
www.manaraa.com

www.manaraa.com

SOFTWARE ENGINEERING
WITH COMPUTATIONAL

INTELLIGENCE

www.manaraa.com

THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

www.manaraa.com

SOFTWARE ENGINEERING
WITH COMPUTATIONAL

INTELLIGENCE

edited by

Taghi M. Khoshgoftaar
Florida Atlantic University, US.A.

SPRINGER SCIENCE+BUSINESS MEDIA, LLC

www.manaraa.com

Library of Congress CataIogiog-in-PubHcation

Title: Software Engineering with Computational Intelligence
Editor: Taghi M. Khoshgoftaar

ISBN 978-1-4613-5072-9 ISBN 978-1-4615-0429-0 (eBook)
DOI 10.1007/978-1-4615-0429-0

Copyright © 2003 by Springer Science+Business Media New York
Originally published by Kluwer Academic Publishers in 2003
Softcover reprint of the hardcover 1 st edition 2003
Ali rights reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic, mechanical, photo-copying,
microftlming, recording, or otherwise, without the prior written permission of the
publisher, with the exception of any material supplied specifica1ly for the purpose of being
entered and executed on a computer system, for exclusive use by the purchaser of the
work.
Permissions for books published in the USA: perm i ş şi an ş®wkap corn
Permissions for books published in Europe: permissions@wkap.nl
Printed on acid-free paper.

www.manaraa.com

Table of Contents

Preface vii

Acknowledgment xi

1. Applying Machine Learners to GUI Specifications in 1
Formulating Early Life Cycle Project Estimations

Gary D. Boetticher. . . .

2. Applying Fuzzy Logic Modeling to Software Project 17
Management

Stephen G. MacDonell and Andrew R. Gray . ..

3. Integrating Genetic Algorithms With Systems Dynamics 44
To Optimize Quality Assurance Effort Allocation

4.

5.

6.

7.

8.

Balasubramaniam Ramesh and Tarek K. Abdel-Hamid .

Improved Fault-Prone Detection Analysis of Software
Modules Using an Evolutionary Neural Network
Approach
Robert Hochman, Taghi M. Khoshgoftaar, Edward B. Allen

and John P. Hudepohl..

A Fuzzy Model and the AdeQuaS Fuzzy Tool: a
theoretical and a practical view of the Software Quality
Evaluation

Kelly R. Oliveira and Arnaldo D. Belchior

Software Quality Prediction Using Bayesian Networks

Martin Neil, Paul Krause and Norman Fenton ..

Towards the Verification and Validation of Online
Learning Adaptive Systems

Ali Mili, Bojan Cukic, Van Liu and Rahma Ben Ayed

Experimenting with Genetic Algorithms to Devise
Optimal Integration Test Orders

Lionel C. Briand, Jie Feng and Yvan Labiche .

69

101

136

173

204

www.manaraa.com

9. Automated Test Reduction Using an Info-Fuzzy Network 235

Mark Last and Abraham Kandel

10. A Genetic Algorithm Approach to Focused Software
Usage Testing
Robert M. Patton, Annie S. Wu, and Gwendolyn H. Walton

11. An Expert System for Suggesting Design Patterns - A
Methodology and a Prototype
David C. Kung, Hitesh Bhambhani, Riken Shah and Gaurav

Pancholi

12. Condensing Uncertainty via Incremental Treatment
Learning
Tim Menzies, Eliza Chiang, Martin Feather, Ying Hu, James

D. Kiper .. .

259

287

319

vi

www.manaraa.com

Preface

The constantly evolving technological infrastructure of the modem world
presents a great challenge of developing software systems with increasing
size, complexity, and functionality. The software engineering field has seen
changes and innovations to meet these and other continuously growing
challenges by developing and implementing useful software engineering
methodologies. Among the more recent advances are those made in the
context of software portability, formal verification· techniques, software
measurement, and software reuse. However, despite the introduction of some
important and useful paradigms in the software engineering discipline, their
technological transfer on a larger scale has been extremely gradual and
limited. For example, many software development organizations may not
have a well-defined software assurance team, which can be considered as a
key ingredient in the development of a high-quality and dependable software
product.

Recently, the software engineering field has observed an increased
integration or fusion with the computational intelligence (Cl) field, which is
comprised of primarily the mature technologies of fuzzy logic, neural
networks, genetic algorithms, genetic programming, and rough sets. Hybrid
systems that combine two or more of these individual technologies are also
categorized under the Cl umbrella. Software engineering is unlike the other
well-founded engineering disciplines, primarily due to its human component
(designers, developers, testers, etc.) factor. The highly non-mechanical and
intuitive nature of the human factor characterizes many of the problems
associated with software engineering, including those observed in
development effort estimation, software quality and reliability prediction,
software design, and software testing.

The computational intelligence area provides a software development
team with a unique conceptual and algorithmic opportunity of incorporating
technologies such as fuzzy logic, neural networks, and evolutionary
computation to address open software engineering problems. The basic
purpose of incorporating Cl technologies into the various phases of software
development and analysis is to address the problems arising due to imprecise
measurement and uncertainty of information.

This book presents a collection of twelve articles selected from peer
reviewed papers that focus on computational intelligence in software
engineering. Cl technologies have been applied to solve software
engineering issues arising from the ever-increasing complexity of software
systems descriptions and analysis. These papers were initially selected for a
special volume of the Annals of Software Engineering (ASE) journal,

www.manaraa.com

viii

published by Kluwer Academic Publishers. Titled "Computational
Intelligence in Software Engineering", this special volume was destined to be
Volume 15 of the ASE. However, due to unfortunate circumstances, the ASE
journal was discontinued after the publication of Volume 14. In light of the
considerable efforts put in by the various reviewers, volunteers, and myself
toward the realization of the special volume, Kluwer decided on publishing
the same in the form of this book. I am thankful to them for recognizing our
efforts. Twelve high-quality research papers were chosen based on a rigorous
peer-review and selection process, from over seventy submissions received
for the special volume of ASE. Most submissions were reviewed by at least
four reviewers familiar with the respective subject matter. Osman Balci, the
Editor-in-Chief of ASE, handled the review process for the included paper
by Hochman, Khoshgoftaar, Allen, and Hudepohl.

The contributions of this book are generally grouped into four software
engineering categories: software project management and effort estimation;
software quality assurance and estimation; software testing, verification, and
validation; and, software design. All the papers focus on applying
computational intelligence techniques to address software engineering
problems.

The group of articles related to software project management and effort
estimation consists of two papers. The paper by Boetticher presents a process
of applying machine learners, in particular neural networks, to formulate
effort estimation models early in the software life cycle. The approach
presented is alternative to the traditional software cost estimation models,
COCOMO II and Function Points Analysis. Empirical case studies are based
on input and output measures extracted from GUI interface specification
documents. The goal of this paper is to define a tool that deterministically
constructs accurate early life cycle estimation models. The paper by
MacDonell and Gray presents a study of applying fuzzy logic to the software
project management problem. A software toolset is constructed that enables
data, classes and rules to be defined for estimation problems such as project
risk, product size, and project effort based on a variety of input parameters.
The effectiveness of the fuzzy logic-based toolset is demonstrated by
applying it to two data sets, the first related to software sizing and the second
to effort estimation.

