling up; we are interested in exploring how our 
proposed solutions can scale up to realistic applications. Whereas traditional 
methods of verification of neural nets produce statistical results, our long 
term goal, in this work, is to produce logical claims we can make about the 
current and future behaviour of the system. 

NOTES 
* This work is funded by grants from NASA Dryden Flight Research Center, 

through the Institute of Software Research (Fairmont, WV), and from NASA 
Goddard Space Flight Center, through NASA IV\&V Facility (Fairmont, WV). 

REFERENCES 
[I] 1.R. Abrial. The B Book: Assigning Programs to Meanings. Cambridge 

University Press, 1996. 

[2] Ch. Alexander, D. DeiGobbo, V. Cortellessa, A. Mili, and M. Napolitano. 
Modeling the fault tolerant capability of a flight control system: An exercise in 
SCR specifications. In Proceedings, Langley Formal Methods Conference, 
Hampton, V A, June 2000. 

[3] H. Ammar, B. Cukic, C. Fuhrman, and Mili. A comparative analysis of 
hardware and software fault tolerance: Impact on software reliability 
engineering. Annals of Software Engineering, 10,2000. 

[4] A. Avizienis. The n-version approach to fault tolerant software. IEEE Trans. on 
Software Engineering, 11(12), December 1985. 

[5] R.J. Back and 1. von Wright. Refinement Calculus: A Systematic Introduction. 
Graduate Texts in Computer Science. Springer Verlag, 1998. 

[6] N. Boudriga, F. Elloumi, and A. Mili. The lattice of specifications: Applications 
to a specification methodology. Formal Aspects of Computing, 4:544--571, 
1992. 

[7] M. A. Boyd, 1. Schumann, G. Brat, D. Giannakopoulou, B. Cukic, and A. Mili. 
Ifcs project: Validation and verification (v&v) process guide for software and 
neural nets. Technical report, NASA Ames Research Center, September 2001. 

[8] Ch. Brink, W. Kahl, and G. Schmidt. Relational Methods in Computer Science. 
Springer Verlag, New York, NY and Heidelberg, Germany, 1997. 

[9] Rodney A. Canfield. Meet and join within the lattice of set partitions. Technical 
report, The University of Georgia, Athens, 200 I. 

[10] M. Caudill. Driving solo. Al Expert, pages 26--30, September 1991. 

[11] C. H. Dagli, S. Lammers, and M. Vellanki. Intelligent scheduling in 
manufacturing using neural networks. Journal of Neural Network Computing, 
pages 4--10, 1991. 

[I 2] J. Dean. Timing the testing of cots software products. In First International 
ICSE Workshop on Testing Distributed Component Based Systems, Los 
Angeles, CA, May 1999. 

[13] Jules Desharnais, Ali Mili, and Thanh Tung Nguyen. Refinement and demonic 
semantics. In Brink et al. [8], chapter II, pages 166--183. 

[14] E.W. Dijkstra, A Discipline of Programming. Prentice Hall, 1976. 



www.manaraa.com

202 Software Engineering with Computational Intelligence 

[15] D. Bernard et al. Final report on the remote agent experiment. In NMP DS-J 
Technology Validation Symposium, Pasadena, CA, February 2000. 

[16] B. Fritzke. Growing self-organizing networks - why. In European Symposium 
on Artificial Neural Networks, pages 61--72, Brussels, Belgium, 1996. 

[17] LiMin Fu. Neural Networks in Computer Intelligence. McGraw Hill, 1994. 

[18] P. Gardiner and C.C. Morgan. Data refinement of predicate transformers. 
Theoretical Computer Science, 87: 143--162, 1991. 

[19] D. Del Gobbo and B. Cukic. Validating on-line neural networks. Technical 
report, Lane Department of Computer Science and Electrical Engineering, West 
Virginia University, December 2001. 

[20] D. Gries. The Science of programming. Springer Verlag, 1981. 

[21] H. Hecht, M. Hecht, and D. Wallace. Toward more effective testing for high 
assurance systems. In Proceedings of the 2nd IEEE High Assurance Systems 
Engineering Workshop, Washington, D.C., August 1997. 

[22] Internet. Program verification system. Technical report, SRI International 
Computer Science Laboratory, 1997. 

[23] J. A. Leonard, M. A. Kramer, and L. H. Ungar. Using radial basis functions to 
approximate a function and its error bounds. IEEE Transactions on Neural 
Networks, 3(4):624--627, July 1991. 

[24] M. Lowry, M. Boyd, and D. Kulkarni. Towards a theory for integration of 
mathematical verification and empirical testing. In Proceedings. 13th IEEE 
International Conference on Automated Software Engineering, pages 322--331, 
Honolulu, HI, October 1998. IEEE Computer Society. 

[25] Z. Manna. A Mathematical Theory of Computation. McGraw Hill, 1974. 

[26] H.D. Mills, V.R. Basili, J.D. Gannon, and D.R. Hamlet. Structured 
Programming: A Mathematical Approach. Allyn and Bacon, Boston, Ma, 1986. 

[27] C.c. Morgan. Programming from Specifications. International Series in 
Computer Sciences. Prentice Hall, London, UK, 1998. 

[28] M. Napolitano, G. Molinaro, M. Innocenti, and D. Martinelli. A complete 
hardware package for a fault tolerant flight control system using on-line learning 
neural networks. IEEE Control Systems Technology, January 1998. 

[29] M. Napolitano, C. D. Neppach, V. Casdorph, S. Naylor, M. Innocenti, and G 
Silvestri. A neural network-based scheme for sensor failure detection, 
identification and accomodation. AIAA Journal of Control and Dynamics, 
18(6):1280--1286,1995. 

[30] D.B. Parker. Learning logic. Technical Report S81-64, Stanford University, 
1982. 

[31] G. E. Peterson. A foundation for neural network verification and validation. 
SPIE Science of Artificial Neural Networks II, 1966: 196--207, 1993. 

[32] D. K. Pradhan. Fault Tolerant Computing: Theory and Practice. Prentice-Hall, 
Englewood Cliffs, NJ, 1986. 

[33] B. Randall. System structure for software fault tolerance. IEEE Transactions on 
Software Engineering, SE-1 (2), 1975. 

[34] Orna Raz. Validation of online artificial neural networks ---an informal 
classification of related approaches. Technical report, NASA Ames Research 
Center, Moffet Field, CA, 2000. 



www.manaraa.com

Towards the Verification and Validation of Adaptive Systems 

[35] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal 
representations by error propagation. In Parallel Distributed Processing: 
Explorations in the Microstructure of Cognition, Volume I: Foundations. MIT 
Press, Cambridge, MA, 1986. 

[36] D.P. Siewiorek and R. S. Swarz. The Theory and Practice of Reliable System 
Design. Digital Press, Bedford, Mass, 1982. 

[37] Boeing Staff. Intelligent flight control: Advanced concept program. Technical 
report, The Boeing Company, 1999. 

[38] P.J. Werbos. Beyond regression: New tools for prediction and analysis in the 
behavioral sciences. Technical report, Harvard University, 1974. 

[39] 1. Von Wright. A lattice theoretical basis for program refinement. Technical 
report, Dept. of Computer Science, Abo Akademi, Finland, 990. 

203 



www.manaraa.com

Experimenting with Genetic Algorithms to Devise 
Optimal Integration Test Orders 

Lionel C. Briand, Jie Feng and Yvan Labiche 

Software Quality Engineering Laboratory 
Carleton University 
Department of Systems and Computer Engineering 
1125 Colonel By Drive 
Ottawa. ON, KIS 5B6. Canada 
{briand. labiche}@Sce.carleton.ca 

ABSTRACT 
We present here an improved strategy to devise optimal integration test 
orders in object-oriented systems in the presence of dependency cycles. Our 
goal is to minimize the complexity of stubbing during integration testing as 
this has been shown to be a major source of expenditure. Our strategy to do 
so is based on the combined use of inter-class coupling measurement and 
genetic algorithms. The former is used to assess the complexity of stubs 
(each coupling measure capturing a dimension of this complexity) and the 
latter is used to minimize cost functions based on coupling measurement. 
Using a precisely defined procedure. we investigate this approach in a case 
study involving five real systems. Results are very encouraging as the 
approach clearly helps obtaining systematic results that are close to be 
minimal in terms of stubbing complexity. 

1. INTRODUCTION 
One important problem when integrating and testing object-oriented 

software is to decide the order of class integration [3]. A number of papers 
have provided strategies and algorithms to derive an integration and test 
order from dependencies among classes in a system [6, 17, 18, 21, 24]. The 
objective of all these approaches is to minimize the number of test stubs to 
be produced, as this is perceived to be a major cost factor of integration 
testing. Stubs are software units that are necessary to run the software under 
test (i.e., it depends on them) and that must be developed as part of the test 
harness along with drivers and oracles [2]. Such a need stems from the fact 
that, in most software development projects, components are developed and 
tested concurrently by different developers and integration begins before the 
component development and testing phase are complete. 

One specific issue is how to deal with dependency cycles, which prevent 
any topological ordering of classes. This is important as class diagrams (e.g., 
UML class diagrams defined during Analysis or Design, or reverse
engineered) of most object-oriented software systems contain dependency 
cycles. All the solutions proposed in [6, 21, 24] are based on the principle of 
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"breaking" some dependencies to obtain acyclic dependencies between 
classes. A broken dependency implies that the target class will have to be 
stubbed when integrating and testing the source class. Furthermore, all these 
solutions are based on search algorithms in directed graph representations of 
class dependencies, and we discuss below what the limitations and 
advantages of such an approach are. 

A first attempt has been made to use Genetic Algorithms (GA's) to 
address the test order issue [20]. GA's are a family of global optimization 
techniques based on heuristics and developed by the artificial intelligence 
community [8]. In [20], the authors report experiments on six different 
systems (4 of which are libraries) that yield overall poorer results with GA's 
when compared with their graph-based approach. However, little information 
and justification regarding the settings used for the GA (e.g., cross-over and 
mutation rate values, population sizes) are provided and, considering that 
these algorithms are known to be sensitive to such parameters, it is difficult 
to generalize or conclude from these results. Furthermore, the inherent 
uncertainty related to GA's (which are based on heuristics) is not 
investigated and little insight is given on some ofthe most unexpected results 
(e.g., in the Java library, 7 stubs break 8 thousand cycles!). We thus believe 
that a rigorous, scientific investigation of the use of GA's is necessary, thus 
precisely characterizing their strengths and limitations, and the conditions 
under which they are a useful alternative. 

In practice, we would like to refine graph-based algorithms in order, for 
example, to account for the complexity of dependencies between classes. In 
other words, different dependencies that we consider breaking may lead to 
stubs of widely varying complexity. Such complexity is driven by the 
coupling that exists between the client and server class of a dependency. If 
the client uses a lot of features of the server, then breaking the dependency is 
expected to lead to an expensive stub. Given our objective, modifying graph
based algorithms to account for stub complexity based on coupling 
measurement turns out to be very complex and leads to intractable 
algorithms. 

In order to address this problem, and for reasons that are described 
below, we then turned our attention to Genetic Algorithms (GA's). As 
further discussed below, the main motivation for using these algorithms is 
their flexibility and practicality in using a large range of optimization 
problems. Their popularity in software engineering is growing as many. of 
the problems we face can be re-expressed as optimization problems. This is 
further illustrated by a recent journal issue dedicated to the applications of 
metaheuristics algorithms to software engineering [14]. This paper focuses 
on the best ways to use GA' s in order to devise optimal test orders based on 
dependency coupling measurement between client and server classes. 



www.manaraa.com

206 Software Engineering with Computational Intelligence 

Last, there exist other integration strategies that are not based on class 
diagram information, as derived from the software design or reverse
engineering. They rather associate a functional description with (a set of) 
classes. For instance, in [15], Atomic System Functions (ASF), which 
involve system inputs and outputs, and exercise Method/Message paths 
between objects, drive the integration test of classes. These ASFs correspond 
to a functional decomposition of the system, which is similar to use cases. 
The objective of the strategy is not to minimize test stubs but to execute 
complete, end-user functionalities, in an incremental manner during 
integration. Similar strategies using use cases can be found in [3, 22]. Since 
these strategies are not explicitly based of the class diagram, they will not be 
detailed and compared in this article. Though this is a topic of future 
research, it is very likely that in practice, those two sets of strategies would 
have to be combined. 

We provide motivations and a methodology in Section 2. Section 3 then 
provides the detailed results of five case studies where we demonstrate that 
the approach is not only feasible but also yields low stubbing complexity test 
orders. Section 4 concludes and outlines future research. 

2. APPLYING GENETIC ALGORITHMS TO THE TEST 
ORDER PROBLEM 

We first provide some motivations that lead us to select Genetic 
Algorithms over alternative approaches (Section 2.1). We then go into 
presenting an overview of the relevant, fundamental principles we will be 
using in the remainder of the paper (Section 2.2). We then go into describing 
how we tailored Genetic Algorithms to our specific problem and report a 
procedure to use them to devise low stubbing complexity test orders 
(Section 2.3). 

2.1. Motivations 
We first discuss the integration order problem in more depth. We then 

discuss why it is difficult to adapt existing graph-based algorithms to 
accommodate our needs in determining test orders and then justify why 
Genetic Algorithms seem to be a good alternative to investigate. 

2.1.1. The Integration Order Problem 

Once classes have been developed and tested in isolation, one important 
problem is to integrate them into a (sub)system. Due to the usual problems 
associated with big-bang integration, classes need to be integrated one at a 
time or, in some cases, in small clusters. A practical question is now to 
define precisely what an optimal integration order actually is. We need to 
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define evaluation criteria to compare orders and find algorithms that can 
identify (near) optimal orders automatically. 

A natural evaluation criterion is the stubbing effort required to integrate 
classes according to a specific order. If an order integrates classes when 
some of the classes they depend on are not yet integrated, the development of 
stubs to substitute for those classes is necessary to perform integration 
testing. It has been observed that such stubbing is error-prone and 
significantly increases the cost of integration testing [2]. 

Existing algorithms that devise class test orders are typically based on 
analyzing dependencies between classes [6, 16, 18, 21, 24]. If there are no 
cycles of dependencies among classes, the problem becomes a simple 
topological sorting issue, a well-known graph theory problem [11], and it is 
then possible to obtain integration orders that do not require the stubbing of 
any class. In the case where dependency cycles can be observed, there is not 
choice but to integrate some classes when certain classes they depend on are 
not yet integrated. This leads to the development of stubs and significantly 
increases the cost of integration testing. In such a situation, we need to devise 
integration orders that minimize stubbing effort. Since such effort cannot be 
directly measured or estimated, we need to resort to indicators. 

Another important point to mention is that, though we focus on ordering 
class integration in this paper, the method we investigate can be applied at 
higher levels of integration. For example, in a very large system, we can 
easily imagine two or more levels of integration. A first level is concerned 
with integrating classes into subsystems, within each sub-team of the project. 
The second level would then address the integration of subsystems into a 
complete system. In large, complex systems, the dependencies among 
subsystems may be complex and show cycles. Those dependencies are 
determined by the public classes within subsystems, which form their public 
interface to other subsystems. 

2.1.2. Graph-Based Solutions are not Satisfactory 

Our previous work considered the number of stubs as an estimator for 
the cost associated with the construction of stubs, that is the number of 
dependencies to break so as to obtain an acyclic class dependency graph, and 
then applying topological sorting to obtain an integration test order. As a 
consequence, the problem was a graph-searching problem and was solved 
using typical graph algorithms. Basically, the proposed solutions in [6] and 
[21] consist in recursively identifying strongly connected components (SeC) 
and then, in each see, removing one ~ependency that maximizes the 
number of broken cycles. These solutions consider two distinct but simple 
cost functions to select the dependency to break at each recursion step, but 
they share the commonality of always optimizing their choice of 
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dependencies to break at a given stage of recursion, without determining the 
consequences on the ultimate results (i.e., they are both a greedy algorithm). 
We will see next how this becomes a serious limitation in the context we 
stated in Section 1. 

Let us first recall our needs in terms of devising optimal integration 
orders. We already mentioned the coupling associated with client-server 
dependencies, for which we can provide several complementary and 
alternative measures, e.g., number of calls made by the client class to the 
server class, number of distinct methods invoked. If such coupling is 
accounted for, we may find ourselves in a situation where, for instance, 
breaking two dependencies has a lower cost (i.e., coupling) than breaking 
only one dependency that would make the graph acyclic in one step. 
Furthermore, we would like to consider constraints, due to organizational or 
contractual reasons, which would then result into some classes not being 
available (developed and tested) before others during integration. In practice, 
such situations constrain the optimal ordering solution we are searching. 

Given the above requirements, adapting the previous graph-based, 
stepwise strategies seems difficult or even impossible. The cost functions we 
are minimizing here (see Section 2.3.2) are highly non-linear and are likely 
to present many local minima in which a stepwise algorithm may get stuckI. 
Consequently, using coupling information in the cost function would require 
the identification, in each SCC, of all the subsets of breakable dependencies 
(e.g., pairs, triplets) that would make the graph acyclic and the determination 
of their associated cost to select an optimal solution. This is not a viable 
solution for any realistic class diagram. 

Similarly, when using a stepwise search algorithm, it is difficult to 
determine whether breaking a dependency at a given step will not lead to 
orders, at subsequent steps, that will transgress some of the constraints which 
limit our search. 

2.1.3. Moving to Genetic Algorithms 

The solution space to our problem is the set of all possible test orders for 
a given system. So our solution is represented as an order (or at least a 
partial order) of classes and optimization means, in our context, searching 
for an order that minimizes a cost function. This cost function will be 
described in detail below but, based on our objectives, it is clear that it will 
be based on measuring dependencies/coupling between client and server 
classes and will consist in minimizing such coupling while breaking 
dependencies to remove cycles. In short our problem is a constrained, multi
objective optimization problem as it may involve a number of coupling 
measures. 
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Genetic algorithms (GA's) are a specific type of optimization techniques 
that are based on a set of heuristics and involve a non-trivial and careful 
setting of a number of parameters. The basic principles that are relevant to 
our problem will be summarized in the next section. In our context, one of 
their interesting characteristics is that they prevent the optimization search 
from getting stuck into local minima and this is why they are often referred 
to as global optimization techniques. GA's are also known to help solve 
complex, non-linear2 problems that often lead to cases where the search 
space shows a curvy, noisy "landscape" with numerous local minima [14]. 
However, as they are based on heuristics there is no guarantee they will find 
the absolute, global minimum. 

A category of GA's is designed to address so-called routing or 
scheduling problems [8], which is very much related to our integration test 
order problem. A typical example is the Traveling Salesperson Problem 
(TSP) where N towns are distributed around a two dimensional Euclidian 
space. The salesperson is assumed to traverse all the N towns, starting with 
an initial one and getting back to it in the end. The problem is to minimize 
the distance (cost function) covered by the salesperson while achieving this 
objective. The representation of the problem is also an order, more precisely 
a sequence of towns being traversed. Though there are significant differences 
between our problem and the TSP, we can see that it is analogous since it 
looks for an optimal order minimizing a cost function. Furthermore, reported 
examples of scheduling and routing problems (e.g., [28]) suggest that GA's 
provide satisfactory results. The most important differences between our 
integration order problem and the TSP problem mainly stems from our cost 
function: 

• In the TSP, if the order places A before B or vice-versa, the cost is the 
same as it is the distance between the two towns. This is not the case in 
our context where one solution may entail a stub whereas the other one 
does not. 

• Similarly, since the distance is the cost in the TSP, the triangle inequality 
holds where the distance of ABC is equal or larger than that of AC. Such 
inequality has no reason to hold in our context. 

Those differences could have significant impact on the ability of the GA 
to converge towards an optimal solution and this further justifies the need to 
perform case studies to assess the ability of GA' s to solve the integration test 
order problem. Another difference with the TSP problem is the fact that we 
will need to find an optimal solution under constraints specifying whether 
orders are acceptable or not. Section 2.3.3 shows how this can be practically 
achieved with GA's. Furthermore, it is interesting to note that, though 
deterministic algorithms to compute near-optimal tours in the TSP problem 
have been proposed [19], the differences above prevent us from using them. 
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Another practical motivation to use GA's is that commercial tools have 
reached a high level of maturity and provide convenient features for solving 
real-scale problems. This is further discussed in Section 3.1. 

2.2. Fundamental Principles and Application to Scheduling 
Problems 

A Genetic Algorithm (GA) is an optimization technique that has the 
ability to find a global optimum, and avoid getting stuck in a local optimum. 
However, finding the global optimum is not guaranteed as GA's are based on 
heuristics. Therefore, for each new problem to be solved, it is necessary to 
investigate empirically how GA's perform in representative situations. A GA 
allows an initial population composed of many solutions to the problem 
stated (called chromosomes) to evolve under specified selection rules to a 
state that optimizes (say, minimizes for the rest of this discussion) a cost 
function. The parameters involved in the cost function one wants to 
minimize are first encoded into a chromosome (e.g., a chromosome can be 
seen as an ordered list of parameter values). There are several possible 
encoding strategies to specify how a solution is represented and their 
adequacy depends on the problem under consideration (e.g., continuous 
function optimization or order optimization). In all cases a chromosome is 
composed of a number of genes. When the initial population evolves from 
one generation to the other, the best chromosomes are preserved whereas the 
others are discarded to make room for the new offspring(s). This emulates 
natural selection that keeps the best-fitted individuals. New offsprings are 
produced using an evolution operator, named crossover, so as to keep the 
same number of individuals in the next generation. A crossover produces two 
new chromosomes that share part of the genes coming from two of the best 
chromosomes in the original population. Another operator, called mutation, 
affects the population by mutating some of the genes of the chromosomes. 
These operators allow the algorithm to leave the area, in the solution space, 
of a minimum that may tum out to be local. Though the overall principles 
make sense, a number of questions arise in practice: 

• What is an adequate encoding for the problem? 
• What are possible crossover and mutation operators, which are adapted 

to the selected encoding? 
• What is the rationale for the use of specific crossover and mutation 

operators? 
• What should be the size of the initial population? 
• What should be the number of best-fitted chromosomes kept from one 

generation to the other? 
• How do we consider we have obtained an acceptable solution? 
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Let us now consider our integration test problem and answer these 
questions in context. Recall we need to determine an order of class 
integration that is optimal in the sense that it minimizes stubbing complexity 
(our cost function). The first step is to decide how to encode the solution to 
our problem. It seems natural in our case to select a permutation encoding: 
Every chromosome is a string of class labels. For a set of classes {A, B, C, 
D}, a possible chromosome is the sequence (B C A D): The population from 
which new generations are generated is a set of such chromosomes, e.g., {(B 
C A D), (B C D A), ... }. 

Recall that in the context of GA's, crossover and mutation operators 
need to be performed on the original population and subsequent generations 
until we believe we have obtained an acceptable (possibly optimal) solution. 
Those operators are specific to permutation encoding as they need to ensure 
that correct sequences are produced, that is sequences with strictly one 
occurrence of each class. Mutation is implemented by selecting two classes 
and swapping their positions in the chromosome. For example, highlighting a 
randomly selected pair of genes (classes in our test order), (B C D A) is 
mutated into (B DCA). Crossover is a more complex operator and several 
crossover operators have been proposed in the literature for permutation 
encoding [13]. One of them, which is used in our study, is described in [9] 
and works as follows: Genes (classes in our context) are randomly selected 
from a first parent chromosome (test order), their places are found in the 
other parent, and the remaining genes are copied into the first parent in the 
same order as they appear in the second parent. This preserves some of the 
sub-orderings in the original parents while creating some new sub-orderings. 
For example, if we assume the following two parent chromosomes: 

Parent 1: (A BCD) 

Parent 2: (D C B A) 

If we further assume that A and C are selected in the first parent, we 
produce a first child chromosome as follows: 

• We obtain (A - C -), where A and C have been selected and '-' are gaps; 
• We fill in the gaps with Band D in the order they are encountered in 

parent 2 and obtain (A D C B). 

GA's also require that a number of parameters be set. The first one is the 
population size. It has an impact on the speed of the GA convergence 
towards an optimal solution and its capability to avoid local optima. Larger 
population sizes increase the amount of variation present in the initial 
population at the expense of requiring more cost function evaluations and 
longer execution times. Typical population sizes in the literature range 
between 25 and 100 [1]. However, for longer chromosomes and challenging 
optimization problems, larger population sizes are needed to ensure diversity 
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among the chromosomes and hence allow a more thorough exploration of the 
solution space. In the context of integration orders, the population size will 
consequently be driven by the number of classes in the class diagram. As a 
heuristic, having a population size of two or three times the number of 
classes should be sufficient. 

Another parameter is the crossover rate, that is the probability that a 
chromosome will undergo a crossover. Typical rates in the literature for the 
TSP range from 0.5 to 0.6, consistent with De Jong's simulation results [10]. 
He reported that, on a number of different optimization problems, simulation 
results suggested that a crossover rate of roughly 0.6 was a good compromise 
between a number of performance measures. 

Mutation prevents the GA search to fall into local minima, but they 
should not happen too often or the search will converge towards a random 
search. The mutation rate is defined as the probability for a chromosome to 
undergo a mutation. Typically, for the TSP, the literature reports rates around 
0.15. Recent theoretical work provides a rule of thumb of liN, where N is the 
number of genes in the chromosomes [1]. [27] argue that for more complex 
encoding, such as order encoding, high mutation rates can be both desirable 
and necessary. 

2.3. Tailoring and Application Procedure 
In this section, we present how the Genetic Algorithm was parameterized 

based on the specifics of our study and results reported in the literature. We 
then define what cost functions will be minimized and how we proceed to a 
priori restrain our search space. 

2.3.1. Parameter Settings 

We selected a mutation rate of 0.15, consistent with the literature on the 
TSP. We also tried 0.05 and 0.1, to be more in line with the lIN heuristic 
stated above, but it did not make any significant difference. Regarding the 
crossover rate, we tried both 0.5 and 0.6, noticing no significant difference 
and decided to pursue the experiments with 0.5. Our population is made of 
100 chromosomes, this being the largest population size in most case studies 
in the literature and far larger than the number of genes in the chromosomes 
of our case study (Section 3). 

Last, we allow for 500 trials to converge towards an optimal result. 
Preliminary experiments using larger numbers showed that this was 
sufficient to converge, thus saving us significant computation time. A related 
point to mention is that we use steady-state replacement strategy [9]: A large 
proportion of the chromosomes in a population should survive to the next 
generation. The underlying rational is that we should ensure we preserve the 
best-found solutions in the next generation. In our particular case, one 
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chromosome (the worst one) gets replaced at each trial after two parent 
chromosomes are selected (the best-fitted chromosomes are more likely to be 
selected) and an offspring is generated by performing crossover and mutation 
operations on them, as described in Section 2.2. Note that we use the term 
best-found to denote the best result obtained with GA's. Since they make use 
of search heuristics, there is no guarantee to obtain the optimal order, which 
remains unknown. We also sometimes refer to sub-optimal orders to mean 
results that are less satisfactory than the best-found order. 

2.3.2. Measuring Stubbing Complexity 

A number of dependencies can be found between classes in a UML class 
diagram. Compositions and inheritance relationships are considered 
unbreakable in our strategy as, according to our heuristic, breaking them 
would likely lead to complex stubs. Such relationships usually entail tight 
dependencies between the client/parent and server/child classes [6]. For 
remaining dependencies, that is associations, simple aggregations, and usage 
dependencies, we compute a complexity based on the level of coupling they 
involve. In this paper, we measure coupling in two simple, intuitive ways: 

A (Dependency): The number of attributes locally declared3 in the target 
class when references/pointers to instances of the target class 
appear in the argument list of some methods in the source class, 
as the type of their return value, in the list of attributes (data 
members) of the source class, or as local parameters of methods. 
This complexity measure counts the (maximum) number of 
attributes that would have to be handled in the stub if the 
dependency were broken. 

M(Dependency): The number of methods (including constructors) 
locally declared3 in the target class which are invoked by the 
source class methods (including constructors). This complexity 
measure counts the number of methods that would have to be 
emulated in the stub if the dependency were broken. Note that 
this is an approximation as some of the methods can be 
overridden. 

More measures could be defined in the future [4], but those two 
measures are enough to illustrate the benefits of our approach. Based on the 
two measures AO and MO, we can then define a cost function to be 
minimized by the GA. We define the complexity of a dependency as being 
the geometric average of all complexity measures, i.e., AO and MO in the 
current example. However, before we compute such an average we need to 
make sure the resulting complexity is not sensitive to the measurement units 
of each complexity measures. For examples, if the number of methods tend 
to be on average higher than the number of attributes, MO will have a larger 
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weight than AO in the total complexity of a dependency, though this was not 
originally intended. To address this issue, we normalize AO and MO so that 
their range is between 0 and 1. In mathematical terms, for a measure CpixO, 
we compute its corresponding normalized measure CplxO. If we assume 

that complexity information is represented as a matrix Cplx(i,j) where rows 
and columns are classes and i depends on j, we have to compute Cplxmin = 
Min{Cplx (i, j), i, j = 1,2, ... } and Cplxmax = Max{Cplx (i, j), i, j = 1,2, 
..... } and then perform the following computation: 

Cplx(i,j) = Cplx(i,j)/ 
/ Cplxmax - Cplxmin 

For the two complexity measures we define here, the minimum of 
complexity value is 0 and the equation can be simplified: 

C I ( .. ) - CPIX(i,;%) p Xl,; - C I 
P Xmax 

Then, based on AO and MO, the overall stubbing complexity SCplx(i,}), 
for a dependency linking a pair of classes (i,}) , can be computed as a 
weighted geometric average of the normalized measures: 

SCplx(i,j) = (WA . A(i,j)2 + WM .M(i,j)2)1/2 

where WA and W M are weights and W A + W M= 1. 

For a given test order 0, a set of d dependencies (i.e., denoted above as 
pairs of classes) to be broken is identified and an overall complexity can be 
computed for the order as: 

d 

OCplx(o) = ISCplx(k) 
k=l 

The measure OCplxO is the cost function we try to minimize by using 
GA. Fully defining such a cost function requires the determination of 
weights for all complexity measures involved, e.g., WA and WM. On the one 
hand, those weights allows the user to tailor the cost function to its own 
intuitions about the kinds of complexity that have more bearing on stubbing 
effort. On the other hand, this is difficult as setting such weights is a 
subjective task. This is further discussed in Section 3.4 based on the results 
presented in Section 3.3. 

2.3.3. Constraints 

Recall that, according to our strategy, Inheritance and Composition 
dependencies cannot be broken. This means the base/container classes must 
precede child/contained classes in any order that is generated by the GA. In 
other words, we must optimize the integration order under certain 
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constraints. As we will see, many GA tools such as Evolver [23] allow for 
the specification of a precedence table where the conditions for a new 
offspring to be acceptable are specified under the form of a partial order. If 
after applying crossover and mutation operators to selected parent 
chromosomes an offspring does not fulfill the constraints in the precedence 
table, the tool backtracks and a new offspring is re-generated until it 
conforms with the precedence table. The details of such backtracking 
algorithms vary from tool to tool and are usually proprietary. 

Another important set of constraints comes from the fact that we only 
accept breaking Association and Usage dependencies that are part of at least 
one dependency cycle. Integration orders that do not fulfill such constraints 
are by definition suboptimal. In our previous work where graph-based 
approaches were explored for optimizing test orders [6], we used Tarjan's 
algorithm [25] to detect strongly connected components (See's) in the graph 
formed by classes and their dependencies. This algorithm can be used again 
here to detect see's and only dependencies between classes part of at least 
one see should be considered for breaking by the GA. While this type of 
constraints is in theory not required by the GA to converge towards optimal 
orders we have observed that the speed of convergence significantly 
increased by doing so (less generations and execution time). The constraints 
turned out to be a very effective way to constrain the search space and 
improve the effectiveness of the GA heuristics. 

Another interesting source of constraints comes from the use of design 
patterns in the class diagram. Let us take as an example the state design 
pattern [12], which is typically used to design classes with a state dependent 
behavior. The context class, whose state is being modeled, is related through 
an aggregation relationship to an abstract class State (see Figure 1). Every 
time the context class receives a message, its state is likely to change, thus 
requiring a message being sent to an instance of one of the subclasses of 
State. In tum, the subclasses instances may invoke action methods (e.g., 
Actionl) in the context class. In this situation, even if the aggregation is a 
candidate for breaking when involved in a cycle, it does not seem reasonable 
to separate the test of classes Context and State during integration testing. 
Though this needs to be further studied, similar conclusion can be drawn 
when using other design patterns. 
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Figure 1. State Design Pattern. 