The next group of papers (four) is related to software quality assurance
and software quality estimation. The first among these, by Balasubramaniam
and Abdel-Hamid, focuses on improving the decision support system with a
genetic algorithm to optimize the decision variable. A decision support
system based on the system dynamics simulation model has been developed
to support decision-making regarding the optimal allocation of effort toward
software quality assurance. The overall objective of this study is to present a

www.manaraa.com

ix

tool to support the software project manager in efficiently allocating the
quality assurance effort throughout the software development lifecycle. A
case study is based on a real project that was conducted at one of NASA's
space flight centers.

The paper by Hochman, Khoshgoftaar, Allen, and Hudepohl describes an
application of genetic algorithms to the evolution of optimal or near-optimal
backpropagation neural networks for the software quality classification
problem. Predicting the quality of modules as either fault-prone or not fault
prone can support the decision making process regarding the allocation of
software quality improvement resources. The ultimate goal in this informed
allocation of software project resources is to contain costs and maintain
schedules with minimal impact on software quality. It is suggested that
evolutionary neural networks can be used to successfully attack a broad
range of data-intensive software engineering problems, where traditional
methods have been used almost exclusively.

The paper by Olivera and Belchior introduces a fuzzy logic-based model
for software quality evaluation and its implementation, theAdaQuaS Fuzzy
tool. The study clearly demonstrates how fuzzy logic is more suitable for
software engineering decision making processes in which inherent
subjectivity and inconsistencies are found due to the human component. Two
empirical case studies are presented: the first is the software quality
evaluation process of e-commerce website; the second is an evaluation of
software requirements specification quality. The paper by Neil, Krause, and
Fenton is based on the aim of producing a single model that combines the
diverse forms of, often causal, evidence available in software development in
a more natural and efficient way than done in previous related studies. They
use Bayesian Belief Networks as the appropriate formalism for
demonstrating the same. The authors argue that the causal or influence
structure of these models more naturally mirrors the real world sequence of
events that can be achieved with other formalisms.

The third group of papers, related to software testing, verification, and
validation, consists of four papers. The one by Mili, Cukic, Liu, and Ayed
presents a framework for reasoning about on-line learning systems, which
they envision as a candidate technology for their verification and validation.
Their discussion is based on a practical problem associated with adaptive
systems, i.e., due to the constantly evolving nature of adaptive systems, they
are inherently more difficult to verify/validate. The paper by Briand, Feng,
and Labiche presents an improved strategy to devise optimal integration test
orders in object-oriented systems in the presence of dependency cycles. The
goal of their study is to minimize the complexity of stubbing during
integration testing, which has been shown to be a major source of software
testing costs. The strategy to achieve the goal is based on the combined use

www.manaraa.com

x

of inter-class coupling measurement and genetic algorithms, which are used
to minimize cost functions based on coupling measurement.

The paper by Last and Kandel presents an attempt to automate a
common task in black-box software testing, namely reducing the number of
combinatorial test cases. Their proposed approach is based on automated
identification of relationships between inputs and outputs of a data-driven
application. The input variables relevant to each output are extracted by the
proposed data mining algorithm, called the info-fuzzy network. The case
study is that of a typical business software application program. The last
paper in this group, by Patton, Wu, and Walton, besides providing a basic
introduction to genetic algorithms, presents a genetic algorithm-based
approach to focused software usage testing. A genetic algorithm is used to
select additional test cases to focus on the behavior around the initial set of
test cases in order to assist in identifying and characterizing the types of test
cases that do/do not induce system failures. It is shown that the approach
presented supports increased test automation and provides increased
evidence to support reasoning about the overall quality of the software.

The next paper in this book is related to computational intelligence as
applied to software design problems. The authors, Kung, Bhambani, Shah,
and Pancholi present a methodology for constructing expert systems which
can suggest software design patterns to solve design problems as stated by
the software design team. More specifically, the expert system selects a
design pattern through dialog with the software designer to narrow down the
possible choices. Moreover, classification and heuristics have been used to
improve the selection effectiveness. The final paper, by Menzies, Chiang,
Feather, Hu, and Kiper, presents a machine-learning approach of condensing
uncertainty of various prediction problems. Their method is based on
incremental treatment learning and their previously proposed funnel theory.

TaghiM.Khoshgo~

Florida Atlantic University
Boca Raton, Florida, USA

www.manaraa.com

Acknowledgment

I would like to take this opportunity to thank all the reviewers for their
patience and effort in the reviewing process. I thank Susan Lagerstonn-Fife
for her invaluable assistance in publishing these papers in the fonn of a book,
despite the tennination of the Annals of Software Engineering journal. I
would like to express my appreciation to Sharon Pallechi at Kluwer
Academic Publishers for her courteous cooperation in the production of this
book. Special thanks to my graduate students: Pierre Rebours for his help
with type setting and compilation of the papers; Eric Geleyn and Laurent
Nguyen for their assistance with correspondence during the review process,
and Naeem Seliya for his editorial reviews and assistance in producing this
book. Last but not the least, I am deeply grateful to Osman Balci, the Editor
in-Chief of the ASE, for inviting me to edit this special volume of the ASE
journal. Taghi M. Khoshgoftaar was supported in part by the National
Science Foundation grant CCR-9970893.

Taghi M. Khoshgoftaar

Florida Atlantic University
Boca Raton, Florida, USA
December 2002

www.manaraa.com

Applying Machine Learners to GUI
Specifications in Formulating Early Life Cycle
Project Estimations

Gary D. Boetticher

Department of Software Engineering
University of Houston, Clear Lake
2700 Bay Area Boulevard, Houston, TX 77058, USA
+12812833805
boetticher@cl.uh.edu

ABSTRACT

Producing accurate and reliable early life cycle project estimates remains an
open issue in the software engineering discipline. One reason for the
difficulty is the perceived lack of detailed information early in the software
life cycle. Most early life cycle estimation models (e.g. COCOMO II,
Function Point Analysis) use either the requirements document or a size
estimate as the foundation in formulating polynomial equation models. This
paper explores an alternative approach using machine learners, in
particular neural networks, for creating a predictive effort estimation model.
GUI-specifications captured early in the software life cycle serve as the basis
for constructing these machine learners. This paper conducts a set of
machine learning experiments with software cost estimation empirical data
gathered from a "real world" eCommerce organization. The alternative
approach is assessed at the program unit level, project subsystem level, and
project level. Project level models produce 83 percent average accuracy,
pred(25), for the client-side subsystems.

KEYWORDS
Machine learning, machine learners, requirements engineering, software
engineering, neural networks, backpropagation, software metrics, effort
estimation, SLOC, project estimation, programming effort.

1. INTRODUCTION

One of the most important issues in software engineering is the ability to
accurately estimate software projects early in the life cycle. Low estimates
result in cost overruns. High estimates equate to missed financial
opportunities.

From a financial context, more than $300 billion is spent each year on
approximately 250,000 software projects [30]. This equates to an average
budget of $1.2 million. Coupling these facts with Boehm's observation [2]

www.manaraa.com

2 Software Engineering with Computational Intelligence

that project estimates range from 25 to 400 percent early in the life cycle
indicates a financial variance of $300 thousand to $4.8 million.

Why does such a high variance exist? One primary reason is the severe
lack of data early in the life cycle. In the embryonic stage of a software
project the only available artifact is a requirements document. This high
level document provides relatively few metrics (e.g., nouns, verbs,
adjectives, or adverbs) for estimating a project's effort. Due to the
complexity and ambiguity of the English language, formulating an accurate
and reliable prediction, based upon a requirements document, is a nearly
impossible task.

Despite this high variance, the ability to generate accurate and reliable
estimates early in software life cycle is extremely desirable. Many IT
managers are under pressure to offer relatively narrow ranges of estimates
regarding anticipated completion rates.

The software engineering discipline recognizes the importance of
building early life cycle estimation models. The traditional approach
involves formulating a polynomial equation based upon empirical data.
Well-known equations include the COnstructive COst MOdel II (COCOMO
II) and Function Point Analysis. Each has produced reasonable results since
their inception [13,28]. However, there are several drawbacks in using these
well-known equations.

Using these equations is a time-consuming process. The complexity of
each requires extensive human intervention and is subject to multiple
interpretations [21, 31]. What is needed is an alternative approach for
generating accurate estimates early in the software life cycle. An approach
which produces accurate estimates, is automated to avoid subjective
interpretation; and is relatively simple to implement.

This paper describes a process of applying machine learners, in
particular neural networks, in formulating estimation models early in the
software life cycle. A series of empirical experiments are based on input and
output measures extracted from four different 'real world' project
subsystems. The input measures for each experiment are derived by utilizing
the GUI interface specification document. The GUI interface document
offers the advantage of being an early life cycle artifact rich in objective
measures for building effort estimation models.

The set of experiments use 109 different data samples (or program units).
Each program unit corresponds to a form consisting of up to twelve different
types of widgets (e.g., edit boxes, buttons). Extracted widget counts serve as
the input measures. The output measure is the actual, not estimated, effort
expended in developing that particular program unit.

www.manaraa.com

Applying Machine Learners to CUI Specifications 3

Section 2 provides background infonnation and motivation for using
machine learners in project estimation. Section 3 discusses related research
in the area of machine learning applied to effort estimation. Section 4
describes a set of machine learning experiments. Section 5 offers a
discussion of the experiments. And section 6 draws several conclusions and
describes future directions.

2. BACKGROUND

Different techniques for cost estimation have been discussed in the
literature [2, 16, and 18]. Popular approaches include: algorithmic and
parametric models, expert judgment, fonnal and infonnal reasoning by
analogy, price-to-win, top-down, bottom-up, rules of thumb, and available
capacity.

Two well-known parametric approaches for early life cycle estimation
are CO COMO II and Function Point Analysis (FPA).

The COCOMO II equation embeds many project parameters within the
equation. It is defined as follows [10]:

Effort = A * (Size)B * EM (1)

where

Effort refers to the Person Months needed to complete a project

A represents the type of proj ect. There are three possible values for
this parameter.

Size is defined by using a SLOC estimate or Function Point Count.

B is a derived metric which includes the sum of five cost driver
metrics.

EM is an abbreviation for Effort Multiplier. The COCOMO II
equation defines seven effort multipliers for early life cycle
estimating.

A difficulty in applying the COCOMO II equation is managing the very
large solution space. In the early life cycle version, there are 3 options for
project type, 55 options for the cost drivers, and 57 options for the effort
multipliers. Multiplying all the options together reveals a search space of
732,421,875 different settings. This excludes the effort value supplied for the
Size parameter.

A more fundamental problem with COCOMO II is that it requires an
estimate for the size of the project represented by SLOC of Function Points.

www.manaraa.com

4 Software Engineering with Computational Intelligence

If the size of a project were actually known early in the life cycle, then it
would be easy to formulate a reasonable effort estimate.

Another parametric approach is Function Point Analysis (FPA). This
process starts with the requirements document where a user identifies all
processes. Each process is categorized into one of five function types;
different Record Element Type, Data Element Types; and File Types
Referenced. Based upon the settings chosen, the equation produces an
Unadjusted Function Point (UFP) for each process. There are seven possible
values for each UFP ranging from 3 through 15.

The next step involves defining the Global System Characteristics
(GSC). Collectively, there are 14 different GSC parameters with 5 possible
settings for a total search space of 6, 1 03,515,625 options. The total GSC may
range from 0 through 70.

After applying several mathematical operations to the UFP, it is
mUltiplied by the total GSC to produce the final Adjusted Function Point. A
software project with only one function point may range from 1.95 to 20.25
Adjusted Function Points. Assuming a mean of 11.1, this produces a
variance of 83.7. This Adjusted Function Point variance does not compare
well with Boehm's early life cycle variance of 4 [2].

Assuming a perfect Adjusted Function Point value is determined, the
next step in the FPA requires the model builder (presumably a project
domain expert) to define a constant by which to multiply the final Adjusted
Function Point total. This last step, which is totally subjective, is the most
critical step in the process and very sensitive to distortion.

The complex nature of COCOMO II and FPA suggests the need for an
alternative approach to early life cycle project estimation.

One approach would be to formulate an early life cycle model using a
machine learning algorithm. There are different types of machine learners
including predictors, classifiers, and controllers. Since this is a predictor type
problem, a neural network approach is chosen for conducting a series of
experiments.

The goal of these experiments is to define a tool that deterministically
constructs an accurate early life cycle estimation model. Deterministically
means that there are no subjective measures introduced into the modeling
process.

To establish a context for the application of machine learners to software
project estimation; the following section describes previous research in this
area.

www.manaraa.com

Applying Machine Learners to CUI Specifications 5

3. RELATED RESEARCH

Related research consists of the utilization of various types of machine
learners for predicting project effort. Also, there had been some previous
research in using GUI metrics for estimating project effort. This section
describes both of these contexts in terms of machine learning algorithms
deployed, if applicable, and results achieved.

In [1, 15, 20, 24, and 25], a Case-Based Reasoning (CBR) approach is
adopted in constructing a cost model for the latter stages of the development
life cycle. Delany [12] also uses a CBR approach applied early in
development life cycle.

Chulani [9] uses a Bayesian approach to cost modeling and generates
impressive results. He collects information on 161 projects from commercial,
aerospace, government, and non-profit organizations [9]. The COCOMO
data sets contain attributes that, for the most part, can be collected early in
the software life cycle (exception: COCOMO requires source lines of code
which must be estimated). Regression analysis was applied to the COCOMO
data set to generate estimators for software project effort. However, some of
the results of that analysis were counter-intuitive. In particular, the results of
the regression analysis disagreed with certain domain experts regarding the
effect of software reuse on overall cost.

To fix this problem, a Bayesian learner was applied to the COCOMO
data set. In Bayesian learning, a directed graph (the belief network) contains
the probabilities that some factor will lead to another factor. The
probabilities on the edges can be seeded from (e.g.) domain expertise. The
learner then tunes these probabilities according to the available data.
Combining expert knowledge and data from the 161 projects yielded an
estimator that was within 30% of the actual values, 69% of the time [9]. It is
believed that the above COCOMO result of pred(30) = 69% is a high
watermark in early life cycle software cost estimation.

Cordero [11] applies a Genetic Algorithm (GA) approach in the tuning
of COCOMO II.

Briand [8] introduces optimized set reduction (OSR) in the construction
of software cost estimation model.