In practice, yet another source of constraints stems from the availability 
of personnel or other development resources (e.g., off-the-shelf or 
outsourced software). The integration order is going to drive the 
development order as classes and subsystems need to be ready and tested 
when they are to be integrated. For example, though according to some 
optimal integration order some classes need to be developed before others, 
no personnel with suitable skills may be available and, therefore, such an 
integration order is simply not applicable. So it is important that such 
practical considerations be taken into account when finding optimal 
integration orders as they may playa key role in determining their feasibility. 

All constraints, regardless of their source, may easily be accounted for 
when using GA tools through the use of precedence table and backtracking 
mechanisms. 

3. CASE STUDIES 
We describe in the first subsection our five case studies. Due to space 

constraints, details on how we reverse-engineered the class dependencies, 
and the coupling values, from the corresponding Java source code are not 
included in this article. The reader is invited to read the detailed descriptions 
provided in [5]. Such detailed information regarding the reverse-engineering 
of the ORDs (e.g., how to identify usages) was not provided in [20], thus 
preventing us from comparing their results regarding the use of Genetic 
Algorithms with ours. Results are then reported in the next subsection. For 
the five case studies, class diagrams and corresponding relationship tables, 
dependency matrices, precedence tables, coupling matrices, as well as some 
sample orders for each cost function on which are based the results below are 
not reported here but can be found in [5]. 

3.1. Design of Case Studies 
The first system is an Automated Teller Machine (ATM) simulation (the 

classes connected to hardware devices are missing). The class diagram is 
made of 21 classes and 67 relationships, and contains 30 cycles4 involving 8 
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of the 21 classes. The second system, named Ant, is part of the Jakarta 
project (http://jakarta.apache.org). Ant creates and maintains open source 
solutions on the Java platform for distribution to the public at no charge. The 
Ant system is a Java based build tool similar to the make tool on Unix 
platforms: It maintains, updates, and regenerates related programs and files 
according to their dependencies (e.g., compilation units). The class diagram 
consists in 25 classes and 83 relationships, and contains 654 cycles involving 
12 of the 25 classes. The third example, named SPM (Security Patrol 
Monitoring), is a course project implemented by a graduate student at 
Carleton University. This system monitors security zones (e.g., authorized 
entry/exit) and patrols (e.g., schedules). The class diagram consists in 19 
classes and 72 relationships, and contains 1,178 cycles involving 15 out of 
the 19 classes. The fourth example, BCEL (Byte Code Engineering Library), 
also comes from a subproject of Jakarta Project, and is intended to give users 
a convenient tool to analyze, create, and manipulate binary Java class files. 
We used the org.apache.bcel.classjile package of version 5.0 as our example 
(http://jakarta.apache.orglbcellindex.html). The class diagram is made of 45 
classes, and 294 relationships, and contains 416, 091 cycles involving 41 out 
of 45 classes. The last application system, named dnsjava or simply DNS in 
this article, is an implementation of Domain Naming System in Java: i.e., it 
provides network naming services (http://www.xbill.org/dnsjaval). The DNS 
class diagram consists in 61 classes and 276 relationships, and contains 16 
cycles involving 10 out of 61 classes. 

These five application systems5 were chosen because they were deemed 
to be of sufficient size and of varying complexity, so as to assess the 
effectiveness of the GA-based approach. ATM, Ant, SPM, and BCEL have 
class diagrams of reasonable (and comparable) sizes (between 19 and 45), 
but with very different numbers of cycles (from 30 for ATM to 416,091 for 
BCEL). On the other hand, the DNS system has the most important number 
of classes (and almost the same number of relationships as BCEL), but the 
smallest number of cycles (fewer number than ATM, Ant, and SPM)! This 
shows the topography of class diagrams can vary a great deal across 
application systems. Further details about the systems are provided in Table 
1. 
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System Usages 
Associations & Compositions Inheritance 
Aggregations 

ATM 39 9 15 4 
Ant 54 16 2 11 
SPM 24 34 10 4 

BCEL 18 226 4 46 
DNS 211 23 12 30 

System Classes Cycles #LOC 
ATM 21 30 1390 
Ant 25 654 4093 
SPM 19 1178 1198 

BCEL 45 416,091 3033 
DNS 61 16 6710 

Table 1. Detailed Information for the Five Case Studies. 

Figure 2 provides coupling distributions, for both our attribute and 
method measures, for the five case studies, under the form of histograms: the 
y-axis indicates the number of breakable relationships (i.e., UML 
associations, aggregations and use dependencies) that have the (attribute or 
method) coupling value indicated on the x-axis. These coupling distributions 
are summarized in Table 2 by means of ranges and average values. 

Attribute Coupling Method Coupling 
Range Average Range Average 

ATM [1, 13] 6.15 [0,7] 1.79 
Ant [0, 31] 8.36 [0, 14] 2.52 

SPM [1, 16] 7.53 [0, 8] 2.33 
BCEL [0,20] 1.89 [0, 7] 1.52 
DNS [0, 12] 3.36 [0, 1O] 1.46 

Table 2. Coupling Summary for the Five Case Studies. 
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Figure 2. Coupling (Attribute and Method) Distributions for the Five Case Studies. 
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Though the number of classes involved in the 5 selected systems may 
seem modest by comparison with some of the systems that are commonly 
developed across the software industry, recall that in large systems the 
strategy we describe in this article would be used at different levels of 
integration, in a stepwise manner. For example, the GA algorithm would first 
be used to integrate classes into lower-level subsystems and then lower-level 
subsystems into higher-level subsystems, step by step until the system is 
entirely integrated. It is then unlikely that a given subsystem contains more 
than a couple hundred classes or more than a few dozens lower-level 
subsystems. Note that in the case where lower-level subsystems are 
integrated, the GA technique presented here are also required and used in the 
same manner, based on a dependency graph which nodes are subsystems and 
which dependencies are reflecting the dependencies of the classes they 
contain, focusing exclusively on those that cross subsystem boundaries. 

3.2. The Application of Genetic Algorithms 
The first question we want to investigate is whether GA's, as 

parameterized in this paper, work as well as graph algorithms such as the 
ones described and experimented with in [6, 7]. More precisely, we want to 
compare results produced by GA's with results produced by the graph-based 
solution described in [6], which has been shown to be the best graph-based 
approach in [7] (by means of analytical and empirical evaluations). So we 
define the cost function as the number of dependencies to be broken (D) in a 
given test order and run the GA 100 times. Since such an algorithm is a 
heuristic, the results may differ from run to run and we therefore check the 
percentage of times the algorithm converges towards the orders using the 
graph-based search algorithm. This question is important as it is a 
preliminary but necessary validation of the approach we describe in this 
paper. 

The second question we investigate is related to the use of coupling 
measurement in the cost function (OCplx), as described in Section 2.3.2. We 
want to know whether such measurements make a significant difference in 
terms of the test orders that are generated, as compared to the orders we 
obtain with the graph-based algorithm. To answer this question, we compare 
the orders produced by each of the following cost functions: 

• Only the number of broken dependencies is used as a cost function: 
SCplx(i,j) E {0,1}, depending on whether i depends on) or not. 

• Attribute and Method coupling are used in tum as the cost function: 
SCplx(i,j) = A(i,j), and SCplx(i,j)=M(i,j). 

• A weighted geometric average of attribute and method coupling (Ocplx) 
is used in the definition of SCplx. 
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In other words, these four cost functions are used in tum to produce sets 
of orders on which we compute the values of the three other functions. If we 
observe significant differences in OCplx (order stubbed complexity) when 
only the number of dependencies is used as a cost function and when OCplx 
itself is used, then we can conclude that using coupling measurement may 
lead to significantly different test orders, involving less coupling and 
hopefully leading to lower integration test expenditures. Furthermore, if 
using OCplx as a cost function leads to test orders which are a reasonable 
compromise between the number of broken dependencies and their 
corresponding number of attributes and methods, then we can conclude that 
cost functions as defined in OCplx can be useful to achieve practical test 
orders in the context where one has multiple optimization objectives, as 
captured by the coupling measures. To address the latter question, we must 
compare the results obtained with a weighted geometric average and those 
obtained when using Attribute and Method coupling alone as cost functions. 
Such a comparison tells us whether a normalized, weighted average used as a 
cost function can achieve results that are close to the best-found values6 of 
broken dependencies, Attribute coupling, and Method coupling. 

Furthermore, since GA' s are based on heuristics, it is important we 
investigate the reliability and repeatability of the results we obtain. Ideally, 
we would also like to know how far the minima we find are from the actual 
global minima, which are unknown. This is unfortunately impossible, unless 
we use simplistic examples. But in light of the complexity of the systems we 
use as case studies, we may be able to assess whether the results we obtain 
are plausible and likely to be close to actual global minima. 

In order to automate our study, we used a commercial tool: Evolver 4.0 
[23]. The choice of tool was made based on a number of criteria. First, we 
needed the tool to handle permutation encoding. Second we needed to be 
able to handle possibly large numbers of classes and we needed to make sure 
the number of genes in the chromosomes could be large enough as many 
tools have limitations with this respect. Similar requirements for the 
maximum size of populations had to be considered since when the number of 
genes grows, one needs to generate larger populations. Other practical 
features included the random generation of initial populations (in such a way 
that the diversity of chromosomes is ensured) and the graphical display of 
the average and minimum cost function value from generation to generation. 
The latter allows the user to stop the production of new generations when no 
noticeable improvements can be observed over a sequence of generations. 
Last, a feature that appeared more and more important over time was the 
possibility of specifying constraints defining acceptable orders and 
backtracking mechanisms to account for those constraints when generating 
new chromosomes. 
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3.3. Results 

3.3.1. The ATM System 

We ran the search algorithm 100 times with D as the cost function and 
found that, in every case, we obtain the best order found with our graph
based search algorithm [7]: 7 dependencies are broken and stubbed. This 
suggests that, under similar conditions, GA's can perform as well as 
deterministic algorithms. This result is of course dependent on the way we 
tailored and parameterized the algorithms. 

Table 3 summarizes the overall results we obtain: Columns represent the 
different ways to measure stubbing complexity, in terms of broken 
dependencies and stubbed methods and attributes, whereas rows show the 
different cost functions that can be minimized using GA's, as described in 
Section 2.3. Highlighted cells show the cases where minimal OCplx values 
are obtained. In some cases, intervals are shown as, as expected, the results 
are not always consistent across the 100 executions of the GA. We also 
provide, below the interval, the mean and median values. 

From Table 3, we can notice that the best result is consistently obtained 
for each cost function (no interval). When D is used as the cost function, the 
number of dependencies broken is the best (7), but this is not systematically 
the case for the values of A, M, and OCplx which are going up to 67, 19, and 
4.18 instead of their best-found values of 39, 13, and 2.68, respectively7. 
Therefore, when using the number of dependencies broken as a cost function, 
we frequently obtain orders that are significantly suboptimal in terms of 
attributes and methods stubbed. As we will see next, this can be fixed by 
accounting for both A and M in the cost function, which leads to orders that 
are systematically the best. When the cost function is M, we systematically 
obtain the best-found value for M (13) and the number of dependencies, but 
not for A (and OCplx). When the cost function is A, we systematically obtain 
the best-found value for A (39) and the number of dependencies, but not for 
M (and OCplx). 

When using OCplx, with WM=W A=0.5, as the cost function, we obtain 
best-found orders in terms of dependencies, methods, and attributes. Though 
we may have been lucky in this example, this result suggests that such cost 
functions, where all coupling measures are given an equal weight and a 
geometric average is computed, may be a useful, practical means to achieve 
a reasonable compromise among multiple objectives, as formalized by the 
coupling measures. 
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Stubbing omplexity Values 
0 A M OCplx 

D 
7 [39-67] [ 13-19] [2.68-4.18] 
- 53,53 19,16.72 3.44, 3.47 

(OCplx, W A=l) 
7 39 [13-19] [2.68-2.98] 
- - 19,17 2.98, 2.88 

M (OCplx, WM= I) 
7 [46-67] 13 [2 .98-3 .88J 

- 61,62.8 - 3.61,3.7 
Ocplx, WA= 7 39 13 2.68 

WM=O.5 - - - -

Table 3. Summary of Results for the ATM. 

3.3.2. The Ant System 

We followed the exact same procedure to experiment with the Ant 
system, which is more complex. Results are summarized in Table 4. This 
table has the same structure as Table 3 but one important difference is that, 
due to the increase in complexity, we do not consistently obtain the best 
orders for any of the cost functions. Each cell therefore contains the interval 
of values we obtain across 100 GA executions. Average and median values 
are also provided below the intervals. 

Results show that values for D are always close to the best-found value 
(10, the minimum determined by the GA and the graph-based algorithm), 
regardless of the cost function selected. The results in terms of number of 
attributes (A) are obviously very good when A is the cost function but also 
when a weighted function of A and M (OCplx with W A==WM==O.S) is used 
(this is highlighted in Table 4 with dark gray cells). However these two 
functions perform poorly in terms of methods (M) . With respect to M, results 
are best when using M or D as cost functions (see light gray cells in Table 4), 
and these two functions produce poor results in terms of attributes (A) and 
the weighted stubbing complexity function (OCplx). 
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D 

Ocplx, WA= 

WM=O.5 

D 
[10-13] 

11,10.98 
[12-14] 

12,12.27 
[10-14] 
13, 12.5 
[12-14] 

12, 12.16 

tubbing om lexity Values 
A M 

[152-274] [19-32] 
187,192 26,24.68 

[131-137J [29-37] 
131 132.7 33,32.7 
[163-235] [19-26] 
197 204.4 22, 21.67 
131-143J [29-35] 

136, 136.25 29,29.45 

Table 4. Summary of Results for the Ant. 

What we can conclude is that the results when using OCp/x as a cost 
function seem to be mostly driven by A. Though using OCp/x leads to very 
good results in terms of D and A, they are also significantly different from 
the best-found value with respect to M. After investigating the reasons in 
more depth, we have come to realize that orders that minimize M (in the [19-
26] range) tend to break large numbers of relationships that are associated 
with the maximum number of attributes arid therefore dramatically increase 
A. Recall from Figure 2 that the attribute coupling distribution for Ant 
showed a cluster of 12 extremely large values, far above most of the other 
relationships. No such pattern was observed for method coupling or attribute 
coupling distributions of the ATM. We can therefore understand that any 
order breaking such relationships is unlikely to be optimal when using OCp/x 
as a cost function, even though we normalize and account for A and M with 
the same weight. In other words, due to the distributions of attribute coupling 
in Ant, OCp/x is strongly driven by A, and optimizing M systematically leads 
to significantly poorer results with respect to A. Using OCp/x yields good 
results with respect to D and A, but leads to a [29-35] range (with a 29 
median) for M, instead of the [19-26] range (with a 22 median) we obtain 
using M as a cost function. Whether this is an acceptable compromise among 
the multiple objectives of our optimization (D, A, M) is a subjective call. 
What we can say objectively is that using OCp/x (W A=WM=O.5) is still a 
compromise. This is not visible when looking at the intervals but is very 
clear when looking at the distributions of M values in Figure 3. Figures (a), 
(b) and (c) show the distributions when M, A, and OCp/x are used as a cost 
function, respectively. The latter is clearly a compromise between the first 
two cases. 
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Figure 3. M Distributions when the cost function is M, A and Ocplx. 

Another interesting point is that, because Ant is much more complex 
with respect to dependencies and cycles than the A TM system, we do not 
systematically obtain the best results across the 100 GA executions. 
However, we see that for best-found results (e.g., AE[131-143] where the 
cost function is OCplx), intervals are also narrow. This implies that the 
variations observed in the outputs of the GA executions do not hamper its 
practical use as the orders obtained differ little in terms of stubbing 
complexity. Furthermore, we have observed that if the GA is executed a 
small number of times (say 10), we are very likely to obtain the minimal 
bound of the interval at least once. This is illustrated by Figure 4 where the 
distribution of OCplx values is shown for the 100 executions of the GA with 
OCplx as a cost function. We see that though the interval is [3.59-3.93], the 
minimal bound is very likely to occur. 
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Figure 4. Distribution ofOCplx across 100 GA executions for the Ant system. 

When results significantly differ from the best-found values (e.g., 
AE[163-235] when the cost function is M), intervals tend to be significantly 
larger as well, thus creating more uncertainty in the results the GA may 
produce. 

To conclude, we see that the results for Ant are not as clear-cut as for 
ATM. This is to be expected due to the higher complexity of Ant and is also 
explained by the specific pattern of dependencies within Ant that makes it 
difficult to fully optimize M and A within the same order. Despite those 
differences, GA' s still appear to be useful to achieve compromises between 
D,A,andM. 

3.3.3. The SPM System 

Like in the Ant system, we do not consistently obtain best-found orders 
for any of the cost functions. As shown in Table 5, each cell therefore 
contains the interval of values we obtain across 100 GA executions. Average 
and median values are also provided below the intervals. 

Results show that test orders with anyone of D, A, M and OCp/x as the 
cost function bring all evaluation criteria near the best-found values. This is 
just a coincidence as the attribute coupling matrix and the method coupling 
matrix are independent of each other. 

It may seem strange that test orders with D as the cost function are even 
worse than those with A as the cost function when the number of broken 
dependencies is evaluated. It may also seem strange that test orders with M 
as the cost function are slightly worse than those with OCp/x when the 
number of stubbed methods is evaluated (this is highlighted in gray cells in 
Table 5). Deriving test orders optimizing A happens to exclude a small 
number of test orders which are sub-optimal for D but which are sometimes 
produced when using D as the cost function. Likewise, deriving test orders 
optimizing OCp/x happens to exclude a small number of test orders which 
are SUb-optimal for M. 
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A (OCplx 
W A= l) 

M (OCplx, 
WM= l) 

OCplx, WA= 
WM=O.5 

D 
[ 16-20] 

16.76, 16 
[ 16-17] 

16.07,16 
[16-21] 
17,4, 17 
[16-18] 

16.94,17 

tubbing Complexity Values 
A M 

[146-232] [27-47] 
161.88, 149 30.34,28 
[146-167] [26-31 ] 

148.32, 149 27.63,28 
[ 146-227] [26-37] 

158.36,151 27.72,27 
[146-169] [26-30] 
150, 151 26.74, 27 

Table 5. Summary of Results for the SPM. 

3.3.4. The BeEL System 

OCplx 
[5.82-9.02] 
6,42,5.95 
[5 .77-6.57] 
5.91,5.95 
[5.77-8,48) 
6.15, 5.9 

(5.77-6.52) 
5.87,5.9 

Once again, with the BCEL system, we do not consistently obtain the 
best-found orders for any of the cost functions. Each cell therefore contains 
the interval of values we obtain across 100 GA executions. Average and 
median values are also provided below the intervals (Table 6). 

Results show that GA generated orders are close to the best-found orders 
for both D and M when D or M is used as the cost function. However, the 
results also show that GA generated orders for both D and Mare 
comparatively poor when A is used as the cost function. It seems that orders 
that minimize the number of broken dependencies are likely to minimize the 
number of stubbed methods and vice versa. However, they yield significantly 
more attributes to be stubbed than those using A as the cost function. 
Furthermore, orders that minimize the number of stubbed attributes are not 
optimal with respect to D and M. This is also the reason why the orders 
determined by the A, D and M cost functions cannot minimize OCplx. Unlike 
the Ant example, the results when using OCplx as a cost function do not 
seem to be driven by any single coupling measure. But even then, using 
OCplx leads to reasonably good results in terms of every other coupling 
measure. Like in the Ant example, after investigating the attribute coupling 
and method coupling distributions (Figure 2), we find that there are more 
relationship clusters with high attribute coupling than those with high 
method coupling. This is why breaking dependencies with M as the cost 
function highly increases the number of stubbed attributes. 
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Stubbing Complexity Values 
D A M 

D [63-70] [101-143] [70-87] 
65.5,65.5 126.7, 127 76.5,76 

A (Ocplx, [71-82] [46-55] [76-105] 
WA=I) 75.1,75 49.0,49 89.6,89.5 

M (Ocplx, [63-72] [49-144] [67-84] 
WM=l) 67.8,68 120.8, 127 74.4,75 

OCplx, WA= [69-77] [46-96] [70-84] 
WM=O.5 72.1,72 56.5,53 78, 77 

Table 6. Summary of Results for the BCEL. 

OCplx 
[8.59-10.28] 

9.2,9.1 
[8.06-10.99] 

9.4, 9.4 
[8.08-10.14] 

8.9,8.9 
[7.56-9.08] 

8.3,8.2 

The intervals for this example are much wider than those found in the 
Ant example for each cost function (e.g., A E [46- 96], OCplx E [7.56-
9.08], and the cost function is OCplx). Once again, the high complexity of 
the system (size, the number of dependency cycles), as described in Table 1, 
introduces more uncertainty in the GA results. 

After investigation of the OCplx distribution when OCplx is used as a 
cost function (see Figure 5), we found that there is a 15% chance that OCplx 
will lie within 5% of the best-found result: [7.56-7.94]. Unlike in the Ant 
system, a larger number of executions (say, 20) is required to achieve a high 
likelihood of obtaining orders near best-found values. Since it takes, for the 
BeEL system, less than 20 minutes for each execution of the GA tool on a 
typical personal computer (500MHz, 128 MB), such a number of executions 
is still acceptable. Recall this system is the most complex, both in terms of 
size and number of dependency cycles. It is also expected that systems of 
such complexity are commonplace in the software industry. 

Of.ru1'lS 
2+---r-......-..................... 

OCpIx 

Figure 5. Distribution of OCplx for the BCEL system. 
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3.3.5. The DNS System 

There are more classes in the DNS system than in any of the other 
systems under study. However, this system has the lowest number of cycles 
among our five examples. Consequently, result distributions tend to be 
narrow, like in the ATM example. Results are summarized in Table 7. Notice 
that the best-found result is consistently obtained for each cost function (no 
interval). When D is used as the cost function, the number of dependencies 
broken is the best (6). However, cost function D yields an increased number 
of stubbed attributes [19-28], while OCplx also increases as it lies within 
[1.47-1.99]. The suboptimal results for A may be explained by the fact that 
the attribute coupling distribution shows more variance than the method 
coupling distribution. Therefore, when using the number of dependencies 
broken as a cost function, we frequently obtain orders that are suboptimal in 
terms of stubbed attributes. As we see next, this can be addressed by 
accounting for both A and M in the cost function, which leads to orders that 
are consistently near the best-found value. The results in terms of number of 
stubbed methods always remain at the best-found value, regardless of the 
selected cost function. By examining the method coupling distribution 
(Figure 2), we find that the result is always the best because method coupling 
values are similar for most relationships. For instance, there are 113 out of 
234 (see Table 1) breakable relationships with method coupling = 1, and 56 
out of 234 breakable relationships with method coupling = O. When the cost 
function is M, we consistently obtain the best-found result for M (11) as well 
as for A and OCplx. When the cost function is A, we consistently obtain the 
best-found result for A (39) as well as for M, but not for D and OCplx. When 
using OCplx as the cost function, we obtain a result close to that of A. This 
suggests, once again, that OCplx may be a useful, practical method to 
achieve a reasonable compromise among multiple objectives, as formalized 
by the coupling measures. 

..... 
'" o 

U 

tu mg Om)Jexlty a ues S bb' C I' V 1 
D A M OCplx 

D 6 [19-28] 11 [1.47-1.99] 
- 23.62,22 - 1.73, 1.64 

A (OCplx, W A=l) [6-7] 19 11 1.47 
6.88,7 - - -

M (OCp1x, WM=l) [6-7] [19-28] 11 [1.47-1.99] 
6.9,7 23.74,22 - 1.74, 1.64 

OCp1x, W A= WM=O.5 [6-7] [19-22] 11 1.47 
6.89,7 19.03,19 - -

Table 7. Summary of Results for the DNS System. 
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3.4. Determining Weights in Ocplx 
We have seen that a practical issue when using a multiple objectives cost 

function is to determine appropriate weights. Equal weights may be adequate 
but higher flexibility may be required in some cases. If the number of 
coupling measures is small it is always possible to perform an exhaustive 
search to determine optimal weights. If the number of coupling measures is 
too large to consider such an option, a practical procedure could be as 
follows: 

1. Run the Genetic Algorithm as parameterized in this paper, using each 
coupling measure (objective) independently as a cost function, in order 
to identify their minimal value for a set of classes. 

2. Assign an equal weight to all coupling measures and use the geometric 
average as the cost function. 

3. Check whether, for each objective (coupling measure), the value of 
OCplx is reasonably close to the minimal value (what is reasonable is of 
course subjective). 

4. If this is the case, keep the weights as they are. If a particular coupling 
measure shows a departure from the minimal value that is deemed too 
large, then increase its relative weight and rerun the Genetic Algorithm. 

5. Repeating this procedure (from 3) will hopefully converge towards 
acceptable values for each coupling measure, thus leading to acceptable 
test order. 

Another possibility is of course to assign weights based on some other 
rationale, that is something that is an estimation (e.g., based on expert 
opinion) of the relative cost of each measurement unit of each coupling 
measure. But it is difficult to envisage at this point how this could be 
achieved. The procedure described above can be automated and helps 
achieve a balanced compromise between all coupling measures, each of them 
representing an optimization objective. 

4. CONCLUSION 
We have shown here that, if we want to use more sophisticated criteria to 

optimize class integration orders, we cannot keep relying on graph-based 
algorithms as described in [6]. As an alternative, we proposed a solution 
based on Genetic Algorithms and coupling measurement that seems to 
address our needs. Coupling measurement helps us differentiate stubs of 
varying complexity and Genetic Algorithms allow us to minimize complex 
cost functions based on such complexity measurement. 

In this paper, we select a specific type of Genetic Algorithms (with 
permutation encoding) so as to fit our application and we assess the results of 
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our strategy on five real application systems of non-trivial size and 
complexity. Results are very encouraging as they consistently show that 
Genetic Algorithms can be used to obtain optimal results in a reliable and 
systematic manner and reach acceptable compromises among multiple 
objectives (i.e., coupling measures). They also provide a lot of flexibility in 
terms of allowing the user to optimize the integration order under constraints. 
This is important in practice as integration orders have an impact on 
development and unit testing orders and the latter may be constrained by 
available resources shared with other projects. 

Results also show that, as dependencies and cycles become more 
complex, Genetic Algorithms tend to produce less consistent results from run 
to run. This is to be expected as they are based on heuristics and those 
heuristics are expected to be sensitive to the complexity of the ordering 
problem to solve. However, the good news is that the variation observed is 
small and, in practice, if the user runs the algorithm a small number of times, 
she is likely to obtain the lower bound at least once and can therefore use it 
as an optimal integration order. Since a run does not take more than a few 
minutes of execution on a typical personal computer (500 MHz), this does 
not pose any practical problem. 

Another limitation to consider is the fact that case studies as the one we 
present here are performed without knowing the actual global minimum, as 
this cannot be derived with problems of such complexity. To alleviate the 
problem, we observe the minimum values when using each coupling measure 
in isolation as a cost function and look at the optimality and consistency of 
the results we obtain when running the Genetic Algorithm a large number of 
times with complex, multi-objectives cost functions. In light of the 
complexity of the case studies (as measured by dependencies and cycles), the 
minima we obtain seem realistic. Furthermore, with respect to the number of 
dependencies that are "broken", we are able to compare our results to those 
of graph-based algorithms and show we consistently obtain (nearly) identical 
results. 

It is worth noting that, though Genetic Algorithms perform as well as 
graph-based algorithms under similar conditions and facilitate the use of 
more complex cost functions (e.g., using coupling measurement), this does 
not make graph-based approaches obsolete. The execution of graph-based 
approaches takes the order of a second on a typical personal computer and, 
as a consequence, may tum out to be very useful if quick results are required 
and simple cost functions are used (e.g., D). The adequacy of a technique is 
context dependent and should be driven by criteria such as the size and 
complexity of the system, the cost function, the time constraints under which 
a solution must be obtained, or the need to account for external constraints to 
devise a test order. 
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Future work encompasses performing large-scale simulations in order to 
confirm the generality of the results we have obtained here with cases 
studies. Other more realistic fitness/evaluation function, as well as other 
constraints (e.g., organizational constraints such as availability of personnel 
or other development resources), can also be investigated. 
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NOTES 
Any small change in the order (e.g., swapping two classes) may have a large 
impact on the cost function. 

2 Linear problems describe cases where the cost function to minimize is linearly 
related to input parameters. 

3 We do not count inherited attributes (and methods) as this would lead to 
counting them several times when measuring the stubbing complexity of an 
order, as described in the OCplx formula below. 

4 We count here the number of elementary circuits [26], i.e., each class appears 
once and only once in each circuit. 

5 We made a conscious effort not to use libraries but application systems, in order 
to use case studies representative of the type of systems on which the techniques 
would typically be used and so as to avoid the peculiar class diagram topologies 
encountered in libraries (e.g., in [20],4 ofthe 6 systems used are libraries and, 
for example, the Java Library shows 8000 cycles that are broken using 7 stubs). 

6 As obtained by the GA, which may not necessarily be the global minimum 
values. Unless otherwise specified, in the reminder of the text, we will use the 
term minimum with this restriction in mind. 

7 These minimum values are also determined from executing the Genetic 
Algorithms iOO times with OCplx, A and M as cost functions, respectively. 
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ABSTRACT 

In today's software industry, design of black-box test cases is a manual 
activity, based mostly on human expertise, while automation tools are 
dedicated to execution of pre-planned tests only. However, the manual 
process of selecting test cases can rarely be considered as satisfactory both 
in terms of associated costs and the quality of produced software. This paper 
presents an attempt to automate a common task in black-box testing, namely 
reducing the number of combinatorial tests. Our approach is based on 
automated identification of relationships between inputs and outputs of a 
data-driven application. The set of input variables relevant to each output is 
extracted from execution data by a novel data mining algorithm called the 
info-fuzzy network (IFN). The proposed method does not require the 
knowledge of either the tested code, or the system specification, except for 
the list of software inputs and outputs. In the paper, we report the results of 
applying the proposed approach to a typical business application program. 

KEYWORDS 
Black-box Testing, Test Reduction, Combinatorial Testing, Input-Output 
Analysis, Info-Fuzzy Network. 

1. INTRODUCTION 

Computer programs are apparently the most complex tools ever built by 
humans since the Stone Age. Like any other tool, whether it is a stone knife, 
a car, or a microchip, software is not guaranteed to work forever and under 
any conditions. Even worse than that, it is not 100% reliable: we never know 
when we are going to face the next failure in an executed program. A 
programfails when it does not do what it is required to do [1]. The purpose 
of testing a program is to discover faults that cause the system to fail. A test 
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is considered successful if it reveals a problem; tests that do not expose any 
faults are useless, since they provide no indication about the program 
correctness [2]. The process of fault discovery is usually followed by some 
actions, which are aimed at preventing the future occurrence of the detected 
faults. 

The ultimate goal of software testing is to test a program completely, i.e. 
to verify that the program works correctly and there are no undiscovered 
errors left. However, this goal is beyond our reach, since the program 
correctness can never be demonstrated through software testing [3]. The 
reasons for that include such over complex issues like the size of the input 
domain, the number of possible paths through the program, and wrong or 
incomplete specifications. In practice, the tester has to choose a limited 
number of test cases. According to [2], an ideal test case should have a 
reasonable probability of catching an error along with being non-redundant, 
effective, and of a proper complexity. 

If the structure of the tested program itself is used to build a test case, 
this is called a white-box (or open-box) approach. White-box testing 
techniques include path, branch, and statement testing [2]. However, 
identifying every distinct path even in a small program may be a prohibitive 
task. Thus, in testing the functionality of a component, a sub-system, or a 
complete system, the black-box approach is much more common: the tested 
system is fed with inputs as a "black box" and then evaluated by its outputs. 
However, generating a set of representative test cases for black-box testing 
of software systems is a non-trivial task [2]. A traditional manual technique 
of black-box testing is based on identifying equivalence classes for program 
inputs and then choosing test cases at the class boundaries (ibid). Other 
common strategies include random testing [4] and statistical testing [5], 
which is based on the operational profile of a program. Due to explosive 
number of possible black-box tests for any non-trivial program, some 
techniques for semi-automatic prioritization and reduction of test cases are 
being developed. As shown below, existing methods are not suitable for 
completely automated testing of large-scale programs and systems, since 
they are based on manual analysis of the source code and/or execution data 
along with other forms of human intervention in the test selection process. 

In this paper, we introduce a novel approach to combinatorial test 
reduction, which does not require any manual analysis of the source code. 
The proposed approach is based on automated identification of input-output 
relationships from execution data of the tested program. It is designed for 
testing applications with multiple inputs and outputs, such as APIs, form
based web applets, and decision support systems (DSS). Testability of such 
systems is especially low when the number of inputs is much larger than the 
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number of outputs [5]. We use a data mining algorithm called the info-fuzzy 
network (IFN) to determine the set of input variables relevant to each output. 
The test reduction potential of the info-fuzzy method is demonstrated on a 
typical business application program previously used by us in [13] for 
evaluating an automated testing "oracle" based upon an artificial neural 
network. 