Srinivasan [29] builds a variety of models including neural networks,
regression trees, COCOMO, and SLIM. The training set consists of
COCOMO data (63 projects from different applications). The training
models are tested against the Kemerer COCOMO data (15 projects, mainly
business applications). The regression trees outperformed the COCOMO and

www.manaraa.com

6 Software Engineering with Computational Intelligence

the SLIM model. The neural networks and function point-based prediction
models outperformed regression trees.

Samson [26] applies neural network models to predict effort from
software sizing using COCOMO-81 data. The neural network models
produced better results than the COCOMO-8l.

Wittig et ai. [32] estimated development effort using a neural network
model. They achieved impressive results of 75 percent accuracy pred(25).

Boetticher [6] conducted more than 33,000 different neural network
experiments on empirical data collected from separate corporate domains.
The experiments assessed the contribution of different metrics to
programming effort. This research produced a cross-validation rate of
73.26%, using pred(30).

Hodgkinson [19] adopted a top-down approach using a neurofuzzy cost
estimator in predicting project effort. Results were comparable to other
techniques including least-squares multiple linear regression, estimation via
analogy, and neural networks.

Lo et al. [23] constructed a GUI effort estimation multivariate regression
model using 33 samples. Independent variables consisted of GUI metrics
classified into 5 groups: static widgets (labels), data widgets not involving
lists (edit boxes, check boxes, radio buttons), data widgets involving lists
(list boxes, memo boxes, file lists, grids, combo boxes), action widgets
involving the database (buttons), and action widgets not involving the
database (buttons). Instead of using the actual effort values for the dependent
variable, estimates from 4 experts with a least I year of experience were
averaged. The average of these estimates ranged from 3 to 48 hours.
Variance of the expert's estimates is not presented in the paper. The initial
internal results were pred(25) = 75.7% and MARE 20.1%. External results
(against another system) yielded were pred(25) = 33.3% and MARE = 192%.

4. MACHINE LEARNING EXPERIMENTS

4.1. General Description

This section describes a series of machine learning experiments based on
data gathered from four 'real-world' project subsystems.

Prior to conducting the experiments, it was necessary to decide which
ML approach to adopt. A neural network paradigm for creating models
seemed like a natural choice. This decision was based upon the author's
previous successes using neural networks to model software metrics [3, 4, 5,
6, and 7].

www.manaraa.com

Applying Machine Learners to GUI Specifications 7

Advantages of using neural networks include [17]: the ability to deal
with domain complexity, ability to generalize, along with adaptability,
flexibility, and parallelism.

There is also support in the literature for applying neural networks in
estimation tasks [22, 26, and 29]. However, some researchers consider the
relative merits of neural nets over other machine learning techniques (e.g.
decision tree learning) an open issue [27].

4.2. Neural Network Overview

A supervised neural network can be viewed as a directed graph
composed of nodes and connections (weights) between nodes. A set of
vectors, referred to as a training set, is presented to the neural network one
vector at a time. Each vector consists of input values and output values. In
Figure 1, the inputs are Xo through XN-l and the output is y. The goal of a
neural network is to characterize a relationship between the inputs and
outputs for the whole set of vectors. During the training of a neural network,
inputs from a training vector propagate throughout the network. As inputs
traverse the network, they are multiplied by appropriate weights and the
products are summed up. In Figure I, this is Wi . Xi. If the summation exceeds
some specified threshold for a node, then output from that node serves as
input to another node. This process repeats until the neural network generates
an output value for the corresponding input portion of a vector. This
calculated output value is compared to the desired output and an error value
is determined. Depending on the neural network algorithm, either the
weights are recalibrated after every vector, or after one pass (called an
epoch) through all the training vectors. In either case the goal is to minimize
the error total. Processing continues until a zero error value is achieved, or
training ceases to converge. After training is properly completed, the neural
network model which characterizes the relationship between inputs and
outputs for all the vectors is embedded within the architecture (the nodes and
connections) of the neural network. After successful completion of training,
a neural network architecture is frozen and tested against an independent set
of vectors called the test set. If properly trained, the neural network produces
reasonable results against the test suite.

www.manaraa.com

8 Software Engineering with Computational Intelligence

Inputn

Figure 1. Sample Neural Network.

All experiments utilize a variant of the backpropagation neural network,
called the quickprop. The quickprop algorithm converges much faster than a
typical backpropagation approach [14). It uses the higher-order derivatives in
order to take advantage of the curvature [14]. The quickprop algorithm uses
second order derivatives in a fashion similar to Newton's method. Using
quickprop in all the experiments also ensures stability and continuity.

4.3. Description of Experiments

Four datasets were used in the experiments. The GUI metrics were
extracted from one of four major subsystems of an electronic commerce
(procurement) product used in the process industry. Table 1 shows each
major system along with the number of program units.

Buyer Administrator
Buyer

Distribution Server
Su lier
TOTAL

Number of ro ram units
7
60
10
32
109

Table 1. Description of the major subsystems.

Each program unit consists of a GUI form along with corresponding
code written in Delphi.

In the context of neural networks, a program unit is referred to as a
vector. Each vector consists of a set of inputs along with a set of outputs.
Each vector contained twelve input parameters based upon GUI categories
described below. These include: Buttons; Charts; Check boxes/radio buttons;
Combo boxes; Grid (string grid, database grid); Grid Tabs; Edit boxes;
Labels; Memo/List boxes; Menu bars; Navigation bars; and Trees.

www.manaraa.com

Applying Machine Learners to GU/ Specifications 9

The grid tabs refers to how many tabs were available for each grid. For
example, the default is three (worksheets) in Microsoft© EXCEL.

The output consists of the actual, not estimated, effort required for
developing each program unit. Effort values ranged from 1 to 160 hours. All
program units were developed by a single developer. This reduces the impact
of the human element in terms of various skill and knowledge levels in the
model formulation process.

All experiments use a fully-connected neural network architecture of 12-
5-11-5-1 (see Figure 2), meaning twelve inputs, one layer of five hidden
nodes, followed by another hidden layer of eleven hidden nodes, followed by
another hidden layer of five nodes, then an output layer of one node.

Input
Buttonl ---t...-

Llbell --~.

Memol
Ult BoItH

"'nu --~""'rJ

Output

... - -- Effort

NIY. B r --1I ... rrr'::...l.-"'~rrr-. ..

T,...---4U1

Figure 2. 12-5-11-5-1 Neural Network Architecture.

In order to minimize experimental variance among experiments, we
standardized the experimental process. Different components of each neural
network model remain constant. Alpha, which represents how quickly a
neural network learns, may range from zero to one. Alpha for these
experiments is always one. Momentum, a variable which helps neural
networks break out of local minima, may also range from zero to one.
Momentum is also always set to 1. The threshold function is a function
associated with each node after the input layer. Function selection determines

www.manaraa.com

10 Software Engineering with Computational Intelligence

when a node fires. Firing a node essentially propagates a value further
through the network. All experiments use an asymmetrical sigmoid function
as a threshold function.

One scan through the training data is considered an epoch. Each
experiment iterates through 10,000 epochs. Initial trials indicated that 5,000
to 7,000 epochs were sufficient for determining the highest correlation along
with the highest accuracy (with respect to the test data). The "most accurate
test results" is defined as number of correct matches within 25 percent, or
pred(25), of the actual effort values for the test vectors.

4.4. Experiments and Results

Four different neural network experiments are performed for each
subsystem. For each set of experiments, data from one of the subsystems is
treated as a test suite and the data from the other three subsystems is
combined into a training set. Each experiment is performed ten times in order
to discount any outliers. After each experiment all the weights in the neural
network are reset.

Table 2 presents the Pred(25) and MARE for each of the four types of
experiments. The Pred(25) of 64.3 percent for the 'Buyer Administrator' test
set is reasonable, however the other Pred(25) values are low relative to [9,
23]. The relatively low values for the Pred(25) may be attributed to range of
effort values, 1 to 160 hours. Nineteen percent of all the vectors had an effort
of one. As a consequence, the neural network experienced difficulty in
adequately approaching these low effort values. Secondly, the test sets were
organized by subsystem. This led to extrapolation issues. A total of 15
vectors from three different test sets contained maximum values for one or
more inputs/output. The only way to avoid any extrapolation problems would
be to continuously retain the 15 vectors in the training set. This is not a
realistic solution. Finally, for some of the input metrics, there were less than
three instances of values. Essentially, the corresponding metric contributed
little to the training process.

The relatively large range of effort values, along with the large
percentage of effort values less than or equal to five (65 percent) inflated the
MARE values.

www.manaraa.com

Applying Machine Learners to GUJ Specifications 11

Buyer Admin Buyer Client Distribution Supplier Client
Server

Pred Pred Pred Pred
RUN (25) MARE (25) MARE (25) MARE (25) MARE

1 71% 54% 32% 231% 40% 212% 34% 176%
2 57% 54% 33% 355% 50% 160% 38% 126%
3 57% 98% 32% 258% 50% 319% 44% 179%
4 57% 72% 23% 385% 60% 84% 41% 200%
5 57% 89% 27% 248% 50% 66% 38% 288%
6 71% 38% 33% 210% 50% 176% 41% 171%
7 71% 82% 25% 253% 50% 74% 38% 189%
8 71% 44% 18% 312% 50% 55% 38% 198%
9 71% 53% 23% 254% 50% 492% 38% 178%
10 57% 103% 25% 652% 60% 68% 44% 131%

AVE 64.3% 68.5% 27.2% 316% 51% 172% 39.1% 184%

Table 2. Results from initial experiments.

One question is whether the results are any different when perceived
from the subsystem (project) level. Viewing the results from a subsystem
perspective, as opposed to a program unit perspective, dramatically improves
upon the results. Table 3 shows the Pred(25) and MARE for each of the four
major subsystems. The results are determined by summing the calculated
effort values for each program unit for each individual experiment. Hence
three of the four models produced estimates 80 percent or higher with
MARE values less than 18 percent. The best case generates a Pred(25) of 90
percent and a MARE of 12.2 percent.

Subs stem Pred 25 MARE
Buyer Administrator 80% 17.6%

Buyer Client 80% 14.6%
Distribution Server 20% 96.7%

Supplier Client 90% 12.2%

Table 3. Aggregate analysis of the subsystems.

A natural extension of the subsystem results would be to aggregate them
into corresponding project results. Table 4 presents two worst-case scenarios
and one average-case scenario. For the worst-case scenarios the minimum
average efforts and maximum average efforts are totaled. The average-case
scenario is the average estimate (for the ten experiments) for each subsystem.

www.manaraa.com

12 Software Engineering with Computational Intelligence

Subsystem Worst case Worst Case Ave. Actual
Min. Max. Cases Effort

Buyer Admin. 158 289 220 215
Buyer Client 958 1660 1313 1202
Dist. Server 114 246 170 307

Supplier Client 505 790 644 576
TOTAL 1735 2985 2347 2300

Table 4. Aggregate analysis of the project.

Thus, in the worst-case scenarios, the collective estimates range from
24.6% below the actual project effort to 29.8% above the actual project
effort. The average-case estimate is within 2% of the actual project effort.

5. DISCUSSION

The vectors were grouped according to the project subsystems, rather
than applying a statistical process for organizing the vectors. This followed
the natural contours of the project at the expense of generating artificially
better results.

One question that persists is, "Why are the results so low for the
distribution server presented in table 3?" In general, server-side applications
are not intended to be interactive. As a consequence, GUI-based metrics
might not be appropriate for server-side software. However, the server-side
metrics did not taint the results presented in table 4.

This work extends the previous research of Lo et al [23] by assessing
more data in greater detail using better effort values. See Table 5 below.

Category Lo [23] Current work
Data Samples 33 109

Number of GUI metrics 5 12
utilized

Does formulating GUI Yes No
metrics require human

interpretation?
Model type Multivariate regression Neural networks

Nature of effort values Defined through expert Based on actual
estimates effort values

Best results Pred(25) = 75.7%, Pred(25) = 90%,
MARE =20.1% MARE = 18%

Table 5. Comparison of current with previous research.

www.manaraa.com

Applying Machine Learners to GUl Specifications 13

Extrapolation issues frequently arose during the conducting of
experiments. Adding more data might reduce the frequency of extrapolation,
but it will never eliminate the problem. The extrapolation issues did not seem
to affect the results produced at the subsystem and overall project levels.

It is worth noting the software environment from which this data
emerged. This organization did not have a formal process. Most likely it
would be characterized as a one in the context of the Capability Maturity
Model. Thus, the experiments show that it is possible to construct very
reasonable early life cycle project estimates in light of a poorly defined
process.

6. CONCLUSIONS AND FUTURE DIRECTIONS

This research describes a process of formulating early life cycle project
estimates based on OUI specifications. Twelve different types of widgets are
counted. Most, if not all, of the widgets are frequently used and well
understood within the software industry.

Using well-defined widgets simplifies the measurement gathering
process. Thus, the learning curve is rather shallow (as compared to
COCOMO II or FP A) for understanding the model formulation process.

The model formulation process is repeatable since there is no
subjectivity involved in counting the widgets.

The results at the program unit level seemed low. However, the results
improved dramatically when viewed from the project subsystem level. Three
of the four subsystems produced a Pred(25) of 80% or higher and a MARE
of 18% or lower.

One strategy to improve upon the results at the program unit level would
be to reduce the number of classes for the effort values. Thus a set of actual
effort values ranging from 10 to 15 hours may be collapsed into 12.5 hours.

Since the literature describes various applications of Machine Learner in
effort estimation, it would be plausible to conduct additional experiments
using other machine learning algorithms.

The process does not fare very well in situations where development is
computationally complex with little or no OUI specifications. This is evident
in the server-side results. One future activity would be to integrate the neural
network-based OUI effort estimation approach with an algorithmic approach,
such as COCOMO II or FP A. This could reduce the complexity related to
COCOMO II and FP A and extend the neural network GUI approach to
accommodate non-OUI software development.

www.manaraa.com

14 Software Engineering with Computational Intelligence

ACKNOWLDEGMENTS

The author wishes to express his deepest gratitude for the insightful
comments and constructive criticism from the peer reviewers.

REFERENCES
[I] Bisio, R., F. Malabocchia, "Cost Estimation of Software Projects through Case

Base Reasoning". Case-Based Reasoning Research and Development. First
International Conference, ICCBR-95 Proceedings, 1995, Pp.II-22.