Section 2 below discusses existing techniques for automated test case 
generation and reduction. The info-fuzzy method of input-output analysis is 
briefly described in Section 3. A prototype of an info-fuzzy test reduction 
system is presented in Section 4. The method is applied to a credit screening 
application in Section 5. Finally, Section 6 presents conclusions and 
directions for future research. 

2. AUTOMATED TECHNIQUES FOR TEST CASE 
SELECTION 

Black-box methods test the program response to sets of inputs without 
looking at the code. As indicated in [11], the main problem associated with 
the black-box approach is the rapid increase in the number of possible tests 
for systems with multiple inputs and outputs. When the number of tests 
becomes very large, there is a need of input set reduction. One of the most 
common test generation strategies, random testing [4], can lead to a limited 
number of test cases. However, random testing does not assume any 
knowledge of the tested system and its specifications and thus is insufficient 
for validating safety-critical or mission-critical software (ibid). 

The test generation method of [6] is based on the assumption that the 
specifications are known and given as Boolean expressions. This 
methodology includes a family of strategies for automated generation of test 
cases that are substantially smaller than exhaustive test cases. 

Another approach to test reduction is to filter out test cases that are not 
likely to expose any faults [9]. The effectiveness of every test case can be 
estimated by an artificial neural network, which is trained on a complete set 
of classified test cases. An "oracle" (usually, a human tester) classifies errors 
exposed by each test case in the training set. This is a promising approach to 
test reduction, though the generalization capabilities of a trained network in a 
large input space are questionable [9]. 

An algorithm for simplification of a given test case is presented in [12]. 
The algorithm is aimed at finding a minimal test case, where removing any 
additional input would cause the failure to disappear. Applying the algorithm 
of [12] to each test case that failed can improve the efficiency of the 



www.manaraa.com

238 Software Engineering with Computational Intelligence 

debugging process, but it has nothing to do with the problem of reducing the 
exponential number of combinatorial tests. 

As shown in [11], input-output analysis can be utilized to reduce the 
number of black-box tests in a data-driven system. Such systems include 
embedded (real-time) systems, application program interfaces (API), and 
form-based web applications. The basic idea of input-output analysis is to 
reduce the number of combinatorial tests by focusing on those input 
combinations that affect at least one system output. Alternatively, if the total 
number of tests is limited, the same approach can lead to an increase in the 
fault detection capability of randomized test cases. According to [11], there 
are several ways to determine input-output relationships. Thus, a tester can 
analyze system specifications, perform structural analysis of the system's 
source code (if available), and observe the results of system execution. All 
these manual and semi-automatic techniques require a lot of human effort 
and, still, do not guarantee detection of all existing relationships [11]. 

In this paper, we extend the approach of [11] by proposing a new method 
for simplification and reduction of combinatorial test cases, which is based 
on automated data-driven identification of input-output relationships from 
execution results. This task is particularly important whenever input-output 
relationships cannot be derived directly from software model, since it is too 
complex, outdated, or completely missing as often happens with "legacy" 
systems. An information-theoretic data mining algorithm [14] determines the 
subset of input variables relevant to each system output and the 
corresponding equivalence classes, by automated analysis of execution data. 

In comparison with existing methods of input-output analysis covered by 
[11], our method automates the manual activity of execution-oriented 
analysis. We assume that data mining methods can reveal more input-output 
relationships in less time than a human tester, though both approaches do not 
guarantee detection of all existing relationships. Like the manual analysis of 
execution data, our approach requires no information about the system 
specifications, except for the set of input / output variables and their 
acceptable values. The proposed automation of input-output analysis is 
expected to save a considerable amount of human effort in the test case 
design process. 

3. INFO-FUZZY METHOD OF INPUT-OUTPUT 
ANALYSIS 

Our approach to input-output analysis is based on the information-fuzzy 
network (IFN) methodology [15]. The info-fuzzy method produces a ranked 
list of inputs relevant to a given output as a result of inducing a classification 
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model named info-fuzzy network (IFN) from execution data. This automated 
method of input-output analysis does not require the knowledge of either the 
tested code, or the system specification, except for a list of program inputs 
and outputs along with their respective data types. The underlying 
assumption of the proposed methodology is that a stable version of the tested 
software is available for training the network. Otherwise, the induced model 
may be based on faulty execution data resulting in a sub-optimal set of test 
cases. Thus, test reduction with automated input-output analysis is most 
appropriate for the black-box form of regression testing, which is one of the 
most important and extensive forms of testing [16]. 

An info-fuzzy network (see Figure 1) has a root node, a changeable 
number of hidden layers (one layer for each selected input), and a target 
(output) layer representing the possible output values. Each node in the 
output layer may be associated with a constant value (e.g., "Florida" or" 1 0"), 
a range of values (e.g., [10.2, 11.6]), or an action performed by the program 
(e.g., printing a document). There is no limit as to the maximum number of 
output nodes in an info-fuzzy network. The network in Figure 1 has three 
output nodes denoted by numbers 1, 2, and 3. 

Each hidden layer consists of nodes representing equivalence classes of 
the corresponding input variable. In case of a continuous variable, the 
algorithm determines automatically the equivalence classes as contiguous 
sub-ranges of input values. For multi-valued nominal variables, each value is 
considered an equivalence class unless specified otherwise by the user. In 
Figure 1, we have two hidden layers (No.1 and No.2). 

The final (terminal) nodes of the network represent non-redundant test 
cases (conjunctions of input values that produce distinct outputs). The five 
terminal nodes of Figure 1 include (1,1), (1,2), 2, (3,1), and (3,2). Unlike 
decision-tree classification models (see [17] and [18]), the network has 
interconnections between terminal and target nodes, which represent 
expected program outputs for each test case. For example, the connection 
(1,1) - 2 in Figure 1 means that we expect the output value of 2 for a test 
case where both input variables are equal to 1. The connectionist nature of 
IFN resembles the structure of a multi-layer neural network (see [19]). 
Accordingly, we characterize our model as a network and not as a tree. 
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Layer No. 1 
(First input 
variable) 
3 equivalence 
classes 

1 

----~-0 
Layer No.2 Connection 
(Second input Weights 
variable) 
2 equivalence 
classes 

Target Layer 
(Output Variable) 
3 Values 

Figure 1. Info-Fuzzy Network - An Example. 

The network is re-constructed completely for every output variable. The 
induction procedure starts with a single node representing an empty set of 
inputs. A node is split if it provides a statistically significant decrease in the 
conditional entropy [20] of the output. In information theory, the decrease in 
conditional entropy is called conditional mutual information. The IFN 
algorithm calculates the conditional mutual information of a candidate input 
attribute Ai and the output attribute T given a terminal node z by the 
following formula (based on [20]): 

~~I P(v;,' /z) 
AJ (A,;T / z) = L L P(C,; Vy ;z) eleg ---""""'---''----'---

'-0 ./_0 P(v;, / z) e P(C, / z) 
(1) 

where 

Mr I Mi - number of distinct values of the output attribute T Icandidate 
input attribute i. 

P (Viii z) - an estimated conditional (a posteriori) probability of a value} 
of the candidate input attribute i given the node z (also called a relative 
frequency estimator) 

P (etl z) - an estimated conditional (a posteriori) probability of a value t 
of the output attribute T given the node z. 

P (V/I z) - an estimated conditional (a posteriori) probability of a value} 
of the candidate input attribute i and a value t of the output attribute T given 
the nodez. 

P (et ; V;j; z) - an estimated joint probability of a value t of the output 
attribute T, a value) of the candidate input attribute i, and the node z. 
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The statistical significance of the estimated conditional mutual 
information between a candidate input attribute Ai and the target attribute T, 
is evaluated by using the likelihood-ratio statistic (based on [21]): 

G2 (Ai; T / z) = 2.(1n2). E*(z) • MI (Ai; T / z) (2) 

where E*(z) is the number of cases associated with the node z. 

The Likelihood-Ratio Test [22] is a general-purpose method for testing 
the null hypothesis Ho that two random variables are statistically 
independent. If Ho holds, then the likelihood-ratio test statistic G2 (Ai; T / z) 
is distributed as chi-square with (Nli (z) - 1) -( NT (z) - 1) degrees of freedom, 
where NI i (z) is the number of distinct values of a candidate input attribute i 
at node z and NT (z) is the number of values of the target (output) attribute T 
at node z (see [24]). The default significance level (p-value), used by the IFN 
algorithm, is 0.1 %. 

A new input attribute is selected to maximize the total significant 
decrease in the conditional entropy, as a result of splitting the nodes of the 
last layer. The nodes of a new hidden layer are defined for a Cartesian 
product of split nodes of the previous hidden layer and values (equivalence 
classes) of the new input variable. If there is no candidate input variable 
significantly decreasing the conditional entropy of the output variable the 
network construction stops. In Figure 1, the first hidden layer has three nodes 
related to three possible values of the first input variable, but only nodes 1 
and 3 are split, since the conditional mutual information as a result of 
splitting node 2 proves to be statistically insignificant. For each split node of 
the first layer, the algorithm has created two nodes in the second layer, which 
represent the two possible values of the second input variable. None of the 
four nodes of the second layer are split, because they do not provide a 
significant decrease in the conditional entropy of the output. 

OUf approach to automated determination of equivalence classes for 
numeric and other ordinal attributes is similar to the recursive discretization 
algorithm of [23]. IFN is looking for a partition of the input range that 
minimizes the conditional entropy of the output. The process of recursive 
partitioning is demonstrated in Figure 2 below: the best threshold is 
determined recursively for each sub-range of the input. Thus, the value Tis 
chosen to split the entire attribute range into two intervals: below T and 
above T. The first interval is subsequently split into two sub-intervals, while 
the second interval is not. The stopping criterion used by IFN is different 
from [23]. As indicated above, we make use of a standard statistical 
likelihood-ratio test rather than searching for a minimum description length. 
The search for the best partition of a continuous attribute is dynamic: it is 
performed each time a candidate input attribute is considered for selection. 
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Figure 2. Recursive Discretization Algorithm. 

The main steps of the network construction procedure are summarized in 
Table l. Complete details are provided in [14] and [15]. 

Input: The set of n execution runs; the set C of candidate inputs (discrete and 
continuous); the target (output) variable Ai; the minimum significance level 

sign for splitting a network node (default: sign = 0.1 %). 
Output: A set I of selected inputs, equivalence classes for every input, and an info-

fuzzy network. Each selected input has a corresponding hidden layer in the 
network. 

Step 1 Initialize the info-fuzzy network (single root node representing all runs, no 
hidden layers, and a target layer for the values of the output variable). 

Initialize the set I of selected inputs as an empty set: 1=0. 
Step 2 While the number oflayers III < ICI (number of candidate inputs) do 

Step 2.1 For each candidate input Ai' fAi' E C; Ai,(.!: I do 
If Ai' is continuous then 

Return the best equivalence classes of Ai" 
Return statistically significant conditional mutual information cond _ MIi' 

between Ai' and the output Ai' 
End Do 

Step_2.2 Find the candidate input Ai'* maximizing cond MIi' 
Step 2.3 If cond_MIi,. = 0, then 

End Do. 
Else 

Expand the network by a new hidden layer associated with the input Ai', and 
add Ai' to the set I of selected inputs I = I n A,. 

Step 2.4 End Do 
Step 3 Return the set of selected inputs I, the associated equivalence classes, and the 

network structure 

Table 1. Network Construction Algorithm 
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In [14], we have demonstrated the consistency and scalability of the IFN 
algorithm. Its run time is quadratic-polynomial in the number of inputs and 
linear in the number of outputs, which makes it appropriate for testing 
complex software systems with a large number of inputs and outputs. Other 
advantages of the IFN method include understandability and interpretability 
of results [26], stability of obtained models [27], and robustness to noisy and 
incomplete data [28]. In [29], the information-theoretic methodology is 
extended with a fuzzy-based technique for automated detection of unreliable 
output values. Consequently, IFN can be used as an automated "oracle" in 
black-box testing, but this application is beyond the scope of the work 
presented here. 

4. REDUCING THE NUMBER OF TEST CASES 

The info-fuzzy methodology of test reduction includes two parts 
(phases): the training phase, where we induce input-output relationships 
from execution data and the evaluation phase where we generate and run 
actual test cases based on the input-output analysis. Both parts are described 
in the sub-sections that follow. 

4.1. Input-Output Analysis 

The training phase of the IFN-based system for automated test case 
reduction is shown in Figure 3. Random Tests Generator (RTG) obtains the 
list of application inputs and their valid ranges from System Specification. 
No information about the expected system functionality is needed, since the 
IFN algorithm automatically reveals input-output relationships from 
randomly generated test cases. Finding the minimal number of random test 
cases required to cover all possible output values and execution paths of a 
given program with a sufficiently high probability is a subject of ongoing 
research. Systematic, non-random approaches to training set generation may 
also be considered. 

The IFN algorithm is trained on inputs provided by RTG and outputs 
obtained from the tested application by means of the Test Execution module. 
As indicated above, a separate IFN model is built for each output variable. 
An IFN model includes a set of inputs relevant to the corresponding output, 
the associated equivalence classes determined by the algorithm, and the 
resulting set of non-redundant test cases. 
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Figure 3. Test Reduction: Training Phase. 

A brief description of each module in the system is provided below: 

Specification of Application Inputs and Outputs (SAIO). Basic data 
on each input and output variable includes variable name, type (discrete, 
continuous, nominal, etc.), and a list or a range of possible values. Such 
information is generally available from requirements management and test 
management tools (e.g., Rational RequisitePro® or TestDirector®). 

Random Tests Generator (RTG). This module generates random 
combinations of values in the range of each input variable. Variable ranges 
are obtained from the SAIO module (see above). The number oftest cases to 
generate is determined by the user. The generated test cases are used by the 
Test Execution and the IFN modules. 

Test Execution (TE). This module, sometimes called "test harness", 
feeds test cases generated by the RTG module to the tested application. The 
module obtains the application outputs for each test case and sends them to 
the IFN module. 

Info-Fuzzy Network Algorithm (IFN). The input to the IFN algorithm 
includes the test cases randomly generated by the RTG module and the 
outputs produced by the tested application for each test case. IFN also uses 
the descriptions of variables stored by the SAIO module. The IFN algorithm 
is run repeatedly to find a subset of input variables relevant to each output 
and the corresponding set of non-redundant test cases. Actual test cases are 
generated from the automatically detected equivalence classes by using an 
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existing testing policy (e.g., one test for each side of every equivalence 
class). A brief overview of the IFN methodology is provided in Section 3 
above. Complete details can be found in [15]. 

4.2. Test Generation and Execution 

Our approach is based on an assumption, which is true for many 
programs [11], that not all program inputs influence every output. Once the 
info-fuzzy algorithm has identified the input-output relationships, testing 
consists of generating test cases that represent the union of combinatorial 
tests for input variables included in theIFN model of each single output. The 
resulting test set is expected to be considerably smaller than the exhaustive 
test set. The evaluation phase of the IFN-based system for automated test 
reduction is shown in Figure 4. Test cases are generated by the Test Reducer 
(TR) module, which creates a union of tests based on all output variables. 
Like in the training phase, the Test Execution module feeds the tests cases to 
the tested application and reads the resulting outputs. The comparison 
between the expected and the actual outputs is performed by an "oracle", 
which can be either a human tester, or an automated system like the one 
presented by us in [13]. 

I · Models 

1, __ -'\c,JIo;,:, 

, lib ets of 
inputs 

relevant to 
each output 

• • • • 

I Test 

l Reducer 

Tested 
Application 

App. ;np"" 1 tpP' o"'P"'" 

Test Cas 
Inputs 
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Figure 4. Test Reduction: Evaluation Phase. 

A brief description of the Test Reducer module is given below: 

Test Reducer (TR). This module creates a reduced set of 
combinatorial tests as a union of reduced tests for all output 
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variables. The total number of reduced test cases to generate can be 
limited by the user. If the number of reduced combinatorial tests 
exceeds a user-specified limit, the module randomizes the values of 
individual input variables while restricting their combinations to the 
subsets of variables determined by the IFN module as influencing 
the application outputs. The generated test cases are submitted to the 
Test Execution module. 

5. EXPERIMENTAL RESULTS 

In this section, we present the results of using the info-fuzzy approach 
for automated test reduction in a typical business program. We start the 
section with describing the program used as our case study. Then we perform 
an automated input-output analysis by training the info-fuzzy algorithm. 
Finally, the induced info-fuzzy models are utilized for reducing the number 
of combinatorial tests. We evaluate the performance of the proposed method 
by the relative reduction in the amount of required combinatorial tests along 
with the fault detection potential of the reduced test set. 

5.1. Description of Case Study 

The program studied is called Credit Approval. Its task is to process a 
credit application of a potential credit card customer. The program has two 
output variables: Decision (approve / decline an application) and the amount 
of Credit Limit granted (greater than zero if an application is approved). We 
have previously used a similar program in [l3] for evaluating the 
performance of an automated testing "oracle". This program is representative 
of a wide range of business applications, where a few critical outputs depend 
on a large number of inputs. In such applications, a reasonable assumption is 
that not every input is designed to affect every output. Moreover, due to 
continuous changes in user requirements, some inputs may become obsolete 
though they are still read and stored by the program. 

The inputs of the studied application include eight attributes of the 
applicant such as age, income, citizenship, etc. Table 2 shows the complete 
list of variables used as input to the program, including their data type and 
range of possible values. Though this is a very small program (implemented 
with less than 300 lines of C code), it has as many as 52 distinct flow paths 
and the number of possible combinatorial tests exceeds 11 million (!). The 
core business logic of the program is shown as C code in Table 3. 
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Name ofInput Variable Data Type Total Details 
Number of 

Values 
Citizenship Nominal 2 0: US 

1: Other 
State of Residence Nominal 2 0: Florida 

1: Other 
Age Continuous 100 1-100 

Sex Nominal 2 0: Female 
1: Male 

Region Nominal 7 0-6 for different 
regions in the US 

Annual Income Continuous 200 $Ok - $I99k 
Number of dependents Continuous 5 0-4 

Marital status Nominal 2 0: Single 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
2.0) ; 
15 
16 
17 
1. 5) ; 

18 
19 
20 
21 
22 
23 

1: Married 

Table 2. Descriptions ofInput Variables. 

if (region == 5 I I region 6) 
credlimi t = 0; 

else 
if (age < 18) 

credlimit = 0; 
else 

if (citizenship == 0) 
{ 

credlimit = 5000 + 15*income; 
if (state == 0) 
{ 

if (region == 3 I I region ==4) 
{ 

credlimit (int) (credlimit * 

else 
credlimit (int) (credlimit * 

else 
credlimit = (int) (credlimit * 1.1); 

if (marital_status == 0) 
{ 

24 
200*num_dep; 
25 

if (num_dep > 0) 
credlimit 

else 
credlimit 

credlimit + 

26 credlimit + 500; 
27 
28 else 
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29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
100*num_dep; 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
S5 

credlimit 
if (sex == 0) 

credlimit 
else 

credlimit 

credlimit + 1000; 

credlimit + 500; 

credlimit + 1000; 

else 
{ 

} 
if 

credlimit = 1000 + 12*income; 
if (marital status 0) 
{ 

if (num_dep > 2) 
credlimit = credlimit + 

else 
credlimit credlimit + 100; 

else 
credlimit credlimit + 300; 

if (sex -- 0) 
credlimit credlimit + 100; 

else 
credlimit credlimit + 200; 

(credlimit -- 0) 
decision 1; 

else 
decision 0; 

Table 3. Core Business Logic. 

5.2. Inducing Input-Output Relationships 

To prepare a training set for the IFN algorithm (see Section 3 above), we 
have randomly generated 5,000 test cases in the input space of the Credit 
Approval program. As shown by the results below, this number was 
sufficient to identify all major execution paths in this program and to cover 
the corresponding output values. Determining the minimal number of 
random test cases required to perform input-output analysis of a given 
program is a part of our ongoing research. The info-fuzzy algorithm was run 
two times to find the inputs relevant to the two outputs of the program: 
Decision (Approve / Decline) and Credit Limit. Since IFN requires the 
output to be a discrete variable, we have discretized the continuous range of 
Credit Limit to 10 equally spaced sub-ranges of $2,000 width each ($1 -
$2,000, $2,001 - $4,000, etc.). The large number of sub-ranges we have 
chosen is expected to be sufficient for detecting all inputs that have a 
significant impact on this particular output. As indicated above, IFN results 
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are based solely on execution data and not on the actual code of the program 
shown in Table 3. 

Only two inputs (Region and Age) were found to influence the first 
output (Decision). Region is a nominal attribute and, thus, the algorithm has 
referred to its each distinct value as an equivalence class. On the other hand, 
the range of Age, which can take 100 continuous values, has been partitioned 
into two equivalence classes only: customers below 18 years old vs. 
customers aged 18 years and older. 

The info-fuzzy network built for the Decision output is shown in Figure 
5. The 18 hidden nodes of the network include the root node (Node 0), nodes 
1 -7 representing seven equivalence classes of the Region input, and nodes 8 
- 17 standing for 10 combinations of five region classes with two 
equivalence classes of the Age input (0 - 17 vs. 18+). The algorithm has not 
split nodes 6 and 7, because in the two corresponding regions, the output 
does not depend on the applicant age. The network has 12 final (terminal) 
nodes numbered 6 - 17, which represent the 12 non-redundant test cases 
required for testing the correctness of Decision output. The minimal set of 12 
non-redundant test cases is shown in Table 5 (see Appendix). The number of 
actual tests may be at least 22, since for each continuous equivalence class 
both boundary values should be tested [2]. The latter requirement implies 
that Nodes 8, 10, 12, 14, 16 are tested with Age = 0 and Age =17, while 
Nodes 9,11,13,15,17 are tested with Age = 18 and the oldest age possible 
(e.g., 100). 

The target layer has two nodes: 0 (approve) and 1 (decline). Thin lines 
connecting final nodes to the target nodes show the expected program output 
for each corresponding test case. There is only one line exiting each final 
node, which means that the induced info-fuzzy network is a perfect predictor 
for the Credit Approval program with respect to the Decision output: the 
network output is always identical to the program output. This result is not 
true in a general case: for many applications, IFN may be unable to predict 
some of program outputs with 100% accuracy. 
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Figure 5. Info-Fuzzy Network (Output: Decision). 

In the case of the second output (Credit Limit), the number of relevant 
inputs was found to be six out of eight candidates. Based on IFN results, the 
inputs affecting Credit Limit are: Citizenship, Region, Age, Income, State, 
and Sex. The algorithm has partitioned the ranges of two continuous 
variables (Age and Income) into two and ten equivalence classes 
respectively. 

The info-fuzzy network induced for the Credit Limit output has six 
layers (associated with six selected inputs) and 239 hidden nodes, which 
include 165 final nodes. Due to its size, we cannot display the complete 
network here. The resulting set of 165 non-redundant test cases is shown in 
Table 6 (see Appendix). The testers may wish to increase the actual number 
of tests by testing each boundary value of every continuous equivalence 
class. 

5.3. Reducing the Number of Test Cases 

The final set of combinatorial tests is a union of tests for the two output 
variables (Decision and Credit Limit). As indicated in [11], the problem of 
finding the truly minimal test set is NP-hard. In our case study, one can 
easily verify that every test for Decision output (see Table 5) is included in 
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the test set for Credit Limit (see Table 6). For example, tests 1 and 2 in Table 
5 are covered by tests 1 and 2 in Table 6, test 12 in Table 5 is covered by test 
60 in Table 6, etc. Thus, we can conclude that Table 6, with its 165 test 
cases, represents the union of the test sets in both tables. The resulting test 
set constitutes a reduction of 99.999% vs. the original number of 11 million 
combinatorial tests for this program! 

We have evaluated the fault detection potential of the reduced test set by 
generating ten faulty versions of the original program. The list of faults 
injected in each version and the corresponding error rates (percentage of test 
cases in the test suite that have detected a fault) are shown in Table 4. The 
first line of Table 4 shows the error rate of the IFN model when applied to 
the outputs of the correct version. As mentioned above, the model is a perfect 
predictor of the first output (Decision). However, the second IFN output 
(Credit Limit) is wrong in 18.2% of test cases. This problem can be fixed 
manually by correcting the faulty expected values in the test suite before it is 
used for regression testing. 

An injected fault is successfully detected by regression testing if the 
error rate of the test suite over the mutated version of the program is greater 
than the error rate over the original (correct) version. In practical terms, this 
means that there is at least one test case in the test suite that indicates the 
presence of a fault in the tested version. Since not every output is affected by 
a change in any line of code, the correctness of all program outputs should be 
evaluated in every test case. The results of Table 4 demonstrate that all 
injected faults have changed the value of the Credit Limit output in at least 
one test case, though the Decision output has been corrupted by the first four 
faults only. Thus in our experiments, we have gained a substantial reduction 
in the testing effort without dropping the fault detection capability of the full 
test set. 
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Fault Line Original Line Injected Fault Fault Type Error Rate (%) 
# # 

Output 1 Output 
(Decision) 2 

(Credit 
Limit) 

No faults 0 0.182 

I I If «Region ;; 5) II if(Region ;; 5) Operator 0.059 0.186 
(Region;; 6» Change & 

Argument 
Change 

2 I if «Region ;; 4) II (Region Argument 0.118 0.349 
;; 5» Change 

3 4 If (Age < 18) if(Age> 18) Operator 0.588 0.624 
Change 

4 4 if(Age < 25) Argument 0.294 0.552 
Change 

5 7 If (Citizenship = 0) if(Citizenship ;; I) Argument 0 0.962 
Change 

6 10 If (State ;; 0) if (State ;; 1) Argument 0 0.619 
Change 

7 12 If «Region ;; 3) II if (Region ;; 3) Argument 0 0.233 
(Region ;; 4) Change 

8 12 if «Region ;; I) II (Region Arguments 0 0.387 
;; 2» Change 

9 28 credlimit; credlimit + credlimit; credlimit + Argument 0 Q.401 
500 5000 Change 

10 34 credlimit; 1000 + credlimit; 1000 + Argument 0 0.377 
12*income 2*income Change 

Table 4. Summary of Experiments with Injected Faults. 

6. CONCLUSIONS 

In this paper, we have presented a novel approach to automated 
reduction of combinatorial black-box tests, based on automated identification 
of input-output relationships from execution data of the tested program. This 
approach is especially useful for regression testing of data-driven software 
systems with incomplete or missing specifications. We use a data mining 
algorithm called the info-fuzzy network (IFN) to determine the set of input 
variables relevant to each output. Additional benefits of the IFN algorithm 
include automated determination of continuous equivalence classes and 
selection of non-redundant test cases. The test reduction potential of the info
fuzzy method has been demonstrated on a typical business application 
program aimed at screening credit applicants. 

In our future work, we plan to develop an automated test design system 
supporting the methodology presented in this paper. We also intend to 
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enhance the info-fuzzy input-output analysis by automated determination of 
equivalence classes for nominal attributes. In addition, we plan to perform a 
set of extensive experiments with large software systems to study the impact 
of the proposed approach on the effectiveness and the productivity of the 
software testing process. Other research directions include reducing the size 
of the test set required for training the IFN algorithm and performing 
automated input-output analysis with other data mining techniques (e.g., 
artificial neural networks). 
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APPENDIX 
Case ID Region Age Final Node Expected Output 

1 5 Any 6 1 

2 6 Any 7 1 

3 0 0 8 1 

4 0 18 9 0 

5 1 0 10 1 

6 1 18 11 0 

7 2 0 12 1 

8 2 18 13 0 

9 3 0 14 1 

10 3 18 15 0 
11 4 0 16 1 

12 4 18 17 0 

Table 5. Non-redundant test cases for Decision Output. 

Case ID Citizenship Region Age Income State Sex Final Node Expected Output I 

I 0 5 Any Any Any Any 8 0 
2 0 6 Any Any Any Any 9 0 
3 I 5 Any Any Any Any 15 0 
4 I 6 Any Any Any Any 16 0 
5 0 0 0 Any Any Any 17 0 
6 0 I 0 Any Any Any 19 0 
7 0 2 0 Any Any Any 21 0 
8 0 3 0 Any Any Any 23 0 
9 0 4 0 Any Any Any 25 0 
IO I 0 0 Any Any Any 27 0 
II I I 0 Any Any Any 29 0 
12 I 2 0 Any Any Any 31 0 
13 I 3 0 Any Any Any 33 0 
14 I 4 0 Any Any Any 35 0 
15 0 0 18 59 Any Any 40 10001 
16 0 0 18 147 Any Any 44 8001 
17 0 I 18 31 Any Any 48 8001 
18 0 I 18 147 Any Any 54 8001 
19 0 4 18 31 Any Any 78 12001 
20 I 0 18 0 Any Any 87 I 
21 I 0 18 31 Any Any 88 I 
22 I 0 18 42 Any Any 89 2001 
23 I 0 18 59 Any Any 90 2001 
24 I 0 18 67 Any Any 91 2001 

1 Lower boundary of the corresponding interval 
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Case ID Citizenship Region Age Income State Sex Final Node Expected Output l 

25 1 0 18 84 Any Any 92 2001 
26 I 0 18 121 Any Any 93 2001 
27 I 0 18 147 Any Any 94 2001 
28 1 0 18 154 Any Any 95 2001 
29 1 0 18 183 Any Any 96 2001 
30 1 1 18 0 Any Any 97 1 
31 1 1 18 31 Any Any 98 1 
32 1 1 18 42 Any Any 99 1 
33 1 1 18 59 Any Any 100 2001 
34 1 1 18 67 Any Any 101 2001 
35 1 1 18 84 Any Any 102 2001 
36 1 1 18 121 Any Any 103 2001 
37 1 1 18 147 Any Any 104 2001 
38 1 1 18 154 Any Any 105 2001 
39 1 1 18 183 Any Any 106 2001 
40 1 2 18 0 Any Any 107 1 
41 1 2 18 31 Any Any 108 1 
42 1 2 18 42 Any Any 109 I 
43 I 2 18 59 Any Any 110 2001 
44 1 2 18 67 Any Any 111 2001 
45 I 2 18 84 Any Any 112 2001 
46 1 2 18 121 Any Any 113 2001 
47 I 2 18 147 Any Any 114 2001 
48 1 2 18 154 Any Any 115 2001 
49 1 2 18 183 Any Any 116 2001 
50 1 3 18 0 Any Any 117 I 
51 1 3 18 31 Any Any 118 1 
52 1 3 18 42 Any Any 119 1 
53 1 3 18 59 Any Any 120 2001 
54 1 3 18 67 Any Any 121 2001 
55 I 3 18 84 Any Any 122 2001 
56 I 3 18 121 Any Any 123 2001 
57 1 3 18 147 Any Any 124 2001 
58 1 3 18 154 Any Any 125 2001 
59 I 3 18 183 Any Any 126 2001 
60 1 4 18 0 Any Any 127 1 
61 I 4 18 31 Any Any 128 1 
62 1 4 18 42 Any Any 129 2001 
63 I 4 18 59 Any Any 130 2001 
64 1 4 18 67 Any Any 131 2001 
65 I 4 18 84 Any Any 132 2001 
66 1 4 18 121 Any Any 133 2001 
67 I 4 18 147 Any Any 134 2001 
68 I 4 18 154 Any Any 135 2001 
69 1 4 18 183 Any Any 136 2001 
70 0 0 18 0 0 Any 137 8001 
71 0 0 18 0 1 Any 138 6001 
72 0 0 18 31 0 Any 139 8001 
73 0 0 18 31 1 Any 140 6001 
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CaseID Citizenship Region Age Income State Sex Final Node Expected Output l 

74 0 0 18 42 0 Any 141 10001 
75 0 0 18 42 1 Any 142 6001 
76 0 0 18 67 0 Any 143 10001 
77 0 0 18 67 1 Any 144 8001 
78 0 0 18 84 0 Any 145 10001 
79 0 0 18 84 1 Any 146 8001 
80 0 0 18 121 0 Any 147 10001 
81 0 0 18 121 I Any 148 8001 
82 0 0 18 154 0 Any 149 12001 
83 0 0 18 183 0 Any 151 12001 
84 0 0 18 183 I Any 152 10001 
85 0 1 18 0 0 Any 153 8001 
86 0 I 18 0 I Any 154 6001 
87 0 I 18 42 0 Any 155 10001 
88 0 I 18 42 1 Any 156 6001 
89 0 1 18 59 0 Any 157 10001 
90 0 I 18 59 1 Any 158 6001 
91 0 I 18 67 0 Any 159 10001 
92 0 1 18 67 1 Any 160 8001 
93 0 1 18 84 0 Any 161 10001 
94 0 I 18 84 1 Any 162 8001 
95 0 I 18 121 0 Any 163 12001 
96 0 1 18 121 I Any 164 8001 
97 0 I 18 154 0 Any 165 12001 
98 0 1 18 154 1 Any 166 8001 
99 0 I 18 183 0 Any 167 12001 
100 0 I 18 183 I Any 168 10001 
101 0 2 18 0 0 Any 169 8001 
102 0 2 18 0 I Any 170 6001 
103 0 2 18 31 0 Any 171 8001 
104 0 2 18 31 I Any 172 6001 
105 0 2 18 42 I Any 174 6001 
106 0 2 18 59 0 Any 175 10001 
107 0 2 18 59 I Any 176 6001 
108 0 2 18 67 0 Any 177 10001 
109 0 2 18 67 I Any 178 8001 
110 0 2 18 84 0 Any 179 10001 
111 0 2 18 84 I Any 180 8001 
112 0 2 18 121 0 Any 181 12001 
113 0 2 18 121 I Any 182 8001 
114 0 2 18 147 0 Any 183 12001 
115 0 2 18 147 I Any 184 8001 
116 0 2 18 154 0 Any 185 12001 
117 0 2 18 183 0 Any 187 12001 
118 0 2 18 183 1 Any 188 10001 
119 0 3 18 0 0 Any 189 10001 
120 0 3 18 0 1 Any 190 6001 
121 0 3 18 31 0 Any 191 12001 
122 0 3 18 31 I Any 192 6001 
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Case ID Citizenship Region Age Income State Sex Final Node Expected Output l 

123 0 3 18 42 0 Any 193 12001 
124 0 3 18 42 1 Any 194 6001 
125 0 3 18 59 0 Any 195 12001 
126 0 3 18 59 1 Any 196 8001 
127 0 3 18 67 0 Any 197 12001 
128 0 3 18 67 1 Any 198 8001 
129 0 3 18 84 0 Any 199 14001 
130 0 3 18 84 1 Any 200 8001 
131 0 3 18 121 0 Any 201 14001 
132 0 3 18 121 1 Any 202 8001 
133 0 3 18 147 1 Any 204 8001 
134 0 3 18 154 0 Any 205 16001 
135 0 3 18 183 0 Any 207 16001 
136 0 3 18 183 1 Any 208 10001 
137 0 4 18 0 0 Any 209 10001 
138 0 4 18 0 1 Any 210 6001 
139 0 4 18 42 0 Any 211 12001 
140 0 4 18 42 1 Any 212 6001 
141 0 4 18 59 0 Any 213 12001 
142 0 4 18 59 1 Any 214 6001 
143 0 4 18 67 0 Any 215 12001 
144 0 4 18 67 1 Any 216 8001 
145 0 4 18 84 0 Any 217 14001 
146 0 4 18 84 1 Any 218 8001 
147 0 4 18 121 0 Any 219 14001 
148 0 4 18 121 1 Any 220 8001 
149 0 4 18 147 0 Any 221 14001 
150 0 4 18 147 1 Any 222 8001 
151 0 4 18 154 0 Any 223 16001 
152 0 4 18 183 0 Any 225 16001 
153 0 4 18 183 1 Any 226 10001 
154 0 0 18 154 1 0 227 8001 
155 0 0 18 154 1 1 228 10001 
156 0 2 18 42 0 0 229 8001 
157 0 2 18 42 0 1 230 10001 
158 0 2 18 154 1 0 231 8001 
159 0 2 18 154 1 1 232 10001 
160 0 3 18 147 0 0 233 14001 
161 0 3 18 147 0 1 234 16001 
162 0 3 18 154 1 0 235 8001 
163 0 3 18 154 1 1 236 10001 
164 0 4 18 154 1 0 237 8001 
165 0 4 18 154 1 1 238 10001 

Table 6. Non-redundant test cases for Credit Limit Output. 
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ABSTRACT 
Because software system testing typically consists of only a very small 
sample from the set of possible scenarios of system use, it can be difficult or 
impossible to generalize the test results from a limited amount of testing 
based on high-level usage models. It can also be very difficult to determine 
the nature and location of the errors that caused any failures experienced 
during system testing (and therefore very difficult for the developers to find 
and fix these errors). To address these issues, this paper presents a Genetic 
Algorithm (GA) approach to focused software usage testing. Based on the 
results of macro-level software system testing, a GA is used to select 
additional test cases to focus on the behavior around the initial test cases to 
assist in identifying and characterizing the types of test cases that induce 
system failures (if any) and the types of test cases that do not induce system 
failures. Whether or not any failures are experienced, this GA approach 
supports increased test automation and provides increased evidence to 
support reasoning about the overall quality of the software. When failures 
are experienced, the approach can improve the efficiency of debugging 
activities by providing information about similar, but different, test cases 
that reveal faults in the software and about the input values that triggered 
the faults to induce failures. 