[2] Boehm, B., Software Engineering Economics, Englewood Cliffs, NJ, Prentice
Hall, 1981.

[3] Boetticher, G., K. Srinivas and D. Eichmann, "A Neural Net-Based Approach to
Software Metrics", Proceedings of the 5th International Conference on Software
Engineering and Knowledge Engineering, June 1993, Pp. 271-274. Available
from http://nas.cl.uh.edu/boetticher/publications.html

[4] Boetticher, G. and D. Eichmann, "A Neural Net Paradigm for Characterizing
Reusable Software", Proceedings of the First Australian Con! on Software
Metrics, November 1993, Pp. 41-49. Available from
http://nas.cl.uh.edu/boetticher/publications.html

[5] Boetticher, G., "Characterizing Object-Oriented Software for Reusability in a
Commercial Environment", Reuse '95 Making Reuse Happen - Factors for
Success, Morgantown, WV, August 1995. This paper is available at:
http://nas.cl.uh.edu/boetticher/pub lications.html

[6] Boetticher, G., "An Assessment of Metric Contribution in the Construction ofa
Neural Network-Based Effort Estimator", Second lnt. Workshop on Soft
Computing Applied to Soft. Engineering, 2001. Available at
http://nas.cl. uh.edu/boetticher/publications.html

[7] Boetticher, G., "Using Machine Learning to Predict Project Effort: Empirical
Case Studies in Data-Starved Domains", Workshop on Model-Based
Requirements Engineering, 2001. Available at
http://nas.cl.uh.edu/boetticher/publications.html

[8] Briand, Lionel C., Victor R. Basili, and William Thomas. "Pattern Recognition
Approach for Software Engineering Data Analysis". IEEE Trans. on Soft. Eng.,
November 1992, Pp. 93-942.

[9] Chulani, S., and Boehm, B., and B. Steece, "Bayesian Analysis of Empirical
Software Engineering Cost Models", IEEE Transaction on Software
Engineering, 25 4, July/August, 1999.

[10] COCOMO II Model Definition Manual, 1999. Available from the following link:
http://sunset.usc.edu/research/COCOMOII/Docs/modelman.pdf

[II] Cordero, R., M. Costramagna, and E. Paschetta. "A Genetic Algorithm Approach
for the Calibration of CO COMO-like Models", 12th CO COMO Forum, 1997.

[12] Delany, S.1., P. Cunningham, "The Application of Case-Based Reasoning to
Early Project Cost Estimation and Risk Assessment", Department of Computer
Science, Trinity College Dublin, TDS-CS-2000-1 0, 2000.

[13] Devnani-Chulani, Sunita, Clark, B., Barry Boehm, "Calibration Approach and
Results of the COCOMO II Post-Architecture Model", ISPA, June 1998.

www.manaraa.com

Applying Machine Learners to GUI Specifications

[14] Fahlman, S.E., An Empirical Study of Learning Speed in Back-Propagation
Networks, Tech Report CMU-CS-88-162, Carnegie Mellon University,
September 1988.

[15] Finnie, G.,R., Wittig, G.,E., 1.M. Desharnais, "Estimating software development
effort with case-based reasoning", Proceedings of International Conference on
Case-Based Reasoning, D. Leake, E. Plaza, (Eds), 1997, Pp.13-22.

[16] Heemstra, F. "Software Cost Estimation", Information and Software Technology,
October 1992, Pp. 627-639.

[17] Hertz, 1., Krogh A., R.G. Palmer, Introduction to the Theory of Neural
Computation, Addison Wesley, New York, 1991.

[18] Hihn, J., H. Habib-Agahi, "Cost Estimation of Software Intensive Projects: A
Survey of Current Practices", Proceedings of the International Conference on
Software Engineering, 1991, Pages 276-287.

[19] Hodgkinson, A.C., Garratt, P.W., "A Neurofuzzy Cost Estimator", Proc. 3rd
International Con! Software Engineering and Applications (SAE), 1999, pp.
401-406.

[20] Kadoda, G., Cartwright, M., Chen, L. and Shepperd, M., "Experiences Using
Case-Based Reasoning to Predict Software Project Effort", Empirical Software
Engineering Research Group Technical Report, Bournemouth University,
January 27 2000.

[21] Kemerer, Chris, "Reliability of Function Points Measurement: A Field
Experiment", Communications of the ACM 36, 2(February 1993), Pp. 85-97.

[22] Kumar, S., Krishna, B. A., Satsangi, P.J., "Fuzzy Systems and Neural Networks
in Software Engineering Project Management", Journal of Applied Intelligence,
4, 1994, Pp. 31 - 52.

[23] Lo, R., Webby, R., R. Jeffrey, "Sizing and Estimating the Coding and Unit
Testing Effort for GUI Systems", Proceedings of the 3rd International Software
Metrics, Los Alamitos: IEEE Computer Society Press, 166-173, 1996.

[24] Mukhopadhyay, Tridas, and Sunder Kekre, "Software effort models for early
estimation of process control applications", IEEE Transactions on Software
Engineering, 18 (10 October), 1992, Pp. 915-924.

[25] Prietula, M., S. Vicinanza, T. Mukhopadhyay, "Software effort estimation with a
case-based reasoner", Journal of Experimental and Theoretical Artificial
Intelligence, 8(3-4), 1996, Pp. 341-363.

[26] Samson, B., Ellison, D., Dugard, P., "Software Cost Estimation Using an Albus
Perceptron", Information and Software Technology, 1997, pp. 55-60.

[27] Shavlik, l.W., Mooney, R.L., and G.G. Towell, "Symbolic and Neural Learning
Algorithms: An Experimental Comparison", Machine Learning, 1991, Pp. 111-
143.

[28] Siddiqee, M. Waheed. "Function Point Delivery Rates Under Various
Environments: Some Actual Results", 259-264. Proceedings of the Computer
Management Group's International Conference. San Diego, CA, December 5-10,
1993.

[29] Srinivasan, K., and D. Fisher, "Machine Learning Approaches to Estimating
Software Development Effort", IEEE Trans. Software Engineering, February,
1995, Pp. 126-137.

[30] The Standish Group, Chaos Chronicles III, The Standish Group, January, 2003.

15

www.manaraa.com

16 Software Engineering with Computational Intelligence

[31] Wittig, G. E., G.R. Finnie, "Software Design for the Automation of Unadjusted
Function Point Counting", Business Process Re-Engineering Information
Systems Opportunities and Challenges, IFIP rC8 Open Conference. Gold Coast,
Queensland, Australia, May 8-11, 1994, Pp. 613-623.