KEYWORDS: 
Genetic algorithms, software usage testing, simulation testing, debugging, 
system testing, black box testing 

1. OVERVIEW 
This work focuses on system level, model-based usage testing. The 

software to be tested is viewed from the perspective of the user as a black 
box system that operates in a specific environment, receives input, and 
provides output. One or more state-based models of software use are 
developed, using domain-specific knowledge to characterize the population 
of uses of the software (or usage scenarios) and to describe test management 
objectives and constraints. The usage models are used to assist with test 
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planning, to generate a sample of test cases that represent usage scenarios, 
and to support reasoning about test results. 

System-level usage testing approaches have proven to be successful for 
supporting test case selection and reasoning about test results in a variety of 
software projects. However, the system testing typically consists of only a 
very small sample from the set of possible scenarios of system use. Thus, it 
can be difficult or impossible to generalize the test results from a limited 
amount of testing based on high-level usage models. It can also be very 
difficult to determine the nature and location of the errors that caused any 
failures experienced during system testing (and therefore very difficult for 
the developers to find and fix these errors). 

This paper presents a Genetic Algorithm (GA) approach to addresses 
these issues. As illustrated in Figure I and described in detail in section 5, 
the GA accepts input from two sources: (a) domain data generated by the 
usage model to define a usage scenarios and (b) the results (pass/fail) of 
system test. The initial population is defined as a set of test cases generated 
from a usage model. Each individual in the population represents a single test 
case. The individual is sent to the Tester to be processed and supplied to the 
Software Under Test. The Software Under Test processes this input and 
provides output that is analyzed for correctness by the Test Oracle. The Test 
Oracle will determine if the output is correct or flawed or if the software 
under test crashed. The Test Oracle informs the GA of the result: output is 
correct, output is flawed, or Software Under Test crashed. The GA uses this 
result along with the likelihood that it would occur as defined by the usage 
model to help determine the overall fitness of the individual. The GA outputs 
individual test cases that caused high intensity failures within the high usage 
areas of the software, thus driving dynamic testing and system analyses in a 
focused manner based on test objectives (as described by the usage model) 
and previous test results. 

Input 
Domain 
Data 

Individual 
r---------------
1 

Genetic 
Algorithm 

Failed Test Cases 

Result 

Output 

Software 
Under Test 

~----~ ~--------~ 

Failure Intensity Evaluation 

Figure 1. GA Approach to Focused Software Usage Testing. 
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The remainder of this paper is organized as follows. Section 2 provides a 
high-level introduction to Genetic Algorithms and pointers to related work. 
Section 3 provides some background information about system testing and 
debugging activities and challenges that motivate the GA approach presented 
in this paper. Section 4 introduces the GA approach to focused usage testing, 
and section 5 provides information about the internal details of the GA. 
Section 6 provides an example to illustrate application of this approach to 
drive focused testing of a military simulation system. Conclusions are 
presented in section 7. 

2. INTRODUCTION TO GENETIC ALGORITHMS 
A genetic algorithm (GA) is a search algorithm based on principles from 

natural selection and genetic reproduction [Holland 1975; Goldberg 1989]. 
GAs have been successfully applied to a wide range of applications, [Haupt 
1998; Karr 1999; Chambers 2000] including optimization, scheduling, and 
design problems. Key features that distinguish GAs from other search 
methods include: 
• A population of individuals where each individual represents a potential 

solution to the problem to be solved. 
• A fitness function which evaluates the utility of each individual as a 

solution. 
• A selection function which selects individuals for reproduction based on 

their fitness. 
• Idealized genetic operators which alter selected individuals to create 

new individuals for further testing. These operators, e.g. crossover and 
mutation, attempt to explore the search space without completely losing 
information (partial solutions) that is already found. 

Figure 2 provides the basic steps of a GA. First the population is 
initialized, either randomly or with user-defined individuals. The GA then 
iterates thru an evaluate-select-reproduce cycle until either a user defined 
stopping condition is satisfied or the maximum number of allowed 
generations is exceeded. 
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procedure GA 
{ 
initialize population; 
while termination condition not satisfied do 
{ 

evaluate current population; 
select parents; 
apply genetic operators to parents to create 

children; 
set current population equal to be the new child 

population; 
} 

} 

Figure 2. Basic steps of a typical genetic algorithm. 

The use of a population allows the GA to perform parallel searches into 
multiple regions of the solution space. Operators such as crossover [Holland 
1975; Goldberg 1989; Mitchell 1996] allow the GA to combine discovered 
partial solutions into more complete solutions. As a result, the GA is 
expected to search for small building blocks in parallel, and then iteratively 
recombine small building blocks to form larger and larger building blocks. In 
the process, the GA attempts to maintain a balance between exploration for 
new information and exploitation of existing information. Over time, the GA 
is able to evolve populations containing more fit individuals or better 
solutions. For more information about GAs, the reader is referred to [Holland 
1975; Goldberg 1989; Mitchell 1996; Coley 2001]. 

While, the GA approach presented in this paper is unlike other published 
approaches to the application of GA to support software testing or software 
quality assessment, the "failure-pursuit sampling" work of [Dickinson et al. 
200 I] and the "adaptive testing" work of [Schultz et al. 1992] are particularly 
noteworthy with respect to their motivation for the work of this paper. 

While [Dickinson et al. 2001] does not explicitly make use of a GA, their 
concept of failure-pursuit sampling helped to provide a foundation for the 
approach presented in this paper. In failure-pursuit sampling, some initial 
sample of test cases is selected; the sample is evaluated and failures 
recorded; and additional samples are then selected that are in the vicinity of 
failures that occurred in the previous sample. 

[Schultz et aI. 1992] demonstrated the use of adaptive testing to test 
intelligent controllers for autonomous vehicles by creating individuals in the 
population that represented fault scenarios to be supplied to simulators of the 
autonomous vehicles. A benefit of such testing was to provide more 
information to the developers. According to [Schultz et al. 1992], 

"In more of a qualitative affirmation of the method, the original 
designer of the AUTOACE intelligent controller was shown some 
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of the interesting scenarios generated by the GA, and 
acknowledges that they gave insight into areas of the intelligent 
controller that could be improved. In particular, the scenarios as a 
group tend to indicate classes of weaknesses, as opposed to only 
highlighting single weaknesses. This allows the controller 
designers to improve the robustness of the controller over a class as 
opposed to only patching very specific instances of problems." 

3. TESTING AND DEBUGGING CHALLENGES 

263 

Reasoning about the overall quality of a system can be difficult. For 
example, suppose a system accepts some data value X, and that the user 
profile for this system specifies that user is likely to use values in the range 
30 < X < 70. A usage model may generate two test cases that specify X as 40 
and 60. Ifboth of these test cases pass, it is not necessarily true that test cases 
will pass for all values ofX. Similarly, if both of these test cases fail, it is not 
necessarily true that test cases will fail for all values of X. Additional 
focused testing (using similar, but different, test cases to identify more 
precisely the usage scenarios that induce failures and the scenarios that do 
not induce failures) may be necessary to support reasoning about the overall 
quality of the software. 

In addition, in the situation when failures are observed during system 
testing, more testing can be required in order to precisely determine nature 
and location of the error(s) that caused the failures so the developers can find 
and fix the error. This find-and-fix process is referred to as "debugging". 
According to [Myers 1979], "of all the software-development activities, 
[debugging] is the most mentally taxing activity." This statement is often 
true today and can be the source of software quality problems. Test cases that 
reveal failures are often dissimilar to each other, the test results often provide 
little information concerning the cause of the failure and whether a similar 
scenario would fail in a similar manner. Without additional information, and 
with limited development resources, developers may be tempted to apply a 
small patch to the software to work around the failure rather than perform the 
analyses necessary to support complete understanding and correction of the 
problems that caused the failures. 

A competitive mentality of "developers versus testers" often exists 
during testing. Because debugging requires additional information 
concerning the usage of the system and performing additional testing, once 
failures occur and the system must be corrected, this mentality should 
transition to "developers and testers versus the system" to facilitate the 
debugging effort. Developers often need the support of the testers during 
debugging because the developers may not have the necessary testing 



www.manaraa.com

264 Software Engineering with Computational Intelligence 

resources to do additional system level testing, or additional information 
concerning the usage of the system. As described by [Zeller 2001], 

"Testing is another way to gather knowledge about a program 
because it helps weed out the circumstances that aren't relevant to 
a particular failure. If testing reveals that only three of 25 user 
actions are relevant, for example, you can focus your search for the 
failure's root cause on the program parts associated with these 
three actions. If you can automate the search process, so much the 
better." 

This description is consistent with the often-used induction approach to 
debugging described by [Myers 1979]. The induction approach begins by 
locating all relevant evidence concerning correct and incorrect system 
performance. As noted by [Myers 1979], "valuable clues are provided by 
similar, but different, test cases that do not cause the symptoms to appear. It 
is also useful to identify similar, but different, test case that do cause the 
symptoms to appear. 

Similar to the notion of taking several "snapshots" of the evidence from 
different angles and with different magnification to look for clues from 
different perspectives, the debugging team needs to follow up on any failures 
identified during testing by more finely partitioning the input domain 
according to test results. This yields new evidence to be compared and 
organized in an attempt to identify an~ characterize patterns in the system's 
behavior. The next step is to develop a hypothesis about the cause of an 
observed failure by using the relationships among the observed evidence and 
patterns. Analyses can then be performed to prove that the hypothesis 
completely explains the observed evidence and patterns. 

In practice, debugging can be very time-consuming, tedious, and error
prone when system-level testing reveals failures. Success of the debugging 
activity depends critically upon the first step in the process: the collection of 
evidence concerning correct and incorrect system performance. Assuming 
the total' amount of evidence is manageable, an increase in useful evidence 
about correct and incorrect system performance can make it easier to identify 
patterns and develop and prove hypotheses. Thus, a mechanism is needed to 
drive testing and system analyses in a focused manner based on previous test 
results. 

4. USING A GA FOR FOCUSED SOFTWARE USAGE 
TESTING 

The genetic algorithm (GA) approach described in this paper drives 
dynamic generation of test cases by focusing the testing on high usage 
(frequency) and fault-prone (severity) areas of the software. This GA 
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approach can be described as analogous to the application of a microscope. 
The microscope user first quickly examines an artifact at a macro-level to 
locate any potential problems. Then the user increases the magnification to 
isolate and characterize these problems. 

Using the GA approach to focused software usage testing, the macro
level examination of the software system is performed using the 
organization's traditional model-based usage testing methods. Based on the 
results of this macro-level examination, a genetic algorithm is used to select 
additional test cases to focus on the behavior around the initial test cases to 
assist in identifying and characterizing the types of test cases that induce 
system failures (if any) and the types of test cases that do not induce system 
failures. If failures are identified, the genetic algorithm increases the 
magnification by selecting certain test cases for further analysis of failures. 
This supports isolation and characterization of any failure clusters that may 
exist. 

Whether or not any failures are experienced, this genetic algorithm 
approach provides increased evidence for the testing team and managers to 
support reasoning about the overall quality of the software. In the situation 
where failures are experienced, the genetic algorithm approach yields 
information about similar, but different, test cases that reveal faults in the 
software and about the input values that triggered the faults to induce 
failures. This information can assist the developer in identifying patterns in 
the system's behavior and in devising and proving a hypothesis concerning 
the faults that caused the failures. 

Because different software failures vary in severity to the user and in 
frequency of occurrence under certain usage profiles, certain failures can be 
more important than others. Factors such as the development team's 
uncertainty about particular requirements, complexity of particular sections 
of the code, and varying skills of the software development team can result 
in clusters of failure in certain partitions of the set of possible use of the 
software. As discussed in section 5.4 and section 5.5.1, the genetic 
algorithm's fitness function and selection function can address this issue, and 
help support the generation of test cases to identify failure clusters. 

In the case of usage testing, highly fit individuals in the population are 
those that maximize two objectives. The first objective is likelihood of 
occurrence. Maximizing this objective means that the test case individual 
represents a scenario that closely resembles what the user will do with the 
system. The second objective is failure intensity (defined as a combination of 
failure density and failure severity). Maximizing this objective means that 
the test case individual has revealed spectacular failures in the system. 
Highly fit individuals with respect to the rest of the population are those that 
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maximize both objectives as much as possible. To address this issue, a multi
objective GA technique [Fonseca 1995; Deb 1999; Coello Coello et al. 2002] 
is needed. As described in section 5 A, this application makes use of a 
nonlinear aggregating fitness combination [Coello Coello et al. 2002] to 
handle multiple objectives. 

Furthermore, the purpose of the GA in this application is not to find a 
single dominant individual. This does not make sense from a testing 
perspective. Instead, the purpose is to locate and maintain a group of 
individuals that are highly fit. To do so, the GA for this application uses 
niching [Holland 1975; Hom 1994; Mahfoud 1995]. A niche represents some 
subpopulation of individuals who are similar, but different. As the GA runs, 
the most dominant niches (not the most dominant individual) survive. 
Niching used for this application is described in section 5A.3. 

The GA approach is applicable to testing many types of software. For 
example, in section 6 illustrative examples are presented of the application of 
a GA to support high-level usage testing of a military simulation system. For 
this case study, the test cases for a military simulation system consists of a 
variety of scenarios involving entities such as tanks, aircraft, armored 
personnel carries, and soldiers. Each entity can perform a variety of tasks. At 
a basic level, these scenarios involve some primary actor performing a task 
that mayor may not involve a secondary actor, depending on the task. Each 
scenario is performed on a specific terrain map. For example, a scenario may 
consist of using a terrain map of Fort Knox with an MIA1 tank performing 
an Assault on a T-80 tank. In this example, the M1Al tank is the primary 
actor since it performs the task (Assault), and it is the focus of the scenario. 
The T -80 tank is the secondary actor. 

5. GA APPROACH DETAILS 
To implement the GA for this case study example, a number of issues 

had to resolved, including the encoding of real world data, population 
initialization, fitness evaluation, and the use and operation of genetic 
operators. The following subsections discuss these issues and describe the 
internal details of the genetic algorithm. 

5.1. Input Domain Data 
As illustrated in Figure 3, there are three sources for the Input Domain 

Data that serves as input to the GA application shown in Figure 1. First, there 
is data that represents the bounds of the input domain for the software under 
test. This boundary data set does not necessarily specify all possible data 
values; rather it could merely specify the extreme values. For example, 
suppose the system accepts some data value X Then the input boundary data 
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might specify 0 < X < 10. Second, there is data that represents the user's 
profile. This data defines what input data the user is likely to use and, 
implicitly, what data the user is not likely to use. For the previous example of 
the data value X, the user profile may specify 3 < X < 7. The third source of 
input domain data is the set of test cases generated according to the user 
profile. For example, there may be two test cases that specify X as 4 and 6. 
The test cases and user profile data sets must be subsets of the input 
boundary data set. 

Input Boundary 

User Profile 

Figure 3. Input Domain Data. 

Each of these three sources of input domain data is used for a specific 
purpose. The test cases are used to initialize the population. The user profile 
data set is used to help evaluate the fitness of individuals, specifically used to 
determine likelihood of occurrence. This causes the GA to focus its search to 
a particular area of the input domain. The input boundary data set is used to 
validate that new individuals are consistent with what the software under test 
allows the user to do. If an individual is created that lies outside of the 
defined input boundary data set, then that individual will be discarded by the 
GA. 

5.2. Encoding 
The test cases generated by the usage model are converted to an 

encoding based on real numbers for use in the GA population. This type of 
encoding was used so that there is a one to one correspondence between the 
gene and the variable it represents. In addition, it eliminates the problem of 
Hamming cliffs [Goldberg 1990]. Table 1, Table 2, add Table 3 illustrate a 
sample of the assigned identification numbers (IDs) for use in the GA. 
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Terrain ID Number 
1 
2 
3 
4 

TerrainMa 
NTC 
Knox 

Hunter 
Itsec 

Table 1. Terrain Identification Numbers. 

Enti ID Number 
2 
6 
9 
17 
27 

Simulation Enti 
MIAI 
T-80 

M3A3 
SA-9 

UH-60 

Table 2. Entity Identification Numbers. 

Task ID Number 
1 
3 
7 
11 
15 

Task 
Move 

Assault 
Attack 
Hover 

Suppressive Fire 

Table 3. Task Identification Numbers. 

The individuals in the population of the GA consist of variations of these 
IDs. There are ten genes in each individual. The genotype is shown in Table 
4. 

Gene 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Meanin 
Terrain 

Primary Actor 
Task 

Secondary Actor 
XI 
YI 

ZI 
X2 

Y2 

Z2 

Valid Value Ran e 
Values 1- 4 

Values 1- 37 
Values 1-17 
Values 0 - 37 

Values greater than or equal to 0 
Values greater than or equal to 0 
Values greater than or equal to 0 
Values greater than or equal to 0 
Values greater than or equal to 0 
Values greater than or equal to 0 

Table 4. Genotype for individuals in the genetic algorithm. 

Each gene represents an input value that a user could supply to the 
software being tested. The collection of ten genes represents a specific 
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simulation scenario that may be run by the user on the Software Under Test. 
For example, Gene 1 represents the terrain map selected by the user. Gene 2 
represents the primary actor selected by the user, such as a tank (i.e., MIAl, 
T-80), plane, helicopter, etc. Gene 3 represents the task assigned by the user 
to the primary actor, such as Move, Attack, Transport, etc. If the selected 
task requires a secondary actor, the user selects another actor, such as an 
enemy tank, enemy plane, friendly soldier, etc. Gene 4 represents the 
selected secondary actor. If the selected task does not require a secondary 
actor, Gene 4 is assigned a zero value. Genes 5 -7 specify the location of the 
primary actor on the terrain map. If there is a secondary actor involved, then 
Genes 8 - 10 specify the location of the secondary actor on the terrain map. 
If there is no secondary actor, then Genes 8 - 10 represent some destination 
location that the primary actor must reach. An example of an individual is 
shown in Figure 4. This individual represents a scenario with an MIAI tank 
assaulting a T-80 tank on the Fort Knox terrain map. The values shown in the 
first 4 genes of the individual are taken from Table 1, Table 2 and Table 3. 
The values for genes 5 - 10 are taken from the location values specified by 
the test case. 

Test Case 
Terrain: Fort Knox 
Primary Actor: MIA 1 @ location: [400, 34, 0] 
Task: Assault 

~econdary Actor: T-80 @ location: [100, 60, 0] ~ 

y 
Value 2 2 3 6 400 I 34 0 100 60 0 

Gene 2 3 4 5 6 7 8 9 10 

Figure 4. Representation of test cases within the genetic algorithm. 

Invalid individuals are discarded. For example, because a tank cannot 
attack an aircraft, an individual that represents this scenario would be 
discarded. Other invalid scenarios are those that specify locations (Genes 5-
10) that lie outside the bounds of the terrain map. In addition, land vehicles 
cannot be assigned Z coordinate values greater than o. 

5.3. Population Initialization 
To provide the GA with a semi-ideal starting position, individuals in the 

GA are initialized according to the test cases generated by the usage model. 
If the individuals in the GA were initialized randomly, the GA would 'waste' 
generation cycles looking for individuals located within the user profile. 
Furthermore, with random initialization, it is possible that the GA may not 
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find the individuals located in the user profile, and the results will be of little 
value. Because some of the individuals located in the user profile are already 
known, initializing the population with these known individuals can reduce 
the number of GA iterations. 

5.4. Fitness Evaluation 
The fitness of individuals is based primarily on maxImIzmg two 

objectives, as graphically depicted in Figure 5. Optimal individuals are those 
that have a high likelihood of occurring and that result in failures with high 
failure intensity. Optimal individuals occur in zone 1. Inferior individuals are 
those with a low likelihood of occurring and would be located in zone 6. 

While the GA system strives to find optimal individuals, there are two 
reasons that this is not always achievable. First, the software under test may 
be of such high quality that optimal individuals simply do not exist. Second, 
optimal individuals may exist outside of the defined user profile, but not 
within it. If the GA finds such individuals, they will be in zone 6 if they lie 
outside of the high usage areas of the software as defined by the usage 
model. Note that the boundary between the optimal, sub-optimal, and inferior 
zones is not necessarily a hard, distinct boundary. Since the user profile is 
simply an approximation for what the user may do, inferior individuals near 
the boundaries of the optimal and sub-optimal zones may also be of interest. 

Likelihood of 
Occurrence 

Sub-optimal Optimal 

5 4 3 2 I 

~--~--~--~--~--~ 

} 
User Profile 
Uncertainty 

6 Inferior 

Failure Intensity 

Figure 5. Fitness oflndividuals. 

The height of the optimal and sub-optimal zones is determined by the 
uncertainty in the accuracy of the user profile. If the user profile is based on 
historical evidence, or if the profile represents expert users, then the 
uncertainty in the accuracy of the user profile will be lower, resulting in a 
shorter height of the zones. However, if the user profile is based on 
guesswork, or if it represents novice users, then the uncertainty in the user 
profile accuracy will be higher, resulting in a taller height of the zones. The 
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width and number of the optimal and sub-optimal zones is chosen according 
to the level of importance given to the GA concerning various levels of 
failure intensity. For example, if each failure were of equal importance, there 
would be only one optimal zone, no sub-optimal zones, and a width ranging 
from the lowest intensity level to the highest. 

The overall fitness of an individual is based on likelihood of occurrence, 
the failures intensity, and the similarity to other individuals in the population. 
Each of these criteria is discussed in the following sections. 

5.4.1. Likelihood of Occurrence 

Individuals are first evaluated in terms of the likelihood they will be used 
by the user. Individuals containing input data that is very likely to be used by 
the user are very highly fit individuals for this particular objective. 
Individuals that contain input data that is not likely to be used by the user are 
very poorly fit individuals. This evaluation is based on the supplied user 
profile data set. The likelihood of the input data is calculated by mUltiplying 
the probability of occurrence of each input value that is used in the test case. 
For example, suppose the probability distribution for the input data is as 
shown in Table 5. The likelihood that the user would select Input Values 1 
and 2 is 0.15. The likelihood that the user would select Input Values 1 and 3 
is 0.0375. Consequently, a test case involving Input Values I and 2 would be 
rated as being more highly fit than one involving Input Values 1 and 3. The 
case study described in this paper only considers the first 4 genes in 
determining the likelihood of occurrence. This is because genes I - 4 provide 
the basics of the test scenarios while genes 5 - 10 provide the details. 
Likelihood of occurrence is based on the basics, not the details, of the 
scenano. 

Input Value 1 0.75 

Input Value 2 0.20 

Input Value 3 0.05 

Table 5. Input Data Probability Distribution 

5.4.2. Failure Intensity 

In addition to likelihood of use, the test team is also interested in test 
case individuals that find failures. Consequently, the second objective to be 
maximized is Failure Intensity, defined as a combination of failure density 
and failure severity. For example, suppose some individual causes a single 
failure that results in the crash of the software being tested. The Failure 
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Intensity consists of a low failure density (there is only 1 failure) and a high 
failure severity (the system crashes). In contrast, suppose another individual 
causes multiple failures that give erroneous output but do not crash the 
software being tested. In this situation, the Failure Intensity consists of a high 
failure density (there were multiple failures) and a low failure severity (the 
system does not crash, but gives erroneous output). Both of these individuals 
would be of interest, even though the composition of their Failure Intensity is 
different. 

Consider the situation where a test manager differentiates failure severity 
according to five levels, with level 1 the lowest severity and level 5 the 
highest. For an individual test case that causes two level 3 failures, the failure 
intensity could be computed to equal 6, the sum of the failure severities. An 
individual that causes one level 5 failure would have failure intensity equal 
to 5. However, this approach to calculating failure intensity may not be 
satisfactory to the test manager. A single level 5 severity failure may be more 
important than a test case that produces multiple failures of lower severity. 
To handle this situation, a non-linear scoring method such as that shown in 
Table 6 is recommended. 

Severi Level Score 
5 18 
4 12 
3 3 
2 2 
1 1 

Table 6. Example Scoring Technique for Different Severity Levels. 

If this scoring technique were applied, an individual that caused two 
level 3 failures would receive a failure intensity score of 6, and an individual 
that caused a single level 5 failure would receive an intensity score of 18. 
Similarly, an individual that caused three level 2 failures and two level 3 
failures would receive an intensity score of 12. This yields a more useful 
result to the test manager than a linear scoring method. Obviously, the choice 
of scoring algorithm depends on the characteristics of the software being 
tested and the test management objectives. 

5.4.3. Niching 

As a genetic algorithm runs, the population of individuals will eventually 
converge to a single solution that dominates the population, and the diversity 
of the population is ultimately lowered. When a GA is applied to software 
usage testing, each individual represents a single test case. Consequently, the 
genetic algorithm would eventually converge to some test case that is both 
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likely to occur and reveals failures of high intensity. To avoid having a single 
individual dominate the population, a niching technique [Holland 1975; 
Mahfoud 1995; Hom 1997] is used. 

A niche represents some subpopulation of individuals who share some 
commonality. To apply this technique to software usage testing, a niche is 
formed for each unique combination of likelihood, failure intensity, and 
genetic values for the genes 1 through 4. That is, individuals that share the 
same likelihood, failure intensity, and genes 1 through 4 will occupy the 
same niche, or subpopulation. For example, a niche would be represented by 
a likelihood value of .07, a failure intensity value of 12, and genes values {2 
2 3 6} for genes 1 through 4. In a population of 500, there may be 20 
individuals who have these same values and would, consequently share this 
same niche. Another niche would be represented by a likelihood value of .05, 
a failure intensity of 10, and gene values {I 3 3 5} for genes 1 through 4. 
This type of niching is based on both the phenotype and partial genotype of 
the individuals. By implementing niches in the GA, the population will 
converge not to a single dominant individual, but to mUltiple dominant 
niches. 

Specifically, niching is performed based on fitness sharing [Holland 
1975]. Fitness sharing reduces the fitness values of individuals that are 
similar to other individuals in some way (i.e., the various niches in the 
population). This type of niching was used because of its success in prior 
work [Mahfoud 1995]. For this application, an individual's fitness value is 
reduced by dividing its fitness by the number of individuals that share its 
same niche. 

5.4.4. Determining Overall Fitness 

Highly fit individuals in the population are those maXImIze the 
objectives of likelihood of occurrence and failure intensity. A nonlinear 
aggregating fitness combination [Coello Coello et al. 2002] is used to 
identify individuals based on these two objectives. Determining failure 
intensity is already time consuming, therefore, this type of fitness 
combination was selected for its simplicity and speed. In addition, it directly 
addressed the needs of this particular case study. 

Each individual i is given a combined fitness value that is based on the 
likelihood of occurrence of individual i, the failure intensity revealed by 
individual i, and the total number of individuals in the population p that also 
occupy the same niche as individual i. The fitness function to calculate the 
overall fitness value for an individual i is given as follows: 



www.manaraa.com

274 Software Engineering with Computational Intelligence 

F . (.) (Likelihood(i) X Intensity(i))Y ltness l = -'--------''-'---,----::-'---'--'-"---
Niche Size(p, i) 

(1) 

The variable y represents a nonlinear scaling factor that can be adjusted 
by the test team. This scaling factor is independent of the individuals in the 
population. Using the microscope analogy, the y value is analogous to the 
magnification level of the microscope. A higher y value represents a higher 
magnification, and vice versa. The higher the value of y used in the GA, the 
faster the population will converge to the most dominant niches, and the less 
diversity there will be in the population. The lower the value ofy, the slower 
the population will converge and the more diversity there will be in the 
population (assuming that there is no one individual that is exceptionally fit) .. 

If the scaling factor is not high enough, optimal individuals may not be 
found, or would be lost in the process. This may occur in large populations 
when weaker individuals may dramatically outnumber more optimal 
individuals. A higher scaling factor will help optimal individuals survive in a 
large mass of weaker individuals. 