[32] Wittig, G., G. Finnie, "Estimating software development effort with
connectionist models", Information and Software Technology, 1997, pp. 469-
476.

www.manaraa.com

Applying Fuzzy Logic Modeling to Software
Project Management

Stephen G. MacDonell! and Andrew R. Gray2

J School of Information Technology
Auckland University of Technology
Private Bag 92006, Auckland, New Zealand
stephen. macdonell@aut.ac.nz

2 Department of Information Science
University of Otago
P.o. Box 56, Dunedin, New Zealand

ABSTRACT
In this paper we provide evidence to support the use of fuzzy sets, fuzzy rules
and fuzzy inference in modeling predictive relationships of relevance to
software project management. In order to make such an approach accessible
to managers we have constructed a software toolset that enables data,
classes and rules to be defined for any such relationship (e.g. determination
of project risk, or estimation of product size, based on a variety of input
parameters). We demonstrate the effectiveness of the approach by applying
our fuzzy logic modeling toolset to two previously published data sets. It is
shown that the toolset does indeed facilitate the creation and refinement of
classes of data and rules mapping input values or classes to outputs. This in
itself represents a positive outcome, in that the approach is shown to be
capable of incorporating data and knowledge in a single model. The
predictive results achieved from this approach are then compared to those
produced using linear regression. While this is not the principal aim of the
work, it is shown that the results are at least comparable in terms of
accuracy, and in specific cases fuzzy logic modeling outperforms regression.
Given its other appealing characteristics (for instance, transparency,
robustness, incorporation of uncertainty), we believe that fuzzy logic
modeling will be useful in assisting software personnel to further improve
their management of projects.

KEYWORDS
Fuzzy logic modeling, project management, software metrics.

1. INTRODUCTION
Effective management of projects remains a significant challenge in

software engineering practice. While technical and marketing issues may
have a strong influence over a project's success, poorly managed projects are
more likely to fail than succeed, no matter how clever the technology or how
well tailored the product to the market's needs. In this regard the use of

www.manaraa.com

18 Software Engineering with Computational Intelligence

effective management models in classifying and predicting important project
management parameters (for example, defect density, requirements
volatility, system size, or personnel effort) can be influential in determining
the success of a project. In this paper we focus our attention on the issues of
code product size prediction and personnel effort estimation based on
measures collected during the specification and design stages of
development.

Central to this paper is the contention that the components and methods
comprising fuzzy logic modeling (fuzzy sets, fuzzy rules, and fuzzy
inference) can be used to good effect in the management of software
projects. Although more traditionally associated with hardware devices and
embedded systems, fuzzy logic modeling is receiving increasing attention
from the software development and project management research
communities [1-4]. This has occurred largely in response to the perceived
limitations of other classification and prediction methods. For instance, in
contrast to many statistical and machine-learning approaches, fuzzy logic
methods can be used effectively either with or without large banks of
historical data. Furthermore, they have other characteristics that match those
sought by project managers - for instance, they can cope with a degree of
uncertainty and imprecision in classification and prediction, the models
produced using fuzzy logic methods can be constructed on the basis of
existing management expertise, and models can also be adjusted as new
knowledge is gained. While there has been some work to date in this area
[1,4-7], recent research has largely been focused on the use of fuzzy logic in
retrieving 'similar' cases. In contrast, the emphasis here is on assessing the
performance of fuzzy logic modeling in characterizing relevant variables and
the relationships between them. In the case studies presented later in the
paper, the accuracy of the fuzzy logic models is shown to be as good as or
better than that achieved with standard linear regression.

The remainder of the paper is structured as follows: we next provide an
overview of issues relating to software project management, with particular
emphasis on less mature software organizations; this is followed by a
description of fuzzy logic modeling in relation to software measurement; a
review of the applicability of fuzzy logic modeling to software project
management is presented; a description of the software environment that has
been created to support the use of fuzzy logic modeling in this domain is
provided; this is followed by two case studies, the first relating to software
sizing and the second to effort estimation; and we close with some comments
on the potential of the approach and future research opportunities.

www.manaraa.com

Applying Fuzzy Logic Modeling to Software Project Management 19

2. SOFTWARE PROJECT MANAGEMENT
It is a truism to say that in order to manage software processes we must

first know how to measure them - with such a foundation we can make
predictions, generate plans, monitor activities, exert control in a sensible and
reasoned manner, and finally evaluate processes and learn how they might be
improved. The classifications and predictions that form part of this
management activity may be constructed from formal and informal models,
expert knowledge, or some suitable combination of these. Some techniques
for developing such models have become well known and include function
point analysis [8] and CO COMO [9] (in their various forms); alternatively
regression or other data-driven models may be used as they allow the
modeler greater freedom, albeit at the expense of a degree of standardization
and (global) comparability.

The use of such software measurement models for prediction and
classification in project management has promised much and in some cases
has been very successful. However, it has also been hampered by many
difficulties, not the least of which is in ensuring that the models actually
capture the factors of interest and influence. Managers may possess
significant knowledge about the likely relationships between factors,
including variables that cannot be effectively or easily modeled in a formal
or quantitative sense (e.g. team dynamics, developer fatigue, and the likely
effect of new techniques and tools). These variables are those that the
experienced manager takes into account implicitly when they make a
'guestimate' or instinctively round a predicted value up or down after using a
formal technique. In order to improve our processes, however, we need to
have repeatability and consistency in management; this generally requires the
use of more formalized modeling techniques, techniques that are typically
less able to take such subjective knowledge into account.

A related concern arises when experienced managers leave an
organization, taking substantial amounts of project management knowledge
with them. This knowledge is crucial for planning, and in many
organizations, particularly those that are not mature in terms of process, such
knowledge may be difficult or even impossible to replace. This information
can have a significant and potentially quantifiable financial value to the
organization, so attempts to retain even some of this knowledge could be
crucial to its continuing viability.

To augment this expert knowledge, databases of historical data can be
populated and used for model development, indexed for retrieval, and mined
for trends and patterns. Data for many different software measures could be
collected, including specification size, developer expertise and experience,
and code quality and complexity, depending on the relationship(s) of

www.manaraa.com

20 Software Engineering with Computational Intelligence

particular interest. Less mature organizations, however, are characterized by
the absence of such databases (and, for that matter, the procedures of
systematic collection), making model development and subsequent
calibration far less feasible. Unfortunately many modeling methods assume
the availability of such a collection of records. Furthermore, the usefulness of
any data that might be available is further limited by rapidly changing
technology, in that new development environments, programming languages,
methodologies and other factors can all make project data outdated within a
short period of time [10].

In light of these difficulties, one of the most commonly used prediction
'techniques' in management practice, particularly in new or emerging
software organizations, is expert estimation [11,12]. While this can be very
effective, it suffers from problems of subjectivity, non-repeatability,
inconsistency, and, as mentioned, vulnerability to loss of knowledge if
managers leave an organization. In these circumstances what is needed is not
more formalized models of metrics, nor more ways of guessing parameter
values - rather, we need to find a way to combine expert and formal
modeling without overly dulling the benefits of either [12,13].

3. FUZZY LOGIC MODELING AND SOFTWARE
MEASUREMENT

(The use of fuzzy logic modeling in relation to software engineering and
project management has only recently come to prominence, in spite of a
small number of innovative papers published during the 1990s. We therefore
include here a high-level overview of the basic concepts of fuzzy sets and
fuzzy logic in this context. More detailed introductions may be found in [3]
and [14]. The reader who is familiar with such material may wish to skip
directly to the next section.)

Fuzzy logic is a term used to describe a set of modeling methods that
enables us to accommodate the imprecision in relationships between
variables. Fuzzy sets can have linguistic rather than numeric labels in order
to represent the inherent uncertainty in some concepts. For instance, a system
may best be described as large (for the concept of size), a developer may be
highly experienced, and a program may have very simple structure. Figure 1
shows an illustrative group of fuzzy sets (or membership functions) derived
from a project manager regarding his perspective on data model size. It
provides an easily understandable view of what this expert means when he
says that a system has a 'small-medium' sized data model (about 30 entities
in this case), or a 'very large' data model (something over around 110
entities). A system with 60 entities is apparently what this expert would
regard as exactly matching his view of a 'medium' sized data model.

www.manaraa.com

Applying Fuzzy Logic Modeling to Software Project Management 21

MFd..-""
m .. dium

1.00 small

Iliall clqn::c: =- O.B

0.5

medium dq~c: = O.:!