5.5. Genetic Operators 
To create children from a given population, genetic operators such as 

selection, crossover, and mutation operators are applied to the individuals. 
Selection is first used to select parents from the population according to the 
overall fitness value, as discussed in section 5.4. Strongly fit individuals 
(higher fitness values) are more likely to be selected for reproduction than 
weaker individuals (lower fitness values). Consequently, the average 
population fitness should improve with each generation. Once parents are 
selected, crossover and mutation operators are applied to the parents to create 
children. The crossover and mutation operators provide the GA with the 
ability to explore the search space for new individuals and to create diversity 
in the population. The final result is a new population representing the next 
generation. 

5.5.1. Selection 

The GA selection process used for this application is the Fitness 
Proportional Selection [Holland 1975]. With this process, an individual's 
probability of being selected for reproduction is proportional to the 
individual's fitness with respect to the entire popUlation. Each individual's 
fitness value is divided by the sum of the fitness values for all the individuals 
in the population. The resulting fitness value is then used to select parents, 
who then have the opportunity to pass on their genetic material (encoded 
information) to the next generation. Highly fit individuals are therefore more 
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likely to reproduce. This helps to improve the quality of the population. An 
example of fitness proportional values is shown in Table 7. As can be seen, 
individual 4 is the most likely to be selected, and individual 2 is the least 
likely to be selected. Since this process depends on an individual's fitness 
proportional to the population, the tester can easily influence the selection 
process by altering the scaling factor of the fitness function, as discussed in 
section 5.4.4. 

Individual Original Fitness Value New Fitness Value 
1 2 2/21 = .0952 
2 1 1/21=.0476 
3 4 4/21 = .1904 
4 9 9/21 = .4285 
5 5 5/21=.2381 

Sum 21 .9998 

Table 7. Example of fitness proportional values. 

5.5.2. Crossover 

To create children, the GA for this application uses a single-point 
crossover operator that takes two parent individuals as input and outputs two 
children that are similar, but different, from the parents. This operator 
randomly selects a point in the genetic code of two parents and then swaps 
all genes between the parents that lie after the crossover point. When 
crossover is allowed between parents from different niches, diversity is 
encouraged. For this case study, every individual in each generation is 
processed by the crossover operator, and, if a child represents an invalid 
scenario, it is discarded from the population and replaced by its 
corresponding parent. For example, if Child 1 were invalid, it would be 
removed and replaced by Parent 1. The basic operation of crossover is shown 
in Figure 6. 
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Parent I 

Parent 2 

Parent I Genes Parent 2 Genes 

A 

Ii] Child I f 2 2 3 f5 I 10 94 300 94 o I 
Child 2 4 3 400 34 100 60 o 1 l [6 I ~I 

Y _------7 

Parent 2 Genes Parent I Genes 

Figure 6. One-point crossover. 

5.5.3. Mutation 

In addition to the crossover operator, the GA for this application uses a 
single-point mutation operator that takes one individual as input, makes a 
small, random change to the genetic code of this individual, and outputs one 
mutant that is similar, but different, to the original individual. This operator 
randomly selects a gene in the genetic code of an individual and mutates that 
gene by randomly selecting some new value. For this case study, every 
individual in each generation is processed by the mutation operator, and, if 
the mutant represents an invalid scenario, it is discarded from the population 
and replaced by the original individual. The basic operation is shown in 
Figure 7. 

Individual 
¥ Randomly Selected Mutation Point 

2 I 2 3 6 400 34 o 100 60 o 

Mutant 

2 2 8 6 400 34 o 100 60 o 

......... Randomly Selected Genetic Value 

Figure 7. One-point mutation. 
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6. EXAMPLE 
The application of the GA to software usage testing was based on a 

military simulation system. The population of interest for the examples 
included four terrain maps, thirty-seven primary and secondary actors, and 
seventeen tasks that are available for use with OTB. 

To focus on observing and understanding the behavior of the GA for use 
in software testing, the Failure Intensity Evaluation portion of Figure 1 was 
simulated. Test cases were not actually performed on the military simulation 
system. A set of simulated failures was developed for use in all the examples. 
Simulated failures included problems with terrain maps, problems with a 
specific entity or task regardless of terrain, actor, etc. These simulated 
failures were representative of the types of problems seen in the real system. 
Failure intensities greater than 12 represented system crashes. Failure 
intensities less than 12 represented non-terminating failures. The scoring 
system used is shown in Table 8. This is the same scoring technique 
proposed in Table 6. Multiple failures per test case were also simulated. As a 
result, a test case may reveal a failure intensity of 5, meaning that there were 
two failures of with a score of 3 and 2, respectively. 

Score Meanin 
18 Repeatable, tenninating failure 
12 Irregular, tenninating failure 
3 Repeatable, non-tenninating failure 
2 Irregular, non-tenninating failure 
1 No failures 

Table 8. Failure intensity scoring system. 

Two similar, but slightly different, user profiles were developed to 
examine the behavior of the GA when slight changes in a user profile occur. 
Sample test cases were generated for each user profile. The GA was 
initialized using each set of sample test cases, the corresponding user profile, 
and the input boundary (as described in section 5.1). For all the GA runs, the 
population size was 100 and the number of generations was 30.The results 
for three examples of the GA are shown in Figure 8, Figure 9, Figure 10, 
Figure 11, Figure 12 and Figure 13. Each point on the graphs represents a 
niche in the population, not a single individual. The data supporting these 
figures is shown in Table 9, Table 10, Table 11, Table 12, Table 13, and 
Table 14, respectively. These tables also show how many individuals occupy 
each niche. 

In the first example, Figure 8 shows the niches that were formed after the 
fitness evaluation of the first generation formed from test cases generated 
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according to User Profile 1. Figure 9 shows the niches that were formed after 
the fitness evaluation of the thirtieth generation. Notice that after 30 
generations, the GA has converged to a few dominant niches. A comparison 
of Figure 8 and Figure 9 indicates that the GA has found four more niches 
that are very likely to occur and contain high failure intensities. Weaker 
niches did not survive. 

In the second example, Figure 10 shows the niches that were formed 
after the fitness evaluation of the first generation formed from test cases that 
were generated according to User Profile 2. Figure 11 shows the niches that 
were formed after the fitness evaluation of the thirtieth generation. Notice 
that after 30 generations, the population of the GA has not converged 
sufficiently, but rather grew more divergent. This suggests that the fitness 
function and selection process are not sufficiently countering the effects of 
the crossover and mutation operators. 

In the third example, the GA was reapplied using the same input data as 
in the second example. However, the scaling factor of the fitness function 
was increased from a value 1 to 2. This was done to increase the convergence 
of the population, so that the final population does not grow more divergent 
as in the second example. The initial niches for this example of the GA, 
shown in Figure 12, were the same as for the second example (i.e., Figure 12 
is identical to Figure 10). However, as shown in Figure 13, the results were 
much different from that of Figure 11. These results are very similar to those 
shown in Figure 9. The GA has found four new niches that are very likely to 
occur and contain high failure intensities. The weaker niches did not survive. 

The third example demonstrates a key aspect of the fitness function of 
the GA. The scaling factor of the fitness function plays a critical and delicate 
role in the finding and maintaining of optimal solutions. As illustrated in the 
second example, if scaling factor is too low, optimal solutions may not be 
found because the level of exploitation is diminished. However, if the scaling 
factor is too high, diversity and exploration will be diminished. 

In the last two examples, the GA was able to overcome a less than 
optimal initial population. Notice in Table 11 and Table 13 that the initial 
populations were heavily biased towards the niche with the highest 
likelihood and low failure intensity. Table 12 and Table 14 show that the 
final populations are more balanced (in comparison to Table 11 and Table 
13, respectively), and resulted in niches that are more interesting in terms of 
high failure intensity, while also being very likely to occur. 

Finally, in each example, the final populations consist of niches that are: 

1. Very likely to occur and resulted in a high failure intensity 

2. Similar, but different. As described in [Myers 1979], similar, but 
different, test cases help to identify the failure's root cause. 



www.manaraa.com

A Genetic Algorithm Approach to Focused Software Usage Testing 279 
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Figure 8. Test case niches for User Profile 1 after Generation 1. 
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Figure 9. Test case niches for User Profile 1 after Generation 30. 
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Likelihood 
Failure 

Terrain 
Primary 

Task 
Secondary Niche 

Intensity Actor Actor Size 
0.0005 1 Itsec M16A2 Suppressive AK47 6 

Fire 
0.0005 3 Itsec M16A2 Suppressive AK47 1 

Fire 
0.0040 20 Hunter AH-64 Recon SA-9 1 
0.0040 20 Hunter AH-64 Recon SA-IS 7 
0.0043 9 Itsec M16A2 Location AK47 5 

Fire 
0.0043 12 Itsec M16A2 Location AK47 1 

Fire 
0.0067 15 NTC MIAI Assault BMP-2 7 
0.0072 10 Itsec AH-64 Attack T-72 3 
0.0072 13 Itsec AH-64 Attack T-72 3 

0.0080 18 Itsec M3 Transport 
SAW 

5 
Gunner 

0.0080 21 Itsec M3 Transport 
SAW 1 

Gunner 
0.0083 3 Knox MIAI Assault SA-9 7 
0.0111 1 Knox AC-130 Attack SA-IS 6 
0.0185 14 Knox AH-64 Recon BMP-2 6 
0.0223 18 NTC M3 Transport DI-M224 7 
0.0370 15 Knox AC-130 Ingress SA-IS 7 
0.0370 15 Knox AC-130 Ingress SA-9 7 
0.0370 21 Knox AC-130 Ingress T-80 7 
0.0603 11 NTC MIAI Assault T-72 7 
0.0750 9 Knox MIAI Assault T-80 6 

Table 9. Number of individuals for test case niches shown in Figure 8. 
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Likelihood 
Failure 

Terrain 
Primary 

Task 
Secondary Niche 

Intensity Actor Actor Size 

0.0223 18 NTC M3 Transport 
SAW 

5 
Gunner 

0.0223 18 NTC M3 Transport DI-M224 7 
0.0370 IS Knox AC-130 Ingress SA-IS 3 
0.0370 IS Knox AC-130 Ingress SA-9 8 
0.0370 21 Knox AC-130 Ingress T-80 8 
0.0603 9 NTC MIAI Assault T-80 6 
0.0603 11 NTC MIAI Assault T-72 5 
0.0603 21 NTC MIAI Assault T-80 19 
0.0603 23 NTC MIAI Assault T-72 13 
0.0750 9 Knox MIAI Assault T-80 II 
0.0750 II Knox MIAI Assault T-72 IS 

Table 10. Number of individuals for test case niches shown in Figure 9. 
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Figure 10. Test Case Niches for User Profile 2 after Generation 1. 
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Final Test Case Niches 
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Figure 11. Test Case Niches for User Profile 2 after Generation 30. 

Likelihood 
Failure 

Terrain 
Primary 

Task 
Secondary Niche 

Intensitv Actor Actor Size 
0.0185 2 Knox AH-64 Recon SA-9 8 

0.0223 18 NTC M3 Transport 
SAW 

8 
Gunner 

0.0370 15 Knox AC-130 Ingress SA-15 7 
0.0669 9 NTC MIAI Assault T-80 8 
0.0833 11 Knox MIAI Assault T-72 8 
0.0999 1 Knox AC-130 Attack SA-9 8 
0.1499 2 Knox AH-64 Attack SA-9 53 

Table 11. Number of individuals for test case niches shown in Figure 10. 
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Likelihood Failure Terrain Primary Task Secondary Niche 
Intensity Actor Actor Size 

0.0223 12 NTC M3 Transport DI-M224 4 
0.0223 18 NTC M3 Transport DI-M224 2 
0.0321 20 Hunter AH-64 Attack SA-9 7 
0.0370 15 Knox AC-130 Ingress SA-15 10 
0.0370 15 Knox AC-130 Ingress SA-9 5 
0.0370 21 Knox AC-130 Ingress T-80 4 
0.0669 9 NTC M1A1 Assault T-80 9 
0.0669 11 NTC M1A1 Assault T-72 8 
0.0669 21 NTC MIAI Assault T-80 18 
0.0669 23 NTC MIAI Assault T-72 13 
0.0833 9 Knox MIAI Assault T-80 5 
0.0833 11 Knox MIAI Assault T-72 9 
0.1499 2 Knox AH-64 Attack SA-9 6 

Table 12. Number of individuals for test case niches shown in Figure 11. 
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Figure 12. Test Case Niches for User Profile 2 after Generation 1 with scaling factor 
of2. 
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Final Test Case Niches 
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Figure 13. Test Case Niches for User Profile 2 after Generation 30 with scaling factor 
of2. 

Likelihood 
Failure 

Terrain 
Primary 

Task 
Secondary Niche 

Intensity Actor Actor Size 
0.0185 2 Knox AH-64 Recon SA-9 8 

0.0223 18 NTC M3 Transport 
SAW 

8 
Gunner 

0.0370 15 Knox AC-130 Ingress SA-15 7 
0.0669 9 NTC MIAI Assault T-80 8 
0.0833 11 Knox MIAI Assault T-72 8 
0.0999 I Knox AC-130 Attack SA-9 8 
0.1499 2 Knox AH-64 Attack SA-9 53 

Table 13. Number of individuals for test case niches shown in Figure 12. 

Likelihood 
Failure 

Terrain 
Primary 

Task 
Secondary Niche 

Intensity Actor Actor Size 
0.0370 15 Knox AC-130 Ingress SA-15 5 
0.0370 21 Knox AC-130 Ingress T-80 7 
0.0669 9 NTC MIAI Assault T-80 2 
0.0669 11 NTC MIAI Assault T-72 9 
0.0669 21 NTC MIA I Assault T-80 30 
0.0669 23 NTC MIAI Assault T-72 31 
0.0833 9 Knox MIAI Assault T-80 6 
0.0833 11 Knox MIAI Assault T-72 10 

Table 14. Number of individuals for test case niches shown in Figure 13. 
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7. CONCLUSIONS 
This paper introduces a genetic algorithm approach to software usage 

testing that is used to explore the space of input data and identify and focus 
on regions that cause failures. Analysis of the examples in this paper 
demonstrates that genetic algorithms can be used as a tool to help a software 
tester search, locate, and isolate failures in a software system. The use of 
genetic algorithms supports automated testing and helps to identify those 
failures that are most severe and likely to occur for the user. 

The strategy presented in this paper relies on a technique that not only 
helps the tester to isolate failure clusters, but also provides the developer 
with more information concerning the faults in the software and the input 
values that triggered them. The developer can then use this information to 
search, locate, and isolate the faults that caused the failures. The result can 
improve efficiency of both the testing and the development teams and can 
support subsequent improvements in the software development process. 

The examples discussed in this paper raise a number of new ideas and 
issues for future consideration, such as the use of a global parallel genetic 
algorithm, different representation scheme, restrictive mating, and genetic 
algorithm parameter sensitivity to different user profiles. For example, 
current testing practice involves several testers working on different test 
cases at the same time. For the example application discussed in this paper, 
the fitness evaluation lends itself readily to parallelism. A global parallel 
genetic algorithm could take advantage of this parallelism. Such an approach 
could provide automated support to the current testing practice of distributed 
work effort. While each of these areas for future consideration could be 
further investigated with respect to applicability for software testing, as 
demonstrated by the examples of this paper, the simple genetic algorithm 
approach presented in this paper provides in itself a useful contribution to the 
selection of test cases and a focused examination of test results. Thus, 
application of this approach can support reasoning about test results to 
support quality system assessment and/or debugging activities. 
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ABSTRACT 

Software design patterns describe simple and elegant solutions to specific 
design problems. Design patterns capture design knowledge that have been 
discovered, evolved over time and proven to be effective in solving design 
problems. Application of design patterns improves software productivity and 
quality. Therefore the use of design patterns is rapidly increasing. However, 
it is not an easy task to choose an appropriate pattern to be applied from 
among the plethora of patterns. This is partly due to the learning curve 
involved to understand what each pattern can do for the designer. In this 
paper we present a methodology for constructing expert systems which can 
suggest design patterns to solve a designer's design problems. The 
methodology details the knowledge acquisition, knowledge representation 
and expert systems implementation activities. It is illustrated through the 
prototyping of the Expert System for Suggesting Design Patterns (ESSDP). 
Evaluation of the ESSDP by subjects other than the original developers 
indicates that the system indeed could suggest the needed design patterns 
effectively. 

KEYWORDS 
Design Patterns, Expert Systems, Object Oriented Design, Software 
Engineering. 

1. INTRODUCTION 

To cope with evolving requirements, software systems need to be 
flexible and easily updateable to incorporate the changes. This flexibility can 
be achieved by the use of appropriate design patterns. Design patterns 
provide a proven structure and characteristics for building highly 
maintainable and extendible software. According to [tich02a], the purpose of 
design patterns is to capture software design know-how and make it reusable. 
Design patterns can improve the structure of software, facilitate maintenance, 
and help avoid architectural drift. Design patterns also improve 
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communication among software developers and empower less experienced 
personnel to produce high-quality designs. Design patterns make design 
more reusable besides capturing the know-how of design [tich98a]. 
Successful reuse of well-designed and well-tested software components 
improves software productivity, software quality and software reliability. 
Our experience in Internet software development also indicates that the use 
of design patterns significantly enhances the development team's ability to 
tackle complex design problems. 

As per [alex77a], "each pattern describes a problem which occurs over 
and over again in our environment, and then describes the core of the 
solution to that problem, in such a way that you can use this solution a 
million times over, without ever doing it the same way twice". Patterns have 
roots in many disciplines, including plays, novels and most notably in 
Alexander's work on urban planning and building architecture. 

The concept of design patterns is very much applicable to object oriented 
software. Software design patterns describe simple and elegant solutions to 
specific problems in object-oriented software design [gamm95a]. Design 
patterns capture solutions that have been discovered, developed and evolved 
over time. Each design pattern essentially has a pattern name, problem 
context, a general solution and related consequences. The pattern name is a 
noun phrase which summarizes the problem and solution and is easy to 
remember and communicate. For example, the singleton pattern provides an 
elegant solution to the problem of needing at most one globally accessible 
instance of an object like a database manager. Software developers then can 
refer to the name "singleton pattern" to communicate design ideas instead of 
having to repeat the problem and solution again and again. 

Gamma et al classifies the twenty-three design patterns presented in their 
book [gamm95a] as: 

• Creational Patterns, which comprise of Abstract Factory, Builder, 
Factory Method, Prototype and Singleton. These patterns provide various 
solutions for creating objects to serve different purposes. 

• Structural Patterns, which comprise of Adapter, Bridge, Composite, 
Decorator, Facade, Flyweight and Proxy. These patterns provide 
solutions for composing or constructing larger structures that exhibit 
some desired properties. And 

• Behavioral Patterns, which comprise of Chain of Responsibility, 
Command, Interpreter, Iterator, Mediator, Memento, Observer, State, 
Strategy, Template Method and Visitor. These patterns deal with the 
algorithmic or behavioral issues of software design. 

Use of software design patterns is rapidly increasing, propelled by the 
eagerness of the object-oriented community to enable efficient software 
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reuse. It is of interest to note that the software industry agrees with the 
benefits of design patterns explained earlier [beck96a]. All six companies 
(FCS, AT&T, Motorola, BNR, Siemens and ffiM) studied in [beck96a] 
agreed that design patterns are extracted from working models, capture 
design essentials and provide a good medium of communication. All but one 
company had the opinion that they enabled sharing of best practices. 
However, the roses have thorns and some companies had serious concerns 
regarding the challenges faced with design patterns. Some companies found 
that patterns are difficult and time consuming to write. Three of those 
industrial houses suggested that patterns should be introduced through 
mentoring. While a couple of companies felt that patterns require practice to 
write. 

While the effective usage of design patterns is indispensable, finding out 
the most suitable one is a problem. One approach is to manually go through 
each one of them, or classes of patterns and narrowing down on a particular 
pattern. While this can be a chore for the novice in design patterns, experts 
can easily propose a design pattern suitable for the situation. The dearth of 
experts and the prohibitive costs to employ an expert designer pose a serious 
challenge to enterprises. The research by [schm96a] identifies a number of 
factors including organizational, economic, political and psychological 
factors that have been an impediment to wide spread use of design patterns. 
In addition to the above reasons, we feel that a salient impediment to their 
use is lack of flair for abstraction on the part of the developer. The situation 
worsens due to the exhaustive study that needs to be undertaken by the 
developer to conclude on the design patterns to be used in development. 

To mitigate this problem one could hire an expert on design patterns or 
resort to an expert system which could suggest an appropriate software 
design pattern (SDP) to the developer. Expert systems are systems capable of 
offering solutions to specific problems in a way and level comparable to 
experts. According to [rile02a], "programs, which emulate human expertise 
in well-defined problem domains, are called expert systems". Expert systems 
have been applied to solve problems in various domains. 

In this paper we present a methodology to design and prototype an expert 
system for suggesting design patterns (ESSDP). The ESSDP selects a design 
pattern through dialog with the software designer to narrow down the 
choices. The dialog between the user and the system is a question and answer 
session, with the system posing questions and the user answering them. 
Classification and heuristics have been utilized to improve effectiveness. 

Development of such an expert system involves initial knowledge 
acquisition, prototype development, prototype evaluation and continuous 
knowledge base refinement and enhancement [birm86a]. We have completed 
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the initial knowledge acquisition, prototype development and prototype 
evaluation. Continuous refinement and enhancement is an ongoing activity. 
In our approach, the knowledge acquisition process represents acquired 
knowledge as trees where each node in the tree represents a circumstance 
under which a pattern could be applied. The proposed methodology details 
the process of formulating questions from these circumstances. To improve 
navigation efficiency, the questions are classified into various levels, each 
level contains questions with similar purposes. The methodology also 
enunciates a scheme to assign weights to the answers of the pattern-related 
questions. A pattern is selected once the weights of the answers for that 
pattern crosses the selection threshold value of that pattern. The proposed 
system was proto typed using CLIPS [rile02a]. The question and answer 
session was coded as rules. The rule-base had rules that were fired depending 
on the facts asserted by the user's answers. The system was validated 
successfully and found to be selecting appropriate patterns effectively. 

This paper is organized as follows. The next section presents related 
work. Section 3 describes our five step methodology and section 4 the 
prototyping of ESSDP. A preliminary evaluation of the ESSDP system is 
given in section 5 which contains and explains the experimental results 
obtained from a small group of subjects who had used the system. The 
concluding remarks and future work are discussed in section 6. 

2. RELATED WORK 

By the time of writing, we have not found publications that report on 
expert systems for suggesting design patterns. Therefore, this section mainly 
reviews some work related to research and applications of design patterns. 

Gamma et aI's book [gamm95a] is a classic book on design patterns. It 
contains a comprehensive treatment of twenty-three commonly used patterns, 
classified into creational patterns, structural patterns and behavioral patterns. 
Nobel [nobI98a] discusses relationships between design patterns, that is, a 
pattern uses another pattern, a pattern refines another pattern or a pattern 
conflicts with another pattern. Also mentioned are relationships stating that a 
pattern is similar to another pattern or one pattern is combed with another 
pattern. The mapping of the latter to the former is demonstrated in the paper. 

Tichy [tich98a] provides a catalogue for over 100 general-purpose 
design patterns. Tichy categorizes all design patterns into nine broad 
categories, which are termed as "top level categories". These nine categories 
are decoupling, variant management, state handling, control, virtual machine, 
convenience patterns, compound patterns, concurrency and distribution. It is 
suggested in the paper that categories should be mutually exclusive 
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(exceptions may be allowed in some cases), and subcategories are strict 
subsets of the parent categories and should be mutually exclusive as far as 
possible. 

Many developers have considered design patterns for development of 
software, and focused on understanding design patterns. Monroe [monr97a] 
explored the capabilities and roles of design patterns, architectural styles and 
objects and their strengths and limitations. Riehle [Rieh96] discussed the 
crucial aspects of the pattern concept, relate patterns to the different models 
and pattern forms to help developers understand and apply patterns. Tan 
[tanh99a] proposed to apply patterns to solve problems that occur in database 
applications such as reuse of transaction specifications and external error 
handling. The patterns proposed can be applied during database design and 
design verification. Herrmann [herr99] described the application of 00 
software design within the CHAMP project. "Abstract Factory" and 
"Fa~ade" patterns were applied. Enhancement of flexibility and the 
limitations were discussed with implementation examples. In [schm96a], the 
author described how design patterns were applied on a number of large
scale commercial distributed systems as well as ways to avoid common traps 
and pitfalls of applying design patterns. 

Re-engineering of existing software using design patterns to improve 
reusability, maintainability and understandability is discussed by Keller 
[ke1l99a]. An environment for re-engineering of design components based on 
the structural descriptions of design patterns were described using three case 
studies. Like Keller, William Chu [chuw99a] has used the parallel program 
generation environment (PPGE) as a case study to the re-engineering of a 
traditional software system into a pattern based software system. The result 
achieved is that it is better to re-engineer legacy systems rather than re
designing them as re-engineering is more cost effective and less risky. 
Masuda [guomOOa] has described the application of software design patterns 
for redesigning existing software. The evaluation of the resulting software 
and the existing software is accomplished using C&K metrics [chid94a]. 
This paper shows that the application of design patterns to software greatly 
enhances its flexibility and makes it more easy to extend. 

3. THE METHODOLOGY 

In this section, we describe our approach for developing expert syst~ms 
that can suggest design patterns. In particular, we will describe the 
methodology that we used to develop the Expert System for Suggesting 
Design Patterns (ESSDP). ESSDP is a tool that selects a design pattern based 
on the user's requirements. ESSDP engages the user in a question-answer 
session that helps narrow down the selection process. At the end of the 
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process a suitable design pattern is suggested with a certainty. The ESSDP is 
a selection type of expert system and hence we choose to use a rule-base as 
the knowledge base of choice to develop ESSDP. Besides, a rule-based 
expert system has been proven to be useful due to its ease of development, 
extension and enhancement. The rules that form the rule-base are if-then 
conditionals that capture the expert knowledge [pede89a]. 

ESSDP is aimed to help a beginner to find/decide on which pattern to 
use for a particular design situation. It can also be used to validate a 
designer's choice of a particular design pattern. Use of ESSDP can be 
integrated well with standard software processes. 

Software development process generally iterates through the stages of 
specification, analysis and design, implementation, testing and evolution. A 
widely accepted incremental and iterative process is the Unified Process 
(UP) [jacob99a]. The UP is architecture centric, use case driven and 
acknowledges the risks involved. It spreads the software development 
activity among requirements, analysis, design, implementation and testing 
workflow. For each increment (a portion of the system with a sub-set of the 
functionality) one iterates the process involving the above five workflows. 
Usually each workflow includes a few iterations before satisfactory outputs 
are produced for the next workflow. In particular, during the design 
workflow the system analyst or designer produces a first cut of the classes 
and refines it until the requirements for that increment are fulfilled by the 
classes. We recommend that the system analyst/designer consider use of the 
ESSDP after the first cut (iteration). After the first iteration a designer is 
more aware of the design problemslissues and is in a better position to 
answer the questions posed by ESSDP, thus enhancing the benefits from this 
tool. An interesting observation made by Hunt [huntOOa] is that during the 
initial iterations of system design majority of the problems are related to 
architectural/structural issues while the later iterations deal with problems 
that are more behavioral. ESSDP can provide suggestions for architectural, 
structural and behavioral design problems. Hence it is useful throughout the 
design workflow over various increments. 

The methodology for developing an expert system like ESSDP consists 
of five iterative steps, summarized as follows: 

• Step 1. Identify circumstances in which a pattern can be applied. 
• Step 2. Refine the circumstances with sub conditions. 
• Step 3. Formulate questions to ask the user. 
" Step 4. Classify the questions according to their levels of significance. 
• Step 5. Assign thresholds to patterns and weights to questions. 
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After step 5, the results are implemented using an expert system shell. 
This will be described in the next section'(Prototyping). Here we describe the 
five steps in greater detail in the following subsections: 

3.1. Stepl. Identify Circumstances In Which A Pattern Can 
Be Applied 

Prior to constructing the rule-base we perform knowledge acquisition. 
Knowledge acquisition refers to the task of gathering the required knowledge 
and verifying it. During this phase literature on object-oriented software 
design patterns was reviewed and analyzed. For prototyping ESSDP, we 
limit our knowledge acquisition to literature survey because we feel that the 
literature on design patterns has contained rich knowledge that is adequate 
for our initial effort. The expert system designer may interview human 
experts to obtain knowledge on design patterns. The authors serve as 
knowledge engineers as well as experts in the field of design patterns. The 
expertise among the authors is at varied levels with one of the authors 
possessing academic and industrial experience of patterns. The other three 
authors, which include two masters and one doctoral student, have practiced 
patterns in an industry sponsored project and have reviewed literature on 
patterns. 

For the prototype we select the design patterns in Gamma's book 
[gamm95a]. Each design pattern is analyzed and its characteristics are 
identified. For every design pattern, we formulate a set of circumstances in 
which the pattern can be used. From the set of circumstances, at least one 
circumstance has to occur for that design pattern to be applied. Some patterns 
may require more than one circumstance to be present. These circumstances 
are conditions for the applicability of that design pattern. Henceforth we will 
refer to these circumstances as conditions and vice versa. 

An example of knowledge acquisition by the above method can be 
explained using the adapter pattern. The adapter pattern, by its name, makes 
the interface of one component or object conform to the other by delegating 
the request from the client to the real subject. Figure 1 illustrates the adapter 
pattern in the Unified Modeling Language (UML). It lets classes with 
incompatible interfaces work together [gamm95a]. 
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Figure 1. Class adapter and object adapter in UML. 

Figure 1 shows two adapter patterns, one class adapter and the other 
object adapter. The class adapter implements an interface which the client 
wants to see. The adapter also subclass to the Adaptee class and hence 
inherits the superclass' behaviors. A request from the client is fulfilled by 
calling the appropriate method (specificRequestO in the figure) that is 
inherited from the superclass. Thus, the class adapter adapts the interface of 
the Adaptee class to the interface that the client wants. Similarly, the object 
adapter does the same except that it adapts the interface of a particular 
instance of an object class rather than the interface of a class. In this case the 
object adapter delegates the request from the client to an instance of the 
Adaptee class. 

From the description of the adapter pattern [gamm95 a] , we can derive 
the following list of conditions: 

AI: Want to use an existing implementation. 
A2: Desired interface is different from the existing 

interface. 
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This set of conditions can be depicted graphically as a tree shown in 
Figure 2. Note that Al alone is not sufficient for suggesting the adapter 
pattern but Al and A2 would be. 

3.2. Step 2. Refine The Circumstances With Subconditions 

As a result of Step 1 we obtain various trees similar to Figure 2 for each 
pattern. In step 2 we refine each condition into possible subconditions. This 
is done for each tree from Step 1. A sub-condition is depicted as a child of a 
condition in the tree. This is illustrated in the Figure 3. In the Figure we see 
that A 1 has three children All, A 12 and A 13, while A2 has A 13 and A21 as 
its children. Further, All has AlII as its child. 

Figure 2. An initial circumstance tree from the Adapter pattern. 

Adapter 

Figure 3. The circumstance tree for the Adapter pattern. 

From Step I we had Al to A2 as the conditions needed for the adapter 
pattern to be applied. The child conditions for these three conditions are the 
subconditions. Each child condition describes the possible circumstances for 
the occurrence of its parent condition. This can be explained by looking at 
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the refinements of condition Al (Want to use an existing implementation) 
which are: 

All: Want to save time and effort. 
A12: Re-implementation of an existing class is costly. 
A13: Need to use third party software. 

Each child condition of Al is a condition for Al to occur. It can be 
interpreted as: "wanting to use an existing implementation" could be due to 
"needing to use third party software", another reason could be that the 
existing class is costly to re-implement, etc. Similar refinement is carried out 
for each node in the tree, unto a considerable level. 

Notice that A13 is a subcondition for Al (Want to use an existing 
implementation) as well as A2 (Desired interface is different from the 
existing interface). This implies that A13 is also a subcondition for A2. In 
other words one of the reasons for A2 is the presence of third party software, 
which is denoted by A 13. 

Similarly each pattern tree is refined to add subconditional nodes. 

3.3. Step 3. Formulate Questions To Ask The User 

As a result of Step I and Step 2 we obtain the tree representation I of 
knowledge about design patterns. That is, a set of trees with various levels of 
conditions represented as nodes. These trees are the means that help us 
derive the questions that are asked of the user. The answers to these 
questions get asserted as facts in the knowledge base. These facts in tum may 
fire some rules. The rules either suggest a pattern or ask more questions, 
when enough information is not yet-available. 

In this step, we convert each node from the tree to a question, preferably, 
answerable by either yes or no. For example, the node Al (Want to use an 
existing implementation) from Figure 3 can be framed as the following 
question "Do you want to use an existing implementation?". Similarly, node 
A13 (Third party software) becomes "Is a part/class of your system a third 
party software?" 

The result of this step is a set of questions formulated for each tree 
generated from Step 2. 

3.4. Step 4. Classify The Questions According To Their 
Levels Of Significance 

During this phase we partition the various questions into different levels. 
Each level then consists of a few questions. The questions in each level are 
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directed towards reducing the search space to select a design pattern. The 
questions are divided among the following five levels: 

• Level 0: pattern category selection questions 
• Level 0.5: pattern subcategory selection questions 
• Levell: intent questions 
• Level 2: pattern specific questions 
• Level 3: auxiliary questions 

Each of these levels is explained In greater detail In the following 
subsections. 

3.4.1. Level 0: Pattern Category Selection Qnestions 

This level contains questions that narrow down the search space to a 
particular classification of patterns. In accordance to [gamm95a], the twenty
three design patterns are classified into creational patterns, structural patterns 
and behavioral patterns. Creational patterns deal with creation or 
instantiation of objects. Structural patterns describe structural compositions 
of classes and objects. Behavioral patterns provide ways to assign 
responsibilities to objects and designing the communications between 
various objects and their interconnections [gamm95a]. 

The user's response to a Level 0 question guides the system to focus on 
questions relating to the patterns in the group selected by the user. As an 
example, for the ESSDP to distinguish between creational, structural and 
behavioral patterns we present the user with the following questions: 

LOQl: Is your design problem concerned with: 
creating complex objects -or
architectural structures of classes -or
behavioral aspect of objects -or-
don't know? 

Selection of an option from LOQ 1, asserts a corresponding fact in the 
system. This fact determines which other questions to be asked of the user. 
The first option asserts a fact that steers the system towards questioning 
related to creational patterns. While the second option shifts focus to 
questions related to structural patterns and the third option towards 
behavioral patterns. Finally, the last option indicates that the user cannot 
choose. In this case, the system will ask Level 0.5 questions (see section 
3.4.2) from all categories, resulting in more questions need to be asked. The 
strategy we have used to develop the ESSDP is to ask a couple of questions 
from each of the Level 0.5 categories and narrow down the search space 
according to the users answers to these questions. A positive answer 
enhances the likelihood to pursue that category and a negative answer 
reduces the likelihood. 
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3.4.2. Level 0.5: Pattern Subcategory Selection Questions 

The questions at this level are an auxiliary to the purpose of level 0 
questions. That is, the questions at level 0.5 also help narrow down the 
search space to a classification of patterns. This is done through 
classification of patterns within each category of level 0 patterns, that is, the 
categories of creational patterns, structural patterns and behavioral patterns. 
Consider for example the seven structural patterns from [gamm95a]: adapter, 
bridge, composite, decorator, facade, flyweight and proxy. As discussed 
earlier the adapter provides a uniform abstraction of various interfaces by 
making one interface conform to the other. The bridge pattern lets one 
change the implementation without having to change the abstract interface. 
The composite pattern describes formation or compositions of objects in 
part-whole hierarchies; thus, it allows clients to treat each object uniformly. 
The decorator pattern allows a program to dynamically add or remove 
functionality to objects. This is achieved by describing an alternative to 
subclassing to extend the object's functionality. The facade pattern helps 
create a simple, unified interface to a subsystem or a group of subsystems. 
The flyweight pattern describes how to share large number of objects 
efficiently. The proxy pattern is used to provide a surrogate for controlled 
access to an object [gamm95a]. 

To partition the seven structural patterns the expert system designer must 
analyze the patterns to find partition criteria. Various partition criteria can be 
defined, depending on the set of patterns at hand. For the seven structural 
patterns, we found that some of them dealt with interface issues while the 
others dealt with complex structures to enhance functionality, security and/or 
efficiency. Thus, we partition the seven structural patterns into two groups, 
the first group having four patterns and the second group three. The first 
group named interface consists of adapter, bridge, facade and proxy patterns. 
These patterns are grouped together since each one of them deals with issues 
relating to the interface of classes or objects. The second group named 
complex consists of composite, decorator and flyweight patterns. The 
patterns in this group deal with complex architectures of not just a couple of 
objects but various objects. 

The question that is formulated then is: 

LO.SQ1: Is your design problem concerned with 
component interfacing -or-
constructing a complex component through 
composition? 

Figure 4 depicts the hierarchy of patterns resulting from above steps. 
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Creational 

Complex 

Figure 4. A classification of design patterns. 

As is evident from figure 4, the patterns are grouped as creational, 
structural and behavioral patterns. The questions at level 0 guide the search 
of patterns towards one group out of the three. In structural pattern hierarchy 
there is another subgrouping of interface and complex model patterns. The 
questions at level 0.5 reduce the focus of search to even fewer patterns 
present in the subgroup. The answers from the questions that constitute level 
1, 2 and 3 finally guide the expert system to suggest a design pattern. These 
levels are explained in detail below. 

3.4.3. Levell: Intent Questions 

The questions of level 1 are derived from the intent or main idea of each 
pattern. The intent of each pattern is used to formulate one question for each 
pattern. Care is taken that the question represents the gist of the pattern, 
nothing more and nothing less. 

This step derives most of its questions from the set of questions that 
resulted from step 3. Below are some example questions that qualify as level 
I: 
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LIQ1: Is your design problem concerned with adapting one 
interface to another? 

LIQ2: Is your design problem concerned with notifying 
other objects when an object changes? 

LIQ3: Is your design problem concerned with state 
dependent behavior? 

LIQ4: Is your design problem concerned with selecting 
algorithms according to needs? 

The question L I Q I summarizes the adapter pattern, L I Q2 the observer 
pattern, L 1 Q3 the state pattern and L 1 Q4 the strategy pattern. The adapter 
pattern has already been explained earlier (recall in section 3.1 that "AI: 
Want to use an existing implementation" alone is not sufficient to suggesting 
the adapter pattern but Al and "A2: Desired interface is different from the 
existing interface." would be sufficient.). The observer pattern defines a 
many-to-one relation between objects, allowing observer objects to be 
notified if the state of a "publisher" is changed. A commonly used example 
is a collection of data to be displayed as a pie chart, bar chart and a table. The 
collection of data is the publisher while the charts and table are the 
observers. The state pattern allows the object to modify its behavior 
depending on its internal state. A typical application of the state pattern is 
implementation of a state machine. The strategy pattern allows a client to 
select one algorithm from a family of algorithms. For example, the strategy 
pattern may be used to select different sorting algorithms to satisfy different 
sorting needs. 

3.4.4. Level 2: Pattern Specific Questions 

The questions in level 2 are pattern specific questions and are derived 
from the conditions for applying each pattern. Every question created in step 
3 for each pattern is reviewed to determine whether it is level 2 or not. There 
are some necessary conditions that need to be present for a pattern to be 
selected for use. Generally, level 2 questions are the ones that result from 
these conditions. Such conditions can be traced back to the tree structure for 
a pattern (Figure 3), where these conditions are the children of the root. Since 
these conditions are specific for the pattern to be of use, we call these 
questions pattern specific questions. 

From our analysis of the adapter pattern, the following questions qualify 
as level 2: 

Adapter-L2Ql: Do you have classes that have incompatible 
interfaces? 

Adapter-L2Q2: Do you want to adapt an implementation to 
a desired interface? 
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3.4.5. Level 3: Auxiliary Questions 

The questions in level 3 are pattern specific but less important questions 
and are derived from the subconditions for each pattern. We call this set of 
questions the auxiliary questions to help confirm the suggestion of a 
particular pattern. Every question created in step 3 for each pattern is 
reviewed to determine which level it should be put in. Of those, the questions 
that qualify as level 3 are mostly the less important ones. Usually the 
questions that are in level 3 are the ones that remain after the selection of 
level 2 questions. These questions are formulated from the subconditions that 
were added to pattern trees in step 2. These questions are less important than 
the ones in level 2 and act more as auxiliary information. 

For the adapter pattern, the following questions are level 3: 

Adapter-L3Ql: Do you want to use an existing 
implementation? 

Adapter-L3Q2: Is re-implementation of existing classes 
costly? 

Adapter-L3Q3: Is a part/class of your system third-party 
software? 

Adapter-L3Q4: Do you want to avoid re-implementation of 
classes? 

It is quite possible for ESSDP to conclude on a pattern depending on the 
answers of the pattern specific questions from level 2. To accommodate 
novice and advanced users, we provide an option whereby ESSDP can 
present an early conclusion or it can continue till questions are exhausted. 
The auxiliary or level 3 questions tend to be simpler or more intuitive, 
making them easier for the novice user to understand. 

The pool of questions generated after step 3 may contain questions that 
are common for two or more patterns. During the creation of the rule-base 
care is taken to ensure that the common questions are asked only once. 

3.5. Step 5. Assign Thresholds To Patterns And Weights To 
Questions 

Once all the questions are determined and categorized in levels 0, 0.5, I, 
2 and 3, we assign a selection threshold and a rejection threshold to each 
pattern. A selection threshold for a pattern is a positive integer and is defined 
as the minimum number of points required for a pattern to be selected as the 
answer. The selection threshold is reached by the accretion of weights 
assigned to answers for level 2 and level 3 questions. The rejection threshold 
is a negative integer and is defined as the maximum number of points 
required to still pursue the pattern. When the tally of points drops below the 
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rejection pattern, the ESSDP abandons that pattern and stops asking 
questions related to that pattern. 

Prior to deciding the thresholds for each pattern, weights are assigned to 
the questions. The weight of a question is a positive integer and signifies the 
importance of that question towards selection of that pattern. Hence the level 
2 questions have more weight as compared to the level 3 questions. The sum 
total of the weights for all the questions of a pattern is 100. A positive 
answer to a question adds the weight of that question to a positive-response
counter. A negative-response-counter is reduced by the weight of the 
question when the user enters a negative reply. Questions related to the 
pattern are exhausted when the difference between the positive-response
counter and the negative-response-counter is 100. At this point the selection 
threshold criterion is evaluated to decide whether the pattern satisfies the 
user requirements. During the evaluation of the answer of each question, 
ESSDP compares the negative-response-counter and the rejection-threshold. 
In the case that the counter has dropped below the threshold, the pattern is 
removed and further questioning related to that pattern stops. 

The selection-threshold and rejection-threshold values have to be 
determined after consultation with a group of experts or from extensive 
review of literature. For prototyping ESSDP the authors served as the group 
of experts and reached consensus on the assignments of the weights and 
thresholds based on their experiences with design patterns. 

A structured method, such as the Delphi process [lins7Sa], involving a 
group of estimators, could be applied to determine the weights and the 
thresholds. The Delphi process works as follows. First, each estimator 
independently suggests his weightings and thresholds. The estimates are then 
compiled and each estimator explains herlhis reasoning behind herlhis 
estimate. This is done only for estimates that are significantly different. The 
estimators then re-estimate and the process is repeated until they reach a 
consensus. 

As shown in the next section and in Table 1, the ESSDP system can 
suggest a design pattern whenever the positive-response-counter is greater 
than the selection-threshold. The user then is given the option to continue the 
dialog to increase the certainty value of the suggestion or accept the 
suggestion and terminate the process. This early conclusion feature can be 
toggled on or off according to the user's preference. 

To illustrate this procedure, we present a high level overview of the 
interaction between the system and the user along with the rule-base action. 
This is presented in a tabular manner below (see Table 1). 
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Pattem-
# System Response seeker ESSDP action 

action 
Is your design problem concerned with 

creating complex objects (create) 
-or-

I. architectural structure of classes (struct) 
struct 

Structural pattern 
- or- selected. 

behavioral aspect of objects (behav) 
- or-

don't know(dontknow) : 
Is your design problem concerned with 

component interfacing (iface) Interface patterns 
2. - or- iface 

selected 
constructing a complex object through composition 

(complx)? 

3. Is your design problem concerned with adapting one 
yes 

Adapter pattern 
interface to another? (yes/no) intended 

Is your design problem concerned with keeping 
4. implementation and interface independent of each no No action 

other? (yes/no) 
Is your design problem concerned with providing a 

5. simple and easy to use interface for a subsystem? no No action 
{yes/no) 

6. 
Is your design problem concerned with controlling 

no No action 
access to an object? (yes/no) 

Do you have classes that have incompatible 
Positive-response-

7. yes counter = 0 + 26 = 
interfaces? (yes/no) 

26 

Do you want to adapt an implementation to a desired 
Positive-response-

8. yes counter = 26 + 26 = 
interface? (yes/no) 52 

Do you want to use an existing implementation? 
Posi tive-response-

9. yes counter = 52 + 12 = 
(yes/no) 64 

Is re-implementation of existing classes costly? 
Positive-response-

10. yes counter = 64 + 12 = 
(yes/no) 

76 
Suggesting Adapter Pattern with 0.76 certainty. 

II. Would you like to continue with more questions? yes Continue 
(yes/no) 

Is a part/class of your system third-party software? 
Negative-response-

12. no counter = 0 - 12 = -
(yes/no) 

12 

Do you want to avoid re-implementation of class? 
Positive-response-

13. yes counter = 76 + 12 = 
(yes/no) 

88 
14. Suggesting Adapter Pattern with 0.88 certainty. 

Table 1. User-ESSDP interaction to suggest the Adapter pattern. 

As is shown in the table, the system starts with a level 0 question. A fact 
is inserted in the rule-base depending on the answer. In the example shown 
above, the fact asserted is Structural-patterns-selected. Similarly user action 
in row 2 results in Interface-patterns-selected being asserted as a fact. From 
row 3 the user affirms the intent question related to adapter pattern, hence a 
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corresponding fact is asserted in the rule-base. This steers the system towards 
asking the user level 2 and level 3 questions related to the adapter pattern. 
The questions in row 7 and row 8 are the level 2 questions while the 
questions in rows 9 to 13 are from level 3. 

Let us say that level 2 questions have been assigned a weight of 26 
points while level 3 questions have 12 point weight each. With a total of 2 
questions in level 2 and 4 questions in level 3, we have the required total of 
100 points. For the example let us put the selection-threshold to be 70 points 
and the rejection-threshold to be 30. 

As shown in rows 7 and 8, a positive answer to the level 2 question 
increases the positive-response-counter by 26 points. Hence by the end of 
level 2 round of questions, the positive-response-counter is 52 points. A yes 
answer to any of the level 3 questions results in the positive-response-counter 
being incremented by 12 points. In row 10, the positive-response-counter has 
reached 76 which is greater than the selection-threshold 70. Therefore, the 
system suggests the adapter pattern with 0.76 certainty in row 11 and let the 
user choose if to continue with more questions. In row 12 the negative
response-counter is decreased by 12 points because the user gives a negative 
answer to the question. 

The last question related to adapter is the one in row 13. The rule-base 
finds that no more patterns are intended to be pursued and the positive
response-counter is more than the selection threshold of 70 points. This 
eventuates in a fact being asserted indicating that a pattern has been 
concluded. The fact further clarifies that it is adapter pattern. 

4. PROTOTYPING 

In this section we describe the implementation of ESSDP resulting from 
the methodology described earlier. We choose to use CLIPS, version 6.10, as 
the expert system language. CLIPS, an acronym for C Language Integrated 
Production System [rile02a], is a multi paradigm programming language. 
That is, CLIPS supports rule-based, object oriented and procedural 
programming [giar94a]. We describe below the architecture of the software 
system for ESSDP and the CLIPS rule-base. 

4.1. Software Architecture 

The ESSDP has four major components, as shown in Figure 5. The 
components are the rule-base, the inference engine, the fact list and a user 
interface. The rule-base is a collection of rules that are needed by the expert 
system to deduce facts and finally suggest a design pattern. The ESSDP rule
base for the prototype was generated using the five-step methodology 
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described above. The rule-base was programmed into CLIPS using the 
de/rule construct provided by the language. This will be discussed in detail in 
the next section. 

User Interface 

JL 

..Questions & Results , AnswerS 

ESSDP 
... ---. .... Inference Engine Fact List 

Rule-Base ... .-.... 
'-

Figure 5. ESSDP Software architecture. 

The fact list contains the data on which inferences are derived. It is a part 
of the CLIPS environment and is maintained by the inference engine. It 
consists of the current facts in the system. 

An inference engine is that part of the expert system that is already 
programmed and ready for use. It interprets the knowledge bases, which in 
our case is a rule-base, and controls the overall execution. CLIPS consists of 
a forward chaining inference engine. A forward chaining inference engine is 
an algorithm that derives new facts from the ones already present in the 
system, ultimately reaching a conclusion. The CLIPS inference engine 
maintains a fact-list and uses this list to match patterns against the current 
state of the fact-list. The matching of patterns determines which rules are 
ready for execution. It also resolves conflicts when several rules are 
applicable at the same time. The inference engine interacts with the user 
through the user interface to ask questions and receive answers. 

The user interface to ESSDP allows the user to answer multiple-choice 
questions and questions that need a 'yes' or a 'no' reply. For ESSDP the user 
interface is a simple, text-oriented interface. Interaction with a user is 
accomplished by the functions available in CLIPS for input/output. We have 
implemented a Web based version of ESSDP but in this paper we choose to 
present only the text oriented interface. 

4.2. The ESSDP Rule-Base 

A rule is comprised of two parts, the antecedent and the consequent. The 
antecedent is the if portion of the rule and is a set of conditions or facts that 
must be satisfied to execute the rule. In CLIPS, the antecedent conditions are 
satisfied by the existence or non-existence of facts in the fact-list. The 
consequent is the then portion of a rule and comprises of actions that are 
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performed when the rule is executed. The CLIPS inference engine executes 
all the action statements whenever the antecedent of a rule is satisfied. 

The five-step methodology described earlier helps us produce the 
questions, categorize them in various levels of functionality and also assign 
weights to them. We then write rules that present those questions to the user 
and process the answers along with the rules to determine the outcome. 

CLIPS also provides us mechanisms to assign priorities to rules. It is 
called salience in CLIPS. When multiple rules are present in the agenda a 
rule with higher salience fires before a rule with lower salience. Since we 
have rules that ask questions and rules that suggest patterns, we assign them 
different salience. All question rules are assigned the normal salience, which 
by default is O. Rules that suggest patterns are assigned a negative salience 
number so that they are fired after the firing of question rules. To represent a 
pattern in CLIPS, we define a record for a pattern. A record is similar to a 
struct in C and defines a data structure that can refer to as a whole. The 
deftemplate construct is used in CLIPS to define such a record. The record is 
called pattern and has following fields: 
• Name: The name of the pattern. 
• Category: The category of the Pattern. This is more like a flag, which 

holds integer values to indicate the category of that pattern. The 
categories can be anyone of structural, behavioral, creational, interface 
or complex. 

• Final: This is an integer flag which indicates whether a conclusion 
has been reached for that pattern. 

• Certainty: The certainty for the recommendation of a particular pattern. 
• Asked-List: This list is used to track which questions have already been 

presented to the user. 

When the user starts the ESSDP, a fact is asserted which is (start
questions). This fact does not directly contribute towards determining the 
design pattern, however it does help in controlling the flow of decision
making and in the question-answer session. We term such facts as control
facts. 

Rule I: This rule is named as zero-stage-division and asks the user the 
level 0 question. Note variables are denoted by names beginning with a 
question mark (?) in CLIPS. 

IF there is (start-questions) 
AND there is NOT (concluded pattern) 
begin 

/* 
ask-question-function prints the question on the 
screen and returns the answer from the user in the 
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variable 
*/ 
?ans <= aSk-quest ion-function 

nIs your design problem concerned with: 
creating complex objects (create) -or
architectural structures of classes (struct) -or
behavioral aspect of objects (behav) -or-
don't know (dontknow)?" 

if ?ans = struct then assert (pattern (name 
n structural") (level 0» 
if ?ans = behav then assert (pattern (name 
nbehavioral") (level 0» 
if ?ans = create then assert (pattern (name 
ncreational") (level 0» 
if ?ans = dontknow then 
begin 

assert (pattern (name n structural") (level 0» 
assert (pattern (name nbehavioral") (level 0» 
assert (pattern (name ncreational") (level 0» 

end 
/* remove the fact start-questions, i.e. change mode 
of ESSDP */ 
retract (start-questions) 
/* control fact to indicate ESSDP mode is now asking
questions */ 
assert (asking-questions) 

end 

307 

In the above rule, we use the record structure called pattern. It gets 
asserted as a fact in the system with some or all of the fields filled. After 
each question is asked, the asked-list is updated. 

Rule 2: The rule shown below is named first-stage-struct-division. It 
helps the user decide which subgroup to pursue. In case the category of 
patterns does not have subgroups then such a rule is omitted. 

IF there is (asking-questions) 
AND there is NOT (concluded pattern) 
AND there is (pattern (name n structure") (level 0» 

begin 
?ans <= ask-question-function( 

nIs your design problem concerned with component 
interfacing (iface) -or-
constructing a complex component through composition 

(complx) -or-
don't know (dontknow)?" 

) 

if ?ans = iface then assert (pattern (name 
"interface") (level 1» 
if ?ans = complx then assert (pattern (name "complex") 
(level 1» 
if ?ans = dontknow then 
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begin 
assert (pattern (name" interface") (level 1» 
assert (pattern (name "complex") (level 1» 

end 
end 

Rule 3: Given below is a rule that asks the intent questions, that is level 1 
questions from the user. The example rule shown below asks questions 
related to interface type patterns, which are adapter, bridge, facade and 
proxy. 

IF there is (asking questions) 
AND there is NOT (concluded pattern 
AND there is (pattern (name "interface") (level 1» 
begin 

?ans <= ask-question-function ( 
"Is your design problem concerned with adapting one 
interface to another? (yes/no)") 

if ?ans = yes then assert (pattern (name 
Adapter") 

(level 99» 
?ans <= ask-question-function 

"Is your design problem concerned with keeping 
implementation and interface independent of each 
other? (yes/no)") 

if ?ans = yes then assert (pattern (name "Bridge") 
(level 99») 
?ans <= ask-question-function( 

"Is your design problem concerned with providing a 
simple and easy to use interface for a subsystem? 
(yes/no)") 

if ?ans = yes then assert (pattern (name "Facade") 
(level 99» 
?ans <= ask-question-function ( 

"Is your design problem concerned with controlling 
access to an object? (yes/no)") 

if ?ans = yes then assert (assert (pattern (name 
"Proxy") (level 99») 

end 

Similar rules are produced for complex type patterns. In case of patterns 
with no sub grouping, we can directly ask intent questions (level 1) without 
having to go through the phase of asking level 0.5 questions. 

Rule 4: Once all the rules related to level 0, level 0.5 and level 1 are 
written, we create rules to ask level 2 and level 3 questions. As an example, 
shown below is a rule for question two of adapter level 2. 

IF there is (asking questions) 
AND there is NOT (concluded pattern) 
AND there is (pattern (name "Adapter") (level 99) (final 
0) ) 
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AND there is NOT (pattern (name "Adapter") (level 99) 
(final 0) 
asked-list ($?prefix L2-2 $?suffix)) 
begin 

?ans <= ask-question-function( 
"Do you want to adapt an implementation to a 
desired interface? (yes/no)") 

if ?ans = yes then 
?adapter-positive-response-counter <= ?adapter
positive-response-counter + ?adapter-leve12-weight 
if ?adapter-positive-response-counter > adapter
selection-threshold then 

modify (pattern (name "Adapter") (final 1)) 
else 

?adapter-negative-response-counter <= ?adapter
negative-response-counter - ?adapter-leve12-weight 

if ?adapter-negative-response-counter < ?adapter
rejection-threshold then 

end 

retract (pattern (name "Adapter") (level 99) (final 
0) ) 

modify (pattern (name "Adapter") (asked-list insert 
L2-2) ) 
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The multi valued variables are denoted by names beginning with the $? 
symbol in CLIPS. 

In the above rule, the pattern record for adapter is modified to indicate 
the final field is 1 when the positive counter exceeds the selection threshold. 

Rule 5: This rule suggests a design pattern with a certainty value to the 
user whenever the positive counter accumulates to the selection threshold. 
The user is then asked whether to continue with more questions or stop and 
accept the suggested design pattern. This rule can be turned on and off as an 
option to suite different users' preferences. The rule below is shown for the 
adapter pattern. 

IF there is (asking questions) 
AND there is NOT (concluded pattern) 
AND there is NOT (adapter mid selection over) 
AND there is (pattern (name "Adapter") (level 99) (final 
1) 
(certainty?cert)) 
begin 

?ans <= ask-question-function( 
"Suggesting adapter with certainty value of ?cert 
Would you like to continue with more questions? 
(yes/no)" 

if ?ans = yes then 
modify (pattern (name "Adapter") (level 99) (final 
0) ) 
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else 
modify (pattern (name "Adapter") (level 99) (final 
2) ) 

assert (adapter mid selection over) 
end 

If the user does not want to continue, then the final flag is set to 2. The 
system will skip the questions and activate the rule shown below. A final 
value of ° indicates that the user wants to continue. 

The rule that decides the final answer is shown below. It has a salience 
of -999 so that it fires only after all the rules described above have been 
fired. 

IF there is NOT (pattern (name ?pname) (level 99) (final 
0) ) 

AND there is (pattern (name ?name) (level 99) (final 2) 
(certainty?cer)) 

AND there is NOT (concluded pattern) 
begin 

assert (concluded pattern ?name ?cer) 
end 

Another rule then prints out the final answer on the user interface 
depending on the details asserted in (concluded pattern) fact. The last rule in 
the rule-base is one that has the lowest salience of -1000. This last rule fires 
on the absence of (concluded pattern) fact and displays a "failed to choose a 
pattern" message to the user. 

All of the rules described above are coded in a CLIPS file. This CLIPS 
file, apart from the rule-base, also contains the initial-facts to get the system 
started, the threshold values and the user interface functions. The system, 
when fully implemented, will consists of about 160 rules, 150 questions and 
3,000 lines of CLIP code excluding comments. 

5. EVALUATION 

We have conducted a small experiment to assess the effectiveness of 
ESSDP. The experiment involved 11 students from a design patterns class at 
the beginning of the course. The students, referred to as subjects, were given 
an overall introduction to what design patterns could do and design problems 
the patterns could solve. The subjects then were asked to randomly select ten 
out of the eighteen patterns (seven structural patterns and eleven behavioral 
patterns) that had been implemented at the time of the experiment. The 
subjects were required to use ESSDP to search for the patterns that could 
solve their design problems. The subjects had to submit the dialogs with the 
expert system and provide information on the subject themselves and 
evaluations of three aspects of the ESSDP as shown in Table 2. We consider 
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the experiment to be partial and preliminary due to the small number of 
subjects participated and the lack of detailed assessment. 

More extensive assessments will be conducted when the system is fully 
implemented and optimized. However, this preliminary, initial assessment is 
considered useful for the following reasons: 
1. It helps us in determining if the effort is worthwhile. The initial feedback 

as shown by the experiment result (see below) is very encouraging. 
2. It helps us to assess whether the ESSDP system can be used by software 

engineers other than the ESSDP developers. The feedback is very 
positive. Most of the subjects or all of the subjects we asked said that the 
system was friendly and very easy to use. 

3. It helps us identify weaknesses and improvements. For example, 
although the number of questions needed to be answered is acceptable in 
most cases, reducing the number will effectively improve the usefulness 
of the system. 
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Subj 00 DP Success Effectiveness #Questions Knowledge Knowledge Rate 

I beginner want to all the time very 
12 

know effective 

2 beginner know some most of the effective 12 
time 

3 knowledgeable don't know all the time very 17 
effective 

4 knowledgeable want to most of the effective 18 know time 

5 knowledgeable know some all the time very 
9 effective 

6 knowledgeable know some most of the effective 10 
time 

7 knowledgeable don't know most of the effective 12 
time 

8 knowledgeable know some all the time 
very 12 

effective 

9 knowledgeable know some all the time very 15 
effective 

\0 beginner don't know all the time very 
13 effective 

II knowledgeable know some all the time very 
8 effective 

Summary 

knowledgeable know some always 
very less than 

effective 13 
73% 55% 64% 

64% 64% 

beginner don't know most of the effective 
more than 

time 12 
27% 45% 

36% 
36% 36% 

Table 2. Summary of testing of ESSDP by 11 subjects. 

A brief explanation of Table 2 is as follows. The 00 Knowledge column 
denotes how good the subject knew 00 concepts and 00 design. The table 
shows that 73% of the subjects believed that they were knowledgeable, only 
27% were beginners. Knowledgeable is interpreted as an average rating, 
meaning they know 00 concepts but are not experts or "know a lot". Only 
55% knew some design patterns before joining the class. 45% did not know 
any or wanted to know what were design patterns. Data in these two columns 
are consistent. The lower percentage in the "DP Knowledge" column than 
the "00 Knowledge" column reflects the fact that DP knowledge requires 
00 knowledge as a prerequisite. 

Is you desing problem concerned with 
creating complex objects, (create) 
-or-
architectural structures of classes (struct) 
-or-
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behavioral aspect of objects (behav) 
-or-
don't know (dontknow) . Struct 

Is your design problem concerned with component 
interfacing (iface) -or-
constructing a complex component through composition 
(complx)? Complx 
Is your design problem concerned with recursive 
composition of complex objects from simpler ones? 
(yes/no) yes 
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Is your design problem concerned with dynamically adding 
responsibilities to objects? (yes/no) no 

Is your design problem concerned with representing 
numerous copies of 
the same object? (yes/no) no 

Do you want your system to be layered, by grouping 
components? (yes/no) yes 

Would you like to make your system easier to add 
components? (yes/no) yes 

Do you want to hide difference between composite objects 
and 
individual objects from client application? (yes/no) yes 

Will you treat composite objects uniformly? (yes/no) yes 

Do you want to represent part-whole hierarchy? (yes/no) 
yes 

****************************************************** 
****************************************************** 

Suggesting Composite pattern, with 1.0 certainty. 

Figure 6. Search scenario 1: the user knows what he wants. 

Is you desing problem concerned with 
creating complex objects, (create) 
-or-
architectural structures of classes (struct) 
-or-
behavioral aspect of objects (behav) 
-or-
don't know (dontknow) . dontknow 

Is your design problem concerned with 
component interfacing (iface) -or-
constructing a complex component through composition 
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(complx)? Complx 

Is your design problem concerned with notifying other 
objects when an object changes (yes/no) no 

Is your design problem concerned with state dependent 
behaviors? (yes/no) no 

Is your design problem concerned with selecting 
algorithms according to needs? (yes/no) no 

Is your design problem concerned with undoing of 
operations? (yes/no) no 

Is your design problem concerned with accessing contents 
of an aggregate object without exposing its internal 
representation ? (yes/no) yes 

Is your design problem concerned with recursive 
composition of complex objects from simpler ones? 
(yes/no) yes 

Is your design problem concerned with dynamically adding 
responsibilities to objects? (yes/no) no 

Is your design problem concerned with representing 
numerous copies of the same object? (yes/no) no 

will you traverse through a list of aggregate-object in 
different ways depending upon your motive ? (yes/no) yes 

Do you want to provide a uniform interface for traversing 
different aggregate structures ? (yes/no) no 

Do you want to provide a way to browse through aggregate 
objects? (yes/no) yes 

Do you want your system to be layered, by grouping 
components? (yes/no) yes 

Would you like to make your system easier to add 
components? (yes/no) yes 

Do you want to hide difference between composite objects 
and individual objects from client application? (yes/no) 
yes 

will you treat composite objects uniformly? (yes/no) yes 

Do you want to represent part-whole hierarchy? (yes/no) 
yes 

****************************************************** 
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Suggesting Iterator pattern, with 0.6 certainty. 

Figure 7. Search scenario 2: the user does not know what he wants. 

The last three columns, "Success Rate", "Effectiveness" and "#Questions 
(answered before getting a suggestion)" consistently show that 64% of the 
subjects considered the system to be able to suggest the needed patterns all 
the time, very effective and require the user to answer no more than twelve 
questions. The individual subject assessments also individually confirmed 
the result. That is, subjects who had "all the time" rating for "Success Rate" 
also had "very effective" rating for "Effectiveness" and most of them 
required to answer about twelve questions (except subject 3 and subject 9 
who had to answer seventeen and fifteen questions, respectively). It is worth 
noticing that the (evaluation of the) performance of the system is 
independent to the degrees of 00 knowledge and design pattern (DP) 
knowledge of the subjects. This independence confirms to our initial 
motivations of developing the ESSDP. That is, providing pattern search 
assistance to novices as well as validating pattern beginner's choices. 

In summary, the preliminary evaluation indicates that the system is able 
to suggest the needed patterns most of the time, is effective and requires 
answering of no more than twelve questions. The number of questions 
needed to be answered will be reduced if the system evaluates the thresholds 
each time the thresholds are updated and recommend the pattern whose 
positive counter exceeds the positive threshold. We have prototyped such 
changes and found that the number of questions needed to be answered has 
reduced by 20% or 10 questions needed to be answered. 

We wish to point out that the more the user knows his design problem 
the more effective the search will be, as illustrated in Figure 6 and Figure 7. 
In Figure 6, the user selects "struct" as the answer to the first question while 
in Figure 7 the user selects "dontknow" as the answer. 

In the first case, the user knows that his design problem is concerned 
with composing classes/objects to form larger structures while in the second 
case the user does not know this. The first case requires the user to answer 
ten questions and suggested the Composite pattern with a 1.0 certainty 
(100%). However the second case requires the user to answer eighteen 
questions and finally the system suggested the Iterator pattern with only a 0.6 
certainty (60%). That is the number of questions needed to be answered by 
the user increased by 80% while the certainty of the pattern suggested 
decreased by 40%. In this case, we are not clear if the pattern suggested 
would solve the user's design problem. But the low certainty value of 0.6 
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suggests that it is not likely that the iterator pattern would solve the user's 
design problem. 

6. CONCLUSIONS 

We have presented a five step methodology for constructing an expert 
system for suggesting design patterns and illustrated the methodology 
through the construction of the ESSDP expert system. ESSDP implements 
the twenty-three design patterns in Gamma et aI's book. Our preliminary 
evaluation of ESSDP by eleven subjects shows that ESSDP and hence the 
methodology are relatively effective, although much improvements are 
required. 

As near term future work, we plan to refine the ESSDP system to 
improve its success rate and effectiveness and reduce the number of 
questions needed to be asked of the users. We also plan to extend the system 
to cover more design patterns including analysis patterns [fowl96a], 
responsibility assignment patterns [larmOla] and patterns from [tich98a]. 
Patterns from specific domains like telecommunications design patterns will 
also be considered. 

We have implemented a Web portal for accessing the ESSDP system. 
We plan to integrate the two to provide WWW access to the expert system so 
that 00 developers from other organizations can benefit from the work. 
Providing a WWW access will enable us to collect feedback from a large 
users base with various applications and use feedback to further improve the 
system. 
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NOTES 
It is more appropriate to call it a lattice rather than a tree but we prefer to use 
tree since it is easier to explain the methodology using trees. 
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ABSTRACT 
Models constrain the range of possible behaviors defined for a domain. 
When parts of a model are uncertain, the possible behaviors may be a data 
cloud: i.e. an overwhelming range of possibilities that bewilder an analyst. 
Faced with large data clouds, it is hard to demonstrate that any particular 
decision leads to a particular outcome. Even if we can't make definite 
decisions from such models, it is possible to find decisions that reduce the 
variance of values within a data cloud. Also, it is possible to change the 
range of these future behaviors such that the cloud condenses to some 
improved mode. Our approach uses two tools. Firstly, a model simulator is 
constructed that knows the range of possible values for uncertain 
parameters. Secondly, the TAR2 treatment learner uses the output from the 
simulator to incrementally learn better constraints. In our incremental 
treatment learning cycle, users review newly discovered treatments before 
they are added to a growing pool of constraints used by the model simulator. 

1. INTRODUCTION 
Often, during early lifecyc1e decision making in software engineering, 

analysts know the space of possibilities, but not the constraints on that space. 
For example: 

• They might know qualitatively that the more shared data, the less 
modifiable is a software system. However, they may not know the exact 
quantitative values for this relationship. 

• Their experience might tell them that their source lines of code estimates 
are inaccurate by 50%. 
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What are our analysts to do? One possibility is to demand more budget 
and time to perform further analysis which removes these uncertainties. For 
example, metrics collection programs might be commenced to collect values 
for uncertain parameters. Elsewhere, we have documented the impressive 
results that can come from such a methodology/process [30]. 

When elaborate metrics collection is too expensive however, 
computational intelligence methods may be useful. If domain experts can 
offer a rough description of how (e.g.) variable A effects variable B, then 
fuzzy logic methods [17, 55] can be used to perform inference over the 
model, perhaps using the methods of Jahnke et al. [25]. If the model 
represents a situation for which we have historical data, then genetic 
algorithms can be used to mutate the current model towards a model that best 
covers the historical data [3]. Alternatively, we could throwaway the current 
model and use the historical data to auto-generate a new neural net model 
[50]. 

The premise of this paper is metrics starvation; i.e. situations in which 
we can access neither the relevant domain expertise required for fuzzy logic, 
nor the historical data required for genetic algorithms or neural nets. Our 
experience is that metrics starvation is common. For example, the majority of 
software development organizations do not conduct systematic data 
collection. As evidence for this, consider the Software Engineering Institute's 
capability maturity model (CMM [43]), which categorizes software 
organizations into one of five levels based on the maturity of their software 
development process. Below CMM level 4, there may be no systematic and 
reliable data collection. Below CMM level 3, there may not even be a written 
definition of the software process. Many organizations exist below CMM 
level 3 [personnel communication, SEI researchers]. Hence, reliable data on 
SE proj ects is scarce or hard to interpret. 

However, a lack of systematic data does not mean that no inferences can 
be made about some software development process. If we can't constrain the 
range of model behavior with domain metrics, we can still make decisions by 
surveying the range of possible behaviors. Suppose we have a model 
expressing what is known within a domain. If we are uncertain over parts of 
that model, then we might supply ranges for those uncertain parameters. 
When we run this model, if we ever require some uncertain parameter, we 
might select and cache a value for that parameter, based on the supplied 
ranges. To survey the range of possible behaviors, we just parameters. 
Elsewhere, we have documented the impressive re-run the model many 
times, taking care to clear the cache between each run. Many variants on this 
scheme have been discussed in the literature. For example: 

• This scheme is the same as Monte Carlo simulations when uncertain 
parameters are just system inputs. 
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• This scheme is the same as abductive inference [27] where the uncertain 
parameters are truth assignments to assumptions within the model, and 
some global invariant checking executes before a new value is assigned. 
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Figure 1. Examples of condensing clouds, The right-hand model's cost values are 
continuous while the left-hand model has discrete costs, 

The advantage of this "select and cache'" method is that the range of 
possible behaviors can be explored without expensive further analysis. The 
disadvantage of this approach is data clouds: an overwhelming amount of 
data that clouds and confuses the issues. For example, Figure I.i and Figure 
I.ii show data clouds generated from case studies described later in this 
paper. In these figures, each mark represents the cost and benefits associated 
with a set of decisions about the structure of a software project. Note the 
large variance in the possible cost and benefits from the different possible 
decisions. 

Faced with such large data clouds, it is hard to demonstrate that any 
particular decision leads to a particular outcome. What is required is some 
method for condensing these clouds of uncertainty without expensive data 
collection for all the uncertain parameters. Ideally, condensation methods 
should be minimal; i.e. they require a commitment to only a small portion of 
the uncertain variables within a model. 
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This papers experiments with minimal condensation using the T AR2 
treatment learner [19,24,33-36] A treatment learner seeks the least number 
of attribute ranges that most differentiate between desired and undesired 
behavior. Figure 2 shows how T AR2 can be applied incrementally to 
explore data clouds. A simulator executes a model generated by some 
manual modelling process. T AR2 reduces the data generated by the 
simulator to a set of proposed treatments. After some discussion, users add 
the approved treatments to a growing set of constraints for the simulation. 
The cycle repeats until users see no further improvement in the behavior of 
the simulator. 

manual automatic 

( modelling ) ... Model 
.. 

[ simualtor) _____ data --..... (T AR2 ) ... 
~Known + constraints .. conr:) .... 

GJ 

+ f.-t'" T2= approved treatments 

~ 
{ IT21 <= IT11 } , .. 

( discussion J -:: T1 =proposed treatments 

Figure 2. Incremental treatment learning. 

Experiments with this approach have shown that T AR2 can: 

• Reduce the variance of values within a data cloud 
• Improve the mean of values within data clouds 

For example, Figure l.iii and Figure 1.iv show the results of applying 
incremental treatment learning to Figure 1.i and Figure l.ii. Note that in 
both studies, the mean of the benefits increased, the mean of the costs 
decreased, and the variance in both measures was greatly decreased. 

The notion that extra constraints can reduce the space of uncertainties is 
hardly surprising. However, what is surprising is how few extra constraints 
TAR2 needs to condense (e.g.) Figure l.ii to Figure l.iv and how easily 
T AR2 can automatically find those constraints. The claim of this paper is 
that: 
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In the average case, a simple algorithm (T AR2) can quickly find a 
very small number of key constraints that result in massive 
condensations of data clouds towards some desired goal. 

There are three implications of this claim. Firstly, even when we don't 
know exactly what is going on within a model, it is possible to define 
minimal strategies to grossly decrease the uncertainty in that model's 
behavior. 

Secondly, even if we aren't sure about the impact of certain decisions, we 
can be sure that certain other decisions will be ineffective. Decisions about 
treatment variables will override decisions about variables not found within a 
treatment. Hence, decisions about variables outside the treatments are 
redundant. 

Thirdly, incremental treatment learning can reduce the cost of software 
modeling. Before applying elaborate modeling techniques or tools, it is wise 
to try cheaper and simpler techniques. Our results here show that even hastily 
built incomplete models can be used for effective decision making. Since 
much can be learnt, even from sketchy data, it may be possible to avoid 
elaborate and extensive and expensive metrics collection. Further, once the 
treatments are known, then a minimal metrics collection program can be 
defined, just for the few variables in the treatments. 

The rest of this paper describes the details of our condensation technique. 
T AR2 was motivated by funnel theory which is a claim that most decisions 
are redundant or irrelevant. In models containing funnels, a small number of 
key variables are enough to control a model, despite the large range of 
possibilities outside the funnel. Funnel theory is discussed in §2. Our 
algorithm for finding the key decisions within the funnels is discussed in §3. 
Case studies are then explored in §4 where T AR2 can reduce the variance 
and improve the mean of three case studies. After that, §5 discusses when 
this approach may not be appropriate and §6 discusses related work. 

2. FUNNEL THEORY 
The premise of this paper is that within the space of possible decisions, 

there exist a small number of key decisions that determine all others. After 
Menzies, Easterbrook, Nuseibeh, and Waugh, we call this premise funnel 
theory- the metaphor being that all processing runs down the same narrow 
funnel [32]. 

To introduce funnels, we first say that a decision space supports reasons; 
i.e. chains of reasoning that link inputs in a certain context to desired goals. 
Chains have links of at least two types. Firstly, there are links that clash with 
other links. Secondly, there are the links that depend on other links. One 
method of optimizing the decision making process would be to first decide 
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about the non-dependent clashing links. These are the key decisions since 
they determine most of the other non-key decisions. 

For example, suppose the following decision space is explored using the 
invariant no _good (X, -,x) and everything that is not a context or a goal is 
open to debate: 

a --+ b --+ c --+ d --+ e 
contextl --+ f --+ g --+ h --+ I --+ j --+ goal 
context2 --+ k --+ g --+ 1 --+ rn --+ j --+ goal 

n --+ o --+ p --+ q --+ e 

Like any model, any of (a, b, .. q) is subject to discussion. However, 
in the context of reaching some specified goals from context1 and context2, 
the only important discussions are the clashes (g, -,g, j, -,j) (the (e, -,e) 

clash is not exercised in the context of context!; context2 ~ goal, since no 
reason uses e or -,e). Further, since (j, -,j) are fully dependent on (9, 

-,g), then the core decision must be about variable (9) with two disputed 
values: true and false. 

The funnel of a decision space contains the non-dependent clashing 
links; e.g. {g}. The decisions with greatest information content are the 
decisions about the funnel variables, since these variables set the others. If 
the space contains narrow funnels (i.e. funnels with small cardinality) then 
the total decision space can be greatly reduced to a small number of highly 
informative disputes about funnel variables. Analysts are still free to debate 
whatever they want (and they will, seemingly endlessly), but with this 
approach, a fynnel-aware analyst can steer the discussion towards the issues 
that tell us rost about a domain. The net effect can be less argument. 
Suppose OUI) analysts agree that 9 is true, then in the context of arguing 
about how Context 1; context2 ~ goal, the decision space reduces to: 

contextl --+ f --+ g --+ h --+ I --+ j --+ goal. 

The reasoning starting with k has been culled since, by endorsing g, we 
must reject all lines of reasoning that use -,g. In addition, the reasoning 
starting with a, n are ignored since they are irrelevant in this context; i.e. they 
do not participate in reaching a desired goal. Further, in this context, there is 
little point arguing about (f, h, i, j) since if any of these are false, then no 
goal can be reached. 

This small example suggests how funnels can condense data clouds. 
Data clouds are the result of a wide variation in model behavior. Such 
variation comes from choices within a model relating to uncertain ranges. 
The more commitments we make about funnel variables, the more we 
collapse the space of possibilities outside the funnel. Hence, decisions about 
funnel variables condense data clouds, since they restrict the behavior of a 
system. Decision making in spaces containing funnels can be simple and 
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short. Once values for the funnel variables are decided, all other decisions 
become redundant. In the above example, we have a decision space 
containing potentially 217 = 131,072 debates about 16 Boolean variables 
{a,b, .. q}. A decision about one variable (i.e. "is 9 true or false?") has 
reduced this space to one option. 

Relying on narrow funnels may seem an overly optimistic approach. Yet 
a literature review suggests that such optimism is well-founded. There are 
many examples of funnel-like behavior in the literature. For example Horgan 
& Mathur [23] report that testing often exhibits a saturation effect; i.e. most 
program paths get exercised early with little further improvement as testing 
continues. Saturation is consistent with funnels controlling the reachable 
parts of a program. If these funnels were narrow, there would be few options 
in a program's execution and test inputs would quickly sample them all. 
Further testing over systems with narrow funnels would yield little further 
information since anything not connected to the funnels would be, by 
definition, unreachable. 

An analogous effect to saturation is homogenous propagation since in 
the program mutation literature (aprogram mutant is a syntactically valid but 
randomly selected variation to a program; e.g. swapping all plus signs to a 
minus sign). Despite numerous perturbations on data values using a program 
mutator, Michael found that in 80 to 90% of cases, there were no changes in 
the behavior of a range of programs [40]. Another study compared results 
using X% of a library of mutators, randomly selected 
(XE{10,15, .. .40,100}). Most of what could be learnt from the program 
could be learnt using only X=10% of the mutators; i.e. after a very small 
number of mutators, new mutators acted in the same manner as previously 
used mutators [54]. The same observation has been made elsewhere in the 
mutation literature [1,8]. Like saturation, homogenous propagation is 
consistent with funnel theory. If the overall behavior of a system is 
determined by a small number of key variables, then random mutation is 
unlikely to find those variables and the net effect of those mutations would 
be very small. 

Homogenous propagation is observed in procedural programs. An 
analogous effect has been seen in declarative systems; i.e. most choices 
within a declarative set of constraints have little effect on the average 
behavior. Menzies & Waugh studied choices in millions of mutations of a 
nondeterministic system. In their abductive framework [27,31], a consistent 
set of choices generated a world of belief. Given N binary choices, there are 
theoretically 2N possible worlds. However, after studying millions of 
generated worlds they found the maximum number of goals found in any 
world was often close to the number of goals found in a world selected at 
random [39] (on average, the difference was less than 6%). This observation 
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is inexplicable without narrow funnels. If choices had a large impact on what 
was reached within a declarative system, then there should be much 
variability in what is found in each world. Since the observed variability was 
so small, the number of critical choices (a.k.a. funnel variables) must also be 
small. 

In fact, the concept of a funnel has been reported in many domains under 
a variety of names including: 

• Master-variables in scheduling [15]; 
• Prime-implicants in model-based diagnosis [47] or machine learning 

[46], or fault-tree analysis [29]. 
• Backbones in satisfiability [41, 51]; 
• The dominance filtering used in Pareto optimization of designs [26]; 
• Minimal environments in the ATMS [16]; 
• The base controversial assumptions ofHT4 [31]. 

Whatever the name, the core intuition in all these terms is the same: what 
happens in the total space of a system can be controlled by a small critical 
region. The frequency of the funnel effect have made Menzies & Singh 
suspect that funnels are some average case phenomenon that is emergent in 
decision spaces [37]. To test this, they consider a device that can choose 
between a narrower and a wider funnel. Let some goal in a system be 
reachable by a narrow funnel M or a wide funnel N shown in Figure 3. 

ctl A ,1' --+ ~'1 

a2 ~1'" -----+ 11;- 2 

H,n '\ l' ' 
---.-, 1! 1-'11. 

c. I d 
--+ goa i --

Figure 3. Alternate funnels that lead to some goal. 

Under what circumstances will the narrow funnel be favored over the 
wide funnel? The following definitions let us answer this question: 

• Let the cardinality of the narrow funnel and wide funnels be m and n 
respectively. 

• Each m members of the narrow funnel are reached via a path with 
probability ai while each n members of the wider funnel are reached via 
a path with probability bi. 
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• Two paths exist from the funnels to this goal: one from the narrow neck 
with probability c and one from the wide neck with probability d. 
Therefore, the probability of reaching the goal via the narrow pathway is 

narrow = CDai 

while the probability of reaching the goal via the wide pathway is 

wide = dDbi 

With these definitions, the Menzies & Singh study can be redefined as 
the search for conditions under which 

(narrow / wide = R) > t (1) 

where t is some threshold value. To explore Equation 1, Menzies & 
Singh built a small simulator of Figure 3, and performed 150,000 runs using 
different distributions for ai; b i ; C; d and a wide range of values for m; 

n. The results are shown in Figure 4. For comparison purposes, the size of 
the two funnels is expresses as a ratio alpha where n=alpha *m. 

t= 1,000,000 

...... 100 
~ SO 

pessimistic =: 60 jl optimistic 
~ 40 log normal • 
~ 20 

0 
2 3 4 5 () 7 8 9 10 
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Figure 4. 10,000 runs of the funnel simulator. Y-axis shows what percentage of 
the runs satisfiess (narrow/wide=R»t . The pessimistic, lognormal, and 

optimistic distributions assume a worst-case, average-case, and best-case 
(respectively) distribution for {ai, bi, ci, di}. For more details, see[37]. 

As might be expected, at alpha=l the funnels are the same size and the 
odds of using one of them is 50%. As alpha increases, then increasingly R>t 

is satisfied and the narrower funnel is preferred to the wider funnel. The 
effect is quite pronounced. For example, for all the studied distributions, 
after the wider funnel is 2.25 times bigger than the narrow funnel, then in 
75% or more of the random searches, accessing the narrow funnel is at least 
1,000,000 times more likely as accessing the wider funnel (see the lower 
graph of Figure 4). Interestingly, as the probability of using any of 
ai I b i I Ci I d i decreases, the odds of using the narrow funnel increase (see 
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the pessimistic curves in Figure 4). That is, narrow funnels are likely, 
especially in spaces that are difficult to search. 

The average case analytical result of Menzies & Singh is suggestive 
evidence, but not conclusive evidence, that narrow funnels are common. 
Perhaps a more satisfying test for narrow funnels would be to check if, in a 
range of applications, a small number of variables are enough to control the 
other variables in a model. The rest of this paper implements that check. 

3. FINDING THE FUNNEL 
A traditional approach to funnel-based reasoning is to find the funnels 

using some dependency-directed backtracking tool such as the ATMS [16] or 
HT4 [31]. Dependency-directed backtracking is very slow, both theoretically 
and in practice [31]. Further, in the presence of narrow funnels, it may be 
unnecessary. There is no need to search for the funnel in order to exploit it. 
Any reasoning pathway to goals must pass through the funnels (by 
definition). Hence, all that is required is to find attribute ranges that are 
associated with desired behavior. 

outlook temE{OF} humidi!}: wind,Y? class 
sunny 85 86 false none 
sunny 80 90 true none 
sunny 72 95 false none 
rain 65 70 true none 
rain 71 96 true none 
rain 70 96 false some 
rain 68 80 false some 
ram 75 80 false some 

sunny 69 70 false lots 
sunny 75 70 true lots 

overcast 83 88 false lots 
overcast 64 65 true lots 
overcast 72 90 true lots 
overcast 81 75 false lots 

Figure 5. A log of some golf playing behavior. 

T AR2 is a machine learning method for finding attribute ranges 
associated with desired behavior. Traditional machine learners generate 
classifiers that assign a class symbol to an example [44]. T AR2 finds the 
difference between classes. Formally, the algorithm is a contrast set learner 
[4] that uses weighted classes [9] to steer the inference towards the preferred 
behavior. The algorithm differs from other learners in that it seeks contrast 
sets of minimal size. 
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T AR2 can best be introduced via example. Consider the log of golf 
playing behavior shown in Figure 5. This log contains four attributes and 3 
classes. Recall that TAR2 accesses a score for each class. For a golfer, the 
classes in Figure 5 could be scored as none=2 (i.e. worst), some=4, lots=8 
(i.e. best). 

T AR2 seeks attribute ranges that occur more frequently in the highly 
scored classes than in the lower scored classes. Let a : r be some attribute 
range e.g. outlook. overcast. da : r is a heuristic measure of the worth of a:r 
to improve the frequency of the best class. Va: r uses the following 
definitions: 

x (a : r) the number of occurrences of that attribute range in class 
X; e.g. lots( outlook.overcast)=4. 

all (a : r) total number of occurrences of that attribute range in all 
classes; e.g. all( outlook.overcast)=4. 

best the highest scoring class; e.g. best = lots; 

rest the non-best class; e.g. rest = {none; some}; 

$Class score of a class Class is $Class. 

da : r is calculated as follows: 

~a:r=(for xerest do 
~a:r .- ~a:r*(($best- $X) * (best(a:r) -

X(a:r)) ) 
)/all(a:r) 

For example, when a. r is outlook. overcast, then doutlook:overcast is 
(( (8-2) * (4-0)) + ((8-4) * (4-0))) / (4+0+0) =40/4=10 

The attribute ranges' in our golf example generate the d histogram shown 
in Figure 6. Note that outlook=overcast's d is the highest, potentially most 
effective, attribute range. 
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3 ~----------~~~-------~--------------~ 

2 +--------------1 

-5 -3 -1 3 5 7 9 

Figure 6. d distribution seen in golf data sets. The X-axis shows the range of d 
values seen in the gold data set. The Y-axis shows the number of attribute 

ranges that have a particular d. 

A treatment is a subset of the attribute ranges with an outstanding ~a=r 
value. For our golf example, such attributes can be seen in Figure 6: they are 
the outliers with outstandingly large ~s on the right-hand-side. (These 
outliers include outlook=overcast). 

To apply a treatment, T AR2 rejects all example entries that contradict 
the conjunction of attribute ranges in the treatment. The ratio of classes in 
the remaining examples is compared to the ratio of classes in the original 
example set. The best treatment is the one that most increases the relative 
percentage of preferred classes. In the case where N treatments increase the 
relative score by the same amount, then N best treatments are generated and 
T AR2 picks one at random. In our golf example, a single best treatment was 
generated containing outlook=overcast; Figure 7 shows the class distribution 
before and after that treatment, i.e. if we choose a vacation location that is 
generally overcast, then in 100% of cases we should be playing lots of golf, 
all the time. 

no change 

~fuJ 
o 5 3 6 

O'utl ()o.k~ = 
OtIC']' co S t 

~LJ 
o 0 0 4 

CJ 
mIlD .. = none (worst) 

= some 
= lots (be lOt) 

Figure 7. Finding treatments that can improve golf playing behavior. With no 
treatments, we only play golf lots of times in 6/(5+3+6) = 57% of cases. With the 
restriction that outlook=overcast, then we play golf1ots of times in 100% of cases. 
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Claim 
c1 
c2 
c3 
c4 
c5 

Notes 
among the few vital goals 

a claim by David Pamasj'[42] 
few assumptions among interacting modules 

expected size of data is huge 
many implementors familiar with ADT (from 

domain experts) 

Figure 8a. the claims of Fig 8b. 

331 

Figure 8b. A model that assesses architectural choices within software. Options 
within the model are the leaf nodes shown in gray. These options can be 

architectural decisions such as the use of abstract data types, implicit invocation, 
pipe & flter methods, or shared data. Some links in the model are dependant of 

various claims cl, ... ,c5 shown in Fig Sa. For example, claim[c2] is Pamas's [42] 
argument that having a single share data model across an entire application has a 
negative impact on the modifability of that process. The inference rules of this 

diagram are shown in Fig 8c. 
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The benefit of the this network is the benefit computed for the top-level node good. 
This benefit is defined recursively as follows: 

• The benefit of a leaf node is 1 if it is selected, or 0 otherwise. Leaf nodes 
represent choices in the network. Leaf nodes are shown in gray in Fig 8b. 

• The benefit of a non-leaf node is computed from its input influences. 

• An influuence of an edge on an upstream node is the product of the edge 
weight and the benefit of the downstream node. 

• Edge weights are set by tables that offer numeric values for (++, +, =,-,--). 

• Nodes are either disjunctions or conjunctions. Conjunctions are shown as 
diamonds in Fig 8b .. The benefit of a conjunction is minimum of the input 
influences. The benefit of a disjunction is the average of the input influences. 
For a rationale on why these rules were selected, see [10]. In summary: these 
rules were not unreasonable and the users wanted it that way. Future 
experiments in this domain will explore variants of these rules. 

Figure 8c. inference rules for Fig 8b. 

4. CASE STUDIES 
This section presents three examples of incremental treatment learning. 

The examples are sorted by model size: smallest to largest. The largest and 
final model is too detailed to explain here but the second largest model is 
explained in sufficient detail for the reader to reproduce the entire 
experiment. In all examples, the objective of incremental treatment learning 
is to find a subset of all possible decisions that reduces the variance and 
improves the mean of the important variables within a data cloud. 

4.1. Case Study A: Software Architectures 
Figure 8 shows some architectural assessment knowledge taken from 

Shaw & Garlan's Software Architectures book [49]. The knowledge is 
expressed in our variant of the softgoal notation of Chung et al. [12]. In the 
softgoal approach, a softgoal is distinguished from a normal goal as follows: 

• While a goal has well-defined non-optional feature of a system that must 
be available, a softgoal is a goal that has no clear cut criteria for success. 

• While goals can be conclusively demonstrated to be satisfied or not 
satisfied, softgoals can only be satisfied to some degree. 

Much is under-constrained in Figure 8. In fact, there are 421 • 29 '" 1015 

possibilities within this model: 

• The nine boolean choices in the model are leaf nodes representing 
software architecture options or claims about the application. Hence, 
there are 29 combinations of these choices. 

• Edges between nodes in Figure 8 are annotated with a symbol denoting 
how strongly the downstream node impacts the upstream node. These 
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annotations are {++,+,=,-,--} denoting makes; helps; equals; hurts; 
breaks(respectively). For the sake of exposition, we say that the values 
for four of these annotations come from a range of 21 possible values: 

1 ~ X makes > Xhelps > X hurts > Xbreaks > -1 

XI E {-I, -0.9, -0.8; ... 0, ... 0.9, I} (2) 

(The exact value of equals is not varied since this annotation is used to 
propagate influences unchanged over an edge; i.e. weight (equals) =1). 
Hence, in the worst case, there are 421 '" 1012 possible edge weights. 

These possibilities generate a wide range of behavior. Our softgoal 
interpreter [10] computes a cost and benefit figure resulting from a selection 
of edge weights and choices in diagrams like Figure 8 (the details of this 
computation are discussed in the inference rules table of Figure 8). Figure 1.i 
shows the range of benefits and costs seen after 10,000 random selection of 
choices and edge weights. Note the large variance in these figures. 

To apply incremental treatment learning for this case study, we first 
require a scoring scheme for the different classes. In 10,000 runs of Figure 8, 
with no constraints on any selections, the observed costs ranged from 1 to 4 
and the benefit ranged from -18 to 12 (see Figure l.i). Since high benefit and 
low cost is preferable to high cost and low benefit, these ranges were scored 
as shown in Figure 9. In that figure, the best range is benefit 2': 12 and cost = 
1 and the worst range is benefit :::;18 and cost = 4. 

Cost 
Benefit 1 2 3 4 

12 1 2 3 4 
scoring function: 6 5 6 7 8 

0 9 10 11 12 
-6 13 14 15 16 

-12 17 18 19 20 
-18 21 22 23 24 

Figure 9. Class scoring function 

T AR2 was applied to Figure 8 four times. Each round comprised 10,000 
runs where: 

• Edge weights were selected at random at the start of each run from 
Equation 2. 

• From the space of remaining choices, architectural options and claims 
were selected at random. 

Initially, no restrictions were imposed on the architectural options and 
claims. This generated the ranges of cost and benefit shown in Figure l.i. 
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Such a data cloud is hard to read. A more informative representation is the 
percentile matrix of Figure 10. Each cell of this matrix shows the percent of 
runs that falls into a certain range. Each cell is colored on a scale ranging 
from white (0%) to black (100%). 

Benefit 

12 
6 2 I 4 
0 15 4 
-6 4 I 

-12 2 
-18 I 

Figure 10. Percentage distributions of benefits and costs seen in 10,000 runs of 
Figure 8, assuming Equation 2 and a random selection of architectural options 

and claims. 
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Benefit 
round I 12 1 2 1 4 

6 5 9 3 17 
0 II 30 26 7 
-6 2 5 
-12 
-1 

KEY! = (claim[cl] = yes) /\ (pipe& filter[t arg etsystem] = yes) 

Benefit 
round 2: 

KE Y2 = KEYI/\ (shal'eddata[t arg et YSlem] = yes) /\ 

(implicitin vocation[t arg etsystem] = no) 

Benefit 
round 3: 12 

6 
o 
-6 

-12 
-I 

KEY3 = KEY2/\ (abstl'actdatalype[t argetsystem] = 110) 

/\ (claim[c3] = no) 

Benefit 
round 4 12 

6 
o 
-6 
-12 
-1 

KEY 4 = KEY J /\ 

( claim [ c 2] = yes ) /\ (claim [ c 4 ] = yes ) 

Figure 11. Percentile matrices showing four rounds of incremental treatment 
learning for Fig 8. 

335 
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Figure 11 shows the results of applying incremental treatment learning to 
Figure 8. Each round took the key decisions learnt by TAR2 from 10,000 
examples generated in the previous round. 10,000 more runs were then 
performed, with the selection of architectural options and claims restricted 
according to the current set of key decisions. Note that as the key decisions 
accumulate the variance in the behavior decreases and the means improve 
(decreased cost and increased benefit). 

This experiment stopped after four rounds since there was little observed 
improvement between round 3 and round 4. Figure l.iii shows the results of 
the round 3, not round 4; i.e. this experiment returned the results from round 
3, and not round 4. By stopping at round 3, analysts can avoid excessive 
decision making since they need never discuss c2; c4; c5 with their users. 
Alternatively, if in some dispute situation, an analyst could use c2; c4; c5 as 
bargaining chips. Since these claims have little overall impact, our analyst 
could offer them in any configuration as part of some compromise deal in 
exchange for the other key decisions being endorsed. 

83 

Sw3 

Figure 12. A qualitative circut. from [5]. 

4.2. Case Study B: Circuit Design 
Our next example contains a model somewhat more complex than §4.1. 

This example is based on models first developed by Bratko to demonstrate 
principles of qualitative reasoning [5]. 

While our last example generated cost and benefit figures for a software 
project, this example is a qualitative model of a circuit design shown in 
Figure 12. Such qualitative descriptions of a planned piece of software might 
appear early in the software design process. We will assume that the goal of 
this circuit is to illuminate some area; i.e. the more bulbs that glow, the 
better. 

For exposition purposes, we assume that much is unknown about our 
circuit. All we will assume is that the topology of the circuit is known, plus 
some general knowledge about electrical devices (e.g. the voltage across 
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components in series is the sum of the voltage drop across each component). 
What we don't know about this circuit are the precise quantitative values 
describing each component. 

% sum(X,Y,Z). 
sum ( + , + , +) . 
sum ( 0 , + , +) . 

sum(-,+,Any) . 

sum (+,0, +) . 
sum(O, 0, 0) . 
sum ( - , 0, -) . 

sum (+, +, Any) . 
sum (0, - , -) . 
sum ( - , - , -) . 

Figure 13. Qualitative mathematics using a Prolog syntax[5]. 

% bulb (Mode, Light, Volts, 
bulb (blown, dark, Any, 
bulb (ok, light, +, 
bulb (ok, light, -
bulb (ok, dark, 0, 

% num(Light,Glow). % 
switch(State,Volts,Amps) 

Amps) 
0) . 
+) . 
-) . 
0) . 

num(dark, 0). switch(on, 0, 
Any) . 

num(light,l). switch(off, Any, 
0) . 

Figure 14. Definitions of qualitative bulbs and switches. Adapted from [5]. 

When quantitative knowledge is unavailable, we can use qualitative 
models. A qualitative model is a quantitative mode whose numeric values x 
are replaced by a qualitative value x' having one of three qualitative states: 
+,-,O;i.e. 

x, + if x > 0 
x, = 0 if x = 0 
x' = - if x < 0 

The sum relation of Figure 13 describes our qualitative knowledge of 
addition using a Prolog notation. In Prolog, variables start with upper case 
letters and constants start with lower-case letters or symbols. For example, 

sum(+, +, +) 

says that the addition of two positive values is a positive value. There 
is much uncertainty within qualitative arithmetic. For example, 

sum ( + I - I Any) 

says that we cannot be sure what happens when we add a positive and 
a negative number. The bulb relation of Figure 14 describes our 
qualitative knowledge of bulb behavior. For example, 
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bulb (blown, dark,Any, 0) 

says that a blown bulb is dark, has zero current across it, and can have 
any voltage at all. Also shown in Figure 14 are the num and switch 
relations. Num defines how bright a dark or light bulb glows while 
switch describes our qualitative knowledge of electrical switches. For 
example, 

switch(on, 0, Any) 

says that if a switch is on, there is zero voltage drop across it while any 
current can flow through it. 

I circult(switch(Swl, VSwI, CI) , 
2 bulb(BI, LI, VBI, CI) , 
3 switch(Sw2, VSw2, C2) , 
4 bulb(B2, L2, VB2, C2) , 
5 switch(Sw3, VSw3, CSw3) , 
6 bulb(B3, L3, VB3, CB3) , 
7 Glow) 
8 VSw3 = VB3, 
9 sum(VSwl, VB1, VI) , % 9 options 
10 sum (VI, VB3, +) , % 1 option 
11 sum(VSw2, VB2, VB3) , % 9 options 
12 switch(Sw1, VSw1, Cl) , % 2 options 
13 bulb (B1, L1, VB1, Cl) , % 4 options 
14 switch(Sw2, VSw2, C2) , % 2 options 
15 bulb(B2, L2, VB2, C2) , % 4 options 
16 switch(Sw3, VSw3, CSw3) , % 2 options 
17 bulb(B3, L3, VB3, CB3) , % 4 options 
18 sum(CSw3, CB3, C3) , % 9 options 
19 sum(C2, C3 ,Cl) , % 9 options 
20 num(L1, Nl) , 
21 num(L2, N2) , 
22 num(L3, N3) , 
23 Glow is N1+N2+N3. 

Figure 15. Figure 12 modeled in Prolog. Adapted from [5]. 



www.manaraa.com

Condensing Uncertainty via Incremental Treatment Learning 339 

Sw3 

(KEY:0 Bulb ../ - Switch ~ Openner -0+ Closer J 
Figure 16. A device modeled using the Prolog of Figure 15. 

The circuit relation of Figure 15 describes qualitative knowledge of a 
circuit using bulb, num, sum and switch. This relation just records what we 
know of circuits wired together in series and in parallel. For example: 

• Switch 3 and Bulb3 are wired in parallel. Hence, the voltage drop across 
these components must be the same (see line 8) 

• Switch 2 and Bulb2 are wired in series so the voltage drop across these 
two devices is the sum of the voltage drop across each device. Further, 
this summed voltage drop must be that same as the voltage drop across 
the parallel component Bulb3 (see line 11). 

• Switchl and BulbI are in series so the same current Cl must flow 
through both (see line 12 and line 13). 

In order to stress test our method, our case study will wire up three 
copies of Figure 15 in such a way that solutions to one copy won't 
necessarily work in the other copies. Figure 16 shows our circuit connected 
by a set of openers and closers that open/close switches based on how much 
certain bulbs are glowing. For example, the closer between bulb B2Aand 
switch SwlB means that if B2A glows then SwlB will be closed. These 
openers and closers are defined in Figure 17. The full model is shown in 
Figure 18. 
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% inf(Sign,Bulb,Switch) 

inf(Inf,bulb(_,Shine, , ) ,switch(Pos, , )):

inf1(Inf,Shine,Pos) . 

% inf1(Sign,Glow,SwitchPos) 

inf1(+,dark, off). inf1(+,light, on). 

inf1(-,dark, on). inf1(-,light, off). 

Figure 17. The infl/3 predicate used to connect bulb brightness to switches. 

The less that is known about a model, the greater the number of possible 
behaviors. This effect can easily be seen in our qualitative model. Each line 
of Figure 15 is labeled with the number of possibilities it condones: i.e. 

9*1*9*2*4*2 * 4 * 2 * 4 * 9 * 9 = 3,359,232 

Copied three times, this implies a space of up to 3,359,2323 = 1019 

options. Even when many of these possibilities are ruled out by inter
component constraints, the circuits relation of Figure 18 can still succeed 
5,228 times (some sample output is shown in Figure 19). 

Given the goal that the more lights that shine, the better the circuit, we 
assume 10 classes: 0,1,2,3, ... 9, one for every possible number of glowing 
bulbs. As shown in Figure 20, within the 35,228 runs, there are very few 
lights shining. In fact, on average within those runs, only two lights are 
shining. T AR2's mission is to explore the space, trying to find key decisions 
which, when applied to the circuit, can most improve this low level of 
lighting. 

4.2.1. Round 1 

After learning treatments from the all 35,228 initial runs, and applying 
them to the data, T AR2 generated Figure 21. In summary, Figure 21 is 
saying that making a single decision will change the average illumination of 
the circuit from 2 to 5 (if Sw2C=oft) or 6 (if Sw3C=on). 
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1circuits :-
2 % some initial conditions 
3 value(light,bulb,B1a), 
4 % Uncomment to constrain Sw2c 
5 % value(off,switch,Sw2c), 
6 % Uncomment to constrain Sw1c 
7 % value (on,switch,Swlc) , 
8 % Uncomment to constrain Sw3c 
9 % value(on,switch,Sw3c), 
10 % explore circuit A 
11 circuit (Sw1a,Bla,Sw2a,B2a,Sw3a,B3a,GlowA) , 
12 % let circuit A influence circuit B 
13 inf(+,B1a,Sw1b), 
14 inf(-,B2a,Sw3b), 
15 % let circuit B influence circuit C 
16 circuit (Sw1b,B1b,Sw2b,B2b,Sw3b,B3b,GlowB) , 
17 % propagate circuit B to circuit C 
18 inf(-,B3b,Sw2c), 
19 inf(+,B2b,Sw3C), 
20 % explore circuit C 
21 circuit(Sw1c,B1c,Sw2c,B2c,Sw3c,B3c,G1owC), 
22 % compute total shine 
23 Shine is GlowA+G1owB+GlowC, 
24 % make one line of the examples 
25 format('-p,-p,-p,-p,-p,-p,-p,-p,-p', 
26 [Sw1a,Sw2a,Sw3a,Sw1b,Sw2b,Sw3b, 
27 Sw1c,Sw2c,Sw3c]), 
28 format('-%,-%,-%,-%,-%,-%,-%,-%,-%,-p 
29 [B1a,B2a,B3a,B1b,B2b,B3b 
30 ,B1c,B2c,B3c,Shine]) ,nl. 
31 
32 
33 
34 

data tell('circ.data'), 
forall(circuits,true) , told. 

35 % some support code 
36 value (Sw, switch, switch(Sw,_,_)). 
37 value (Light, bulb,bulb(_,Light,_,_)). 
38 
39 :- format-predicate('%' ,bulbls(_,_)). 
40 
41 bulbls( ,bulb(X, , , )) :-
42 var(X) -> write('?') !write(X). 
43 portray (X) :- value(Y, ,X), write(Y). 

Figure 18. Fig 16 expressed in Prolog. 

341 
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Swla Sw2a Sw3a Swlb B3b Blc B2c B3c Shine 
on off off on blown blown blown blown 2 
on off off on blown blown blown blown 2 
on off off on blown blown blown blown 2 
on off off on blown ok blown blown 2 
on off off on ok blown blown blown 2 
on off off on blown blown blown ok 2 
on off off on ok blown ok blown 3 
on off off on ok blown ok ok 3 
on off off on ok blown blown blown 3 
on off off on blown ok ok blown 5 

Figure. 19. Some output seen in circ.data generated using data (line 32 of Figure 
18). Columns denote values from Figure 16. For example, Sw1a and Sw1b 

denotes switch 1 in ciruit A and ciruit A respectively. 

'5 

30 

15 

Figure 20. Frequency count of number of bulbs glowing in the 35,228 solutions of 
circuits of Figure 18. 

For exposition purposes, this example assumed that something prevents 
our users from making this key decision; i.e. Sw3C=on. Our experience with 
incremental treatment learning is that this is often the case. When users are 
presented with the next key decision, they often recall some key knowledge 
that they neglected to mention previously. In this case, we assumed that it is 
preferable if switch 3 in circuit C is not closed- since that would violate (say) 
the warranty on circuit C. Our analysts therefore agreed to the next best 
treatment, i.e. Sw2C=off; shown in Figure 21, left hand side (LHS). 
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if Sw2c=off then ... 

45 ~--------~-n---------~ 

30 

15 

O+-~-r~~~~~~~~~'-~ 

o 1 234 5 678 9 

if Sw3c=on then ... 

45 

30 

15 

il 0 n 

0 1 2 3 4 5 6 7 8 9 

Figure 21. Run#1 ofTAR2 over the data seen in Figure 20. 

Figure 18 when Sw2c=off 

45 T-----------~~~1------------~ 

30 

15 

o 2 3 4 5 6 7 8 9 

Figure 22. Frequency count of number of bulbs glowing in the 3,264 solutions 
of circui ts of Figure 18 when Sw2C=off. 

4.2.2. Round 2 

343 

After constraining the model to Sw2C=off (i.e. by uncomrnenting line 5 
in Figure 18), fewer behaviors were generated: 3,264 as compared to the 
35,228 solutions seen previously. The frequency distribution of the shining 
lights in this new situation is shown in Figure 22. 
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Happily, Figure 22 has the same distribution as Figure 21.LHS; i.e. in 
this case, when the constraints proposed by T AR2's best treatment were 
applied to the model, the resulting new behavior of the model matched the 
new behavior predicted by the treatment. 

Executing T AR2 again found the next most informative decision, as 
shown in Figure 23. Here, TAR2 said that our best treatment would be to 
guarantee that bulb 3 in circuit C is never blown. Perhaps this is possible if 
we were to use better light bulbs with extra long life filaments. However, for 
the sake of exposition, we assumed that there is no budget for such expensive 
hardware. Hence, to avoid this expense, our analysts agreed that always 
closing switch 1 in circuit C (as proposed by Figure 23.LHS) is an acceptable 
action. 

when Sw2c=off then 
if Sw1C=on then ... 

. sT---------~~------~ 
30 

lS 
n n 

o 1 23. 5 8 7 e • 

when Sw2c=on then 
if 83C=ok then ... 

45 T----------n------~ 

30 

15 

012345678. 

Figure 23. Run #2 ofTAR2 over the data seen in Figure 22. 

4.2.3. Round 3 

After constraining the model to SwlC=on (i.e. by uncommenting line 7 
in Figure 18), fewer behaviors were generated: 648 as compared to the 3,264 
solutions seen previously. The frequency distribution of the shining lights in 
this new situation is shown in Figure 24. 
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Figure 18 when Sw2c=off and 
Sw1C=on 

45 

30 

15 

0 DO 
0 1 2 3 4 5 6 7 8 9 

Figure 24. Frequency count ofnurnber of bulbs glowing in the 648 solutions of 
cireui ts of Figure 18 when Sw2C=offand SwlC=on. 

Figure 24 has the same distribution as Figure 23.LHS. That is, once 
again, T AR2's predictions proved accurate. Executing T AR2 again generated 
Figure 25 and finds the next most informative decision. 

when Sw2c=off 
and Sw1C=on then 
if 83C=ok then ... 

30T-------------f1~~--~ 

15 

o 1 ~ 3 • 5 I 7 a 8 

when Sw2c=off 
and Sw1C=on then 
if Sw3C=on then ... 

45.,-------1 t----t 
30 

15 

o 1 2 3 4 5 I 7 a 8 

Figure 25. Run#3 ofTAR2 over the data seen in Figure 24. 

The cycle could stop here since the next best treatments are not 
acceptable. Figure 25.LHS wants to use overly expensive hardware to ensure 
that bulb 3 in circuit C is always not blown. Figure 2S.RHS wants to use an 
undesirable action and close switch 3 in circuit C. However, our engineers 



www.manaraa.com

346 Software Engineering with Computational Intelligence 

have enough infonnation to propose some options to their manager: if they 
increase their hardware budget, they could make the improvements shown in 
Figure 25.LHS. Alternatively, if there was some way to renegotiate the 
warranty, then the improvements shown in Figure 25.RHS could be 
achieved. 

To verify this, our engineers continue constraining Figure 18 to the case 
of Sw3c=on by uncommenting line 9 in Figure 18. The resulting 
distributions looked exactly like Figure 25.RHS. Further, only 64 solutions 
were found. Note that this observation is consistent with funnel theory: 
resolving three of the top treatments proposed by T AR2 constrained our 
system to one fifth of one percent of its original 35,228 behaviors. 

4.3. Case Study C: Satellite Design 
Our third example is much larger that then two previous. For reasons of 

confidentiality, the full details of this third model cannot be presented here. 
Further, this model uses so much domain-specific knowledge of satellite 
design that the general reader might learn little from its full exposition. 

Analysts at the Jet Propulsion Laboratory sometimes debate design 
issues by building a semantic network connecting design decisions to 
requirements [14]. This network links faults and risk mitigation actions that 
effect a tree of requirements written by the stakeholders (see Figure 26). 
Potential faults within a project are modelled as influences on the edges 
between requirements. Potential fixes are modelled as influences on the 
edges between faults and requirements edges. 
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• Faces denote requirements; 

• Toolboxes denote actions; 

• Skulls denote faults; 

• Conjunctions are marked with one arc; e.g. require1 if require2 and 
require3. 

• Disjunctions are marked with two arcs; e.g.faulti iffault2 orfault3. 

• Numbers denote impacts; e.g. action5 reduces the contribution of fault3 
to faulti, faulti reduces the impact of require5, and actioni reduces the 
negative impact of fault i. 
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• Oval denotes structures that are expressible in the latest version of the 1PL 
semantic net editor (under construction). 

Figure 26. Above: a semantic net of the type used at JPL [18] Below: 
explanation of symbols. 

This kind of requirements analysis seeks to maximize benefits (i.e., our 
coverage of the requirements) while minimizing the costs of the risk 
mitigation actions. Optimizing in this manner is complicated by the 
interactions inside the model - a requirement may be impacted by multiple 
faults, a fault may impact multiple requirements, an action may mitigate 
multiple faults, and a fault may be mitigated by multiple actions. For 
example, in Figure 26, fault2 and require4 are interconnected: if we cover 
require4 then that makes fault2 more likely which, in turn, makes faultI 
more likely which reduces the contribution of require5 to require3. 

The net can be executed by selecting actions and seeing what benefits 
results. One such network included 99 possible actions; i.e. 299 ::::i1030 

combinations of actions. The data cloud of Figure l.ii was generated after 
10,000 runs where each run selected at random from the 99 options. Note the 
wide variance in the possible behaviors. 
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round 0 

round I 

round 2 

round 3 

round 4 

Figure 27. Percentile matrices showing four rounds of incremental treatment 
learning for JPL satellite design. The data clouds for round 0 and round 4 

appear as Figure l.ii and Figure l.iv (respectively). 
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The results of incremental treatment learning is shown in Figure 27. The 
first percentile matrix (called round 0) summarizes Figure l.ii. As with all 
our other examples, as incremental treatment learning is applied, the variance 
is reduced and the mean values improve (compare round 0 with round 4 in 
Figure 27). In a result consistent with funnel theory, T AR2 could search a 
space of 1030 decisions to find 30 (out of 99) that crucially affected the 
costlbenefit of the satellite; i.e. T AR2 found 99-30=69 decisions that can be 
ignored [19]. 

For comparison purposes, a genetic algorithm (GA) was also applied to 
the same problem of optimized satellite design [48]. The GA also found 
decisions that generated high benefit, low cost projects. However, each such 
GA solution commented on every possible decision and there was no 
apparent way to ascertain which of these were the most critical decisions. 
The T AR2 solution was deemed superior to the GA solution by the domain 
experts, since the T AR2 solution required just 30 actions. 

5. WHEN NOT TO USE INCREMENTAL TREATMENT 
LEARNING 

OUf approach is an inexpensive method of generating coarse-grained 
controllers from rapidly written models containing uncertainties. This kind of 
solution is inappropriate for certain classes of software such as mission 
critical or safety critical systems. For those systems, analysts should move 
beyond T AR2 and apply more elaborate modelling methods and extensive 
data collection to ensure exact and optimal solutions. 

There are several other situations where incremental treatment learning 
should not be used. When trusted and powerful heuristics are available for a 
model, then a heuristic search for model properties may yield insight than 
random trashing within a model. Such heuristics might be modelled via (e.g.) 
fuzzy membership functions or Bayesian priors reflecting expert intuitions 
on how variables effect each other. Of course, such heuristics must be 
collected, assessed, and implemented. When the cost of such collection and 
assessment and implementation is too great, then our approach could be a 
viable alternative. 

Also, our approach requires running models many thousands of times 
and therefore can't be applied to models that are too expensive or too slow to 
execute many times. For example: 

• It may be too expensive or dangerous to conduct Monte Carlo 
simulations of in-situ process control systems for large chemical plants 
or nuclear power stations. 

• Suppose some embedded piece of software must be run on a specialized 
hardware platform. In the case where several teams must access this 



www.manaraa.com

350 Software Engineering with Computational Intelligence 

platform (e.g. the test team, the development team, the government 
certification team, and the deployment team), then it may be impossible 
to generate sufficient runs for incremental treatment learning. 

• Many applications connect user actions on some graphical user interface 
to database queries and updates. Monte Carlo simulations of such 
applications may be very slow since each variable reference might 
require a slow disk access or a user clicking on some OK button. An 
ideal application suitable for incremental treatment learning comprises a 
separate model for the business logic which can be executed without 
requiring (e.g.) screen updates or database accesses. 

6. RELATED WORK 

6.1. Prior T AR2 Results 
Other publications on treatment learning have assumed a one-shot use of 

T AR2 [24, 34-36]. This paper assumes an iterative approach. Our experience 
with users is that this iterative approach encourages their participation in the 
process and increases their sense of ownership in the conclusions. 

6.2. Entropy-Based Learners 
T AR2's treatments might be viewed as the attributes that most inform the 

decision making process. Holders of that view might therefore argue that 
treatments could be better formed using entropy measures of information 
content. Many machine learners have used such measures including the top
down decision tree induction algorithm C4.5 [45]. The attribute that offers 
the largest information gain is selected as the root of a decision tree. The 
example set is then divided up according to which examples do/do not satisfy 
the test in the root. For each divided example set, the process is then r.epeated 
recursively. The information gain of each attribute is calculated as follows. A 
tree C contain p examples of some class and n examples of other classes. The 
information required for the tree C is as follows [44]: 

I(p,n)= -(p/(p+n))*lo92(p/(p+n)) 
-(n/(p+n))*lo92(n/(p+n)) 

Say that some attribute A has values Al,A2' ... Av. If we select Ai as 
the root of a new sub-tree within C, this will add a sub-tree Ci containing 
those objects in C that have Ai. We can then define the expected value of the 
information required for that tree as the weighted average: 

E(A)= (for ie values do 
E(A):= (E(A) + «Pi+ni)/(p+n)*I(Pi,ni))) 



www.manaraa.com

Condensing Uncertainty via Incremental Treatment Learning 

lstat <= 11.66 
rm <= 6.54 

lstat <= 7.56 THEN 
lstat > 7.56 

dis <= 3.9454 

medhigh 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 

I 
I 
I 
I 

ptratio <= 17.6 THEN medhigh 
ptratio > 17.6 
I age <= 67.6 THEN medhigh 
I age. > 67.6 THEN medlow 

dis > 3.9454 THEN medlow 
rm > 6.54 

rm <= 7.061 
I lstat <= 5.39 THEN high} 
I lstat > 5.39 
I I nox <= 0.435 THEN medhigh} 

I I nox > 0.435 
I I ptratio <= 18.4 THEN 
I I ptratio > 18.4 THEN 
I rm > 7.061 THEN high 
lstat > 11.66 

lstat <= 16.21 
I b <= 378.95 
I I lstat <= 14.27 THEN 
I I lstat > 14.27 THEN 
I b > 378.95 THEN medlow 
lstat > 16.21 

I nox <= 0.585 

I ptratio <= 20.9 

I I b <= 392.92 THEN 
I I b > 392.92 THEN 
I ptratio > 20.9 THEN 
I nox > 0.585 THEN low 

medlow 
low 

low 
medlow 
low 

high 
medhigh 

351 

Figure 28.A. A learnt decision tree from C4.5 from the 506 cases in HOUSING 
example from the UC Irvine machine learning repositor 

http://www.ics.uci.edul-mlearnlMLRepository.htrnl. The Classes for the houses 
are high, medhigh, medlow, and low. These classes indicate median value of 

owner-occupied homes in $1 OOO's. 
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Figure 28.B. TAR2's output from the data used in Fig 28.A. The table shows the 
distributions of the classes in the example set (left-hand-side) and the results of the 
learnt treatment (right-hand-side). In the treatment PTRATIO denotes the pupil

teacher ratio by town and RM denotes the average number of rooms per dwelling. 

The information gain of branching on A is therefore: 
gain(A) = I(p, n) - E(A) 

Figure 28.A shows the kind of decision tree generated using C4.5 from 
506 examples. Figure 28.B shows the treatment learnt by T AR2 from the 
same data. Note that the treatment is much smaller that the tree learnt by 
C4.5. It turns out that C4.5's information measure is not the best method for 
forming treatments. Equation 3 selects attributes that most reduce the 
diversity of classes seen in the examples that fall into a subtree. Treatment 
learners needs a different kind of measure; i.e. one that that finds attribute 
ranges which occur more frequently in desired classes than in the undesired 
classes. 

Decision tree learners like C4.5 can be used as a preprocessor to 
treatment learning. The TARI system (called TARZAN) [38] swung through 
the decision trees generated by C4.5 and 10-way cross-validation. TARZAN 
returned the smallest treatments that occurred in most of the ensemble that 
increased the percentage of branches leading to some preferred highly 
weighted classes and decreased the percentage of branches leading to lower 
weighted class. T AR2 was as experiment with applying TARZAN's tree 
pruning strategies directly to the C4.5 example sets. The resulting system is 
simpler, fast to execute, generates smaller theories that C4.5, and does not 
require calling a learner such as C4.5 as a subroutine. 
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6.3. Association Rule Learning 
Another way to categorize T AR2 is a weighted-class minimal contrast

set association rule learner that uses confidence measures but not support
based pruning. This section discusses those terms. 

Top-down decision tree classifiers like C4.5 and CART [7] learn rules 
with a single attribute pair on the right-hand side; e.g. class= goodHouse. 
Association rule learners like APRIORI [2] generate rules containing 
multiple attribute pairs on both the left-hand-side and the right-hand-side of 
the rules. 

That is, classifiers have a small number of pre-defined targets (the 
classes) while, for association rule learners, the target is less constrained. 

General association rule learners like APRIORI input a set of D 
transactions of items I and return associations between items of the form 
LHS=>RHS where LHS c I and RHS c I and LHS n RHS = 0 In the 
terminology of APRIORI, an association rule has support s if s% of the D 
contains X 1\ Y ; i.e. s = IXI\ YI / IDI (where IXI\ YI denotes the number of 
examples containing both X and Y ). The confidence c of an association rule 
is the percent of transactions containing X which also contain Y ; i.e. 
c=IXI\ YVIXI. Many association rule learners use support-based pruning i.e. 
when searching for rules with high confidence, sets of items Ij, ... ,Ik are only 
be examined only if all its subsets are above some minimum support value. 

Specialized association rule learners like CBA [28] and T AR2 impose 
restrictions on the right-hand-side. For example, TAR2's right-hand-sides 
show a prediction of the change in the class distribution if the constraint in 
the left-hand-side were applied. The CBA learner finds class association 
rules; i.e. association rules where the conclusion is restricted to one 
classification class attribute. That is, CBA acts like a classifier, but can 
process larger datasets that (e.g.) C4.5. TAR2 restricts the right-hand-side 
attributes to just those containing criteria assessment. 

A common restriction with classifiers is that they assume the entire 
example set can fit into RAM. Learners like APRIORI are designed for data 
sets that need not reside in main memory. For example, Agrawal and Srikant 
report experiments with association rule learning using very large data sets 
with 10,000,000 examples and size 843MB [2]. However, just like Webb 
[53], TAR2 makes the memory-is-cheap assumption; i.e. TAR2 loads all it's 
examples into RAM. 

Standard classifier algorithms such as C4.5 or CART have no concept of 
class weighting. That is, these systems have no notion of a good or bad class. 
Such learners therefore can't filter their learnt theories to emphasize the 
location of the good classes or bad classes. Association rule learners such as 
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MINW AL [9], TARZAN [38] and TAR2 explore weighted learning in which 
some items are given a higher priority weighting than others. Such weights 
can focus the learning onto issues that are of particular interest to some 
audience. 

Support-based pruning is impossible in weighted association rule 
learning since with weighted items, it is not always true that subsets of 
interesting items (i.e. where the weights are high) are also interesting [9]. 
Another reason to reject support-based pruning is that it can force the learner 
to only miss features that apply to a small, but interesting subset of the 
examples [52]. Without support-based pruning, association rule learners rely 
on confidence-based pruning to reject all rules that fall below a minimal 
threshold of adequate confidence. T AR2's analogue of confidence-based 
pruning is the A measure shown in §3. 

One interesting specialization of association rule learning is contrast set 
learning. Instead of finding rules that describe the current situation, 
association rule learners like STUCCO [4] finds rules that differ 
meaningfully in their distribution across groups. For example, in STUCCO, 
an analyst could ask, "What are the differences between people with Ph.D. 
and bachelor degrees?" T AR2's variant on the STUCCO strategy is to 
combine contrast sets with weighted classes with minimality. That is, TAR2 
treatments can be viewed as the smallest possible contrast sets that 
distinguish situations with numerous highly-weighted classes from situations 
that contain more lowly-weighted classes. 

6.4. Funnel Theory 
Our development on funnel theory owes much to the deKleer's ATMS 

(assumption-based truth maintenance system) [16]. As new inferences are 
made, the ATMS updates its network of dependencies and sorts out the 
current conclusions into maximally consistent subsets (which we would call 
worlds). Narrow funnels are analogous to minimal environments of small 
cardinality from the ATMS research. However, funnels differ from the 
ATMS. Our view of funnels assumes a set-covering semantics and not the 
consistency-based semantics of the ATMS (the difference between these two 
views is detailed in [13]). The worlds explored by funnels only contain the 
variables seen in the subset of a model exercised by the supplied inputs. An 
ATMS world contains a truth assignment to every variable in the system. 
Consequently, the user of an A TMS may be overwhelmed with an 
exponential number of possible worlds. In contrast, our heuristic exploration 
of possible worlds, which assumes narrow funnels, generates a more succinct 
output. Further, the ATMS is only defined for models that generate logical 
justifications for each conclusion. Iterative treatment learning is silent on the 
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form of the model: all it is concerned with is that a model, in whatever form, 
generates outputs that can be classified into desired and undesired behavior. 

6.5. Fault Trees 
We are not the first to note variability in knowledge extracted from 

users. Leveson [22] reports very large variances in the calculation of root 
node likelihood in software fault tree analysis: 
• In one case study of 10 teams from 17 companies and 9 countries, the 

values computed for root node likelihood in trees from different teams 
differed by a factor of up to 36. 

• When a unified fault tree was produced from all the teams, 
disagreements in the internal probabilities of the tree varied less, but still 
by a factor of 10. 

The work presented here suggests a novel method to resolve Leveson's 
problem with widely varying root node likelihoods. If funnel theory is 
correct, then within the space of all disagreements in the unified fault tree, 
there exist a very small number of key values that crucially impact the root 
node likelihood. Using T AR2 the feuding teams could restrict their debates 
to just those key decisions. 

6.6. Bayesian Reasoning 
We do not use Bayesian reasoning for uncertain models for the same 

reason we don't use computational intelligence methods. Recall from our 
introduction that this work assumes metrics starvation: i.e. the absence of 
relevant domain expertise or specific numeric values in the domain being 
studied. Bayesian methods have been used to sketch out subjective 
knowledge (e.g. our software management oracle), then assess and tune that 
knowledge based on available data. Success with this method includes the 
COCOMO-II effort estimation tool [11] and defect prediction modelling 
[20]. In the domains where statistical data on cause-and-effect are lacking 
(e.g. our metrics starved domains), we have to approximate (i.e guess/make
up) some values to describe the model. Since there are too many 
uncertainties within the model, Bayesian reasoning may not yield stable 
result. 

6.7. Simulation for Decision Making 
Other research has explored simulation for making design decisions. 

Bricconi et al. [21] built a simulator of a server on a network, then assessed 
different network designs based on their impact on the server. Menzies and 
Sinsel assessed software project risk by running randomly selected 
combinations of inputs through a software risk assessment model [38]. 
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Josephson et al. [26] executed all known options in a car design to find 
designs that were best for city driving conditions. Bratko et al. [6] built 
qualitative models of electrical circuits and human cardiac function. Where 
uncertainty existed in the model, or in the propagation rules across the 
model, a Bratko-style system would backtrack over all possibilities. 

Simulation is usually paired with some summarization technique. Our 
research was prompted by certain short-comings with the summarization 
techniques of others. Josephson et al. used dominance filtering (a Pareto 
decision technique) to reduce their millions of designs down to a few 
thousand options. However, their techniques are silent on automatic 
methods for determining the difference between dominated and undominated 
designs. Bratko et al. used standard machine learners to summarize their 
simulations. Menzies and Sinsel attempted the same technique, but found the 
learnt theories to be too large to manually browse. Hence, they evolved a 
treequery language (TAR!) to find attribute ranges that were of very 
different frequencies on decision tree branches that lead to different 
classifications. T AR2 grew out of the realization that all the T ARl search 
operations could be applied to the example set directly, without needing a 
decision tree learner as an intermediary. TAR2 is hence much faster than 
TAR! (seconds, not hours). 

7. CONCLUSION 
When not all values within a model are known with certainty, analysts 

have at least three choices. Firstly, they can take the time to nail down those 
uncertain ranges. This is the preferred option. However, our experience 
strongly suggests that funding restrictions and pressing deadlines often force 
analysts to make decisions when many details are uncertain. 

Secondly, analysts might use some sophisticated uncertainty reasoning 
scheme like Bayesian inference or the computational intelligence methods 
such as neural nets, genetic algorithms or fuzzy logic. These techniques 
require some minimal knowledge of expert opinion, plus perhaps some 
historical data to tune that knowledge. In situations of metrics starvation, that 
knowledge is unavailable. 

This paper has explored a third option: try to understand a model by 
surveying the space of possible model behaviors. 

Such a survey can generate a data cloud: a dense mass of possibilities 
with such a wide variance of output values that they can confuse, not clarify, 
the thinking of our analysts. However, in the case of data clouds generated 
from models containing narrow funnels, there exist key decisions which can 
condense that cloud. 
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Incremental treatment learning is a method for controlling the 
condensation of data clouds. At each iteration, users are presented with list of 
treatments that have most impact on a system. They select some of these and 
the results are added to a growing set of constraints for a model simulator. 
This human-in-the-Ioop approach increases user "buy-in" and allows for 
some human control of where a data cloud condenses. In the case studies 
shown above, data clouds where condensed in such a way as to decrease 
variance and improve the means of the behavior of the model being studied. 

As stated in the introduction, there are several implications of this work. 
Even when we don't know exactly what is going on with a model, it is often 
possible to: 

• Define minimal strategies that grossly decrease the uncertainty in that 
model's behavior. 

• Identify which decisions are redundant; i.e. those not found within any 
funnel. 

Also, when modelling is used to assist decision making, it is possible to 
reduce the cost of that modelling: 

• Even hastily built models containing much uncertainty can be used for 
effective decision making. 

• Further, for models with narrow funnels, elaborate and extensive and 
expensive data collection may not be required prior to decision making. 

T AR2 exploits narrow funnels and is a very simple method for finding 
treatments at each step of iterative treatment learning. Iterative treatment 
learning is applicable to all models with narrow funnels. Empirically and 
theoretically, there is much evidence that many real-world models have 
narrow funnels. To test if a model has narrow funnels, it may suffice just to 
try T AR2 on model output. If a small number of key decisions can't be 
found, then iterative treatment should be rejected in favor of more elaborate 
techniques. 
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