0.0 ¥----'----,-------¥------,-------"--,-
o .ntltl •• = 10

30 60 90 \20

Entities

Figure 1. Example membership functions for a data model size variable.

Of course, such membership functions must first be derived for each of
the concepts of interest. Common techniques used with groups of experts
include polling, negotiation and voting [14,15]. Alternatively a single expert
can outline their membership functions by specifying the centers of each set
and then evaluating the concept at various points along the x-axis. Note that
there is no reason for membership functions to be represented only as
triangles. Other shapes, such as trapezoids, bell-shaped curves, and even
arbitrary curves, can be used equally well. The specific shape should be
chosen in order to most effectively represent the views of the expert in terms
of the degree of set membership for various values within the range of
interest. Or, if some data is available then it can be used to derive
membership functions, usually based on some form of clustering. These
data-derived functions can then be used as is, or may be employed more as a
first-cut system requiring refinement by domain experts.

Membership functions define the level of mapping between values and
concepts, so we have considerable freedom in how we define these functions,
both directly (as in Figure 1) and implicitly - for example, adjectives such as
'about' can be defined so as to be usable for any numeric value, as in Figure
2.

www.manaraa.com

22 Software Engineering with Computational Intelligence

MFdegree
"exactly" 10 "about" 40 medium "roughly" 90

1.00

0.5

1 ,
t I ,

• I I
I I
I I , I

I I

0.0

0 30 60 90 120

Entities

Figure 2. Different forms oflinguistic membership functions.

Crucial to the fuzzy logic modeling approach is the fact that propositions
are allowed to take various degrees of truth [14], so that membership of any
particular fuzzy set is partial rather than exclusive. This allows a manager to
describe a system as mostly 'large', say to a degree of 0.75 (on the scale 0 to
1) in terms of data model size, but also to some degree, say 0.40, 'medium'.
For each concept the number of membership functions can be made as high
as necessary to capture the required level of granularity. A manager may
choose to begin with three (to represent low, medium, and high or similar)
and then extend to five, seven or more as the available information increases
and accuracy demands become greater.

Given a set of membership functions, rules are then needed to relate the
variables to one another as appropriate. It is here that fuzzy rules and fuzzy
inference (rather than fuzzy sets) become apparent in a model, although the
termJuzzy logic is often used to describe the entire modeling approach. Rules
generally take the form of 'these input variables with these labels/values
generally lead to this output variable having this label/value'. Again, rules
can be derived directly from an expert, from voting and negotiation
procedures with a group, or from an existing data set.

An sample pair of simple rules relating an interface size variable
(number of screens) and data model size (number of entities) with code
product size (number of lines of code) could be:

www.manaraa.com

Applying Fuzzy Logic Modeling to Software Project Management 23

IF screens is LOW
AND entities is LOW

THEN size is VERY LOW

IF screens is MEDIUM
AND entities is MEDIUM

THEN size is MEDIUM

The rules are fired based on the degree to which each rule's antecedents
match the observed values/sets, in this case the numbers of screens and
entities. Each rule then makes a contribution to the output prediction - being
either a label or a numeric value - based on the degree to which its
conditions are satisfied (thus interpolating between the rule points) and
determined using a chosen defuzzification method. As in production systems,
this process is known as inference.

The standard logical connectives and modifiers AND, OR, and NOT can
be used along with bracketing to create nested rules. Rules may also be
weighted, and even individual clauses can be given weights, to reflect the
extent of confidence the domain experts have in a given rule or clause, with a
consequential effect on the processing of the rules to determine the output
label or value. There is an obvious trade-off, however, between rule
sophistication (and thus the ability to make arbitrary mappings) and
comprehensibility.

(Note: In this paper the term fuzzy logic modeling is used to refer to the
combined use of fuzzy sets, fuzzy rules and fuzzy inference.)

4. APPLICABILITY OF FUZZY LOGIC MODELING TO
SOFTWARE PROJECT MANAGEMENT

The characteristics of fuzzy logic modeling that make it suitable in
principle for software project management are as follows.

Able to cope with minimal data: Since they can be based on data,
knowledge, or both, fuzzy logic models can be developed with little or even
no data at all (see also the following two points). This is a considerable
advantage given the widely acknowledged problems encountered in data
gathering in software management research and practice. It is well known
that the collection of homogeneous data sets is often complicated by rapidly
changing technologies and by reluctance for inter-organizational sharing of
measurement data. Even within a single organization there can be
considerable pressure from programmers and managers against measurement
collection.

Robustness to data set characteristics: It is not uncommon for
software management data sets to contain unusual or anomalous observations

www.manaraa.com

24 Software Engineering with Computational Intelligence

thus reducing the generalisability of any model derived empirically from
them [16]. These atypical observations may occur for a variety ofreasons -
change in development practices, enhanced training for staff, or other
unmeasured (perhaps unmeasurable) influences. By developing models with
considerable expert involvement, where the model can be interpreted,
checked and refined if needed, some of the problems of non-representative
data corrupting empirically tuned models can be reduced or avoided.

Use of expert knowledge: Since fuzzy logic enables us to represent
concepts as membership functions and associations between these concepts
as rules we can very easily incorporate expert knowledge of such concepts
and relationships in a fuzzy system. This expert knowledge is therefore
naturally captured within the system, providing a means of retaining it,
perhaps beyond the expert's employment. This means that organizations that
are 'data-poor' but 'knowledge-rich' can still develop and use effective and
locally relevant management models. This is in contrast to other data
dependent modeling methods, including statistical methods such as cluster
analysis and linear regression, and connectionist methods including neural
networks. Note that we are not advocating that data-driven modeling should
be abandoned entirely; on the contrary, if a high quality data set is available
then it can be extremely valuable in terms of providing the basis for useful
models. Rather, we are simply suggesting that total reliance on empirically
derived models may not always provide an optimal solution, particularly in
circumstances where the data set is small, incomplete or limited in other
ways. A modeling method that sensibly incorporates the views of
experienced personnel and combines this dynamically with appropriate data
as it becomes available would seem to the most preferable approach. This
seems all the more reasonable when it is considered that expert estimation is
still prevalent among many software organizations [11]. (As a result, our
software toolset (described later in the paper) can accommodate both data
and expert knowledge as appropriate for each relationship being modeled.)

Able to cope with uncertainty: The terms 'prediction', 'estimate' and
the like are generally understood to indicate a forecast value. In terms of
good business practice it is normally in our interests to provide estimates that
are as close as possible to the values actually achieved or incurred. That said,
there should also be a degree of acceptance that there is some chance that the
actual value will not match the estimate made. Such an outcome becomes
increasingly likely when we have only minimal information on which to base
our prediction. Where this is the case, however, our estimate may be made
more accurate as we move through the process and more information
becomes available. In many industries such a scenario operates quite
effectively. In the software industry, however, the provision of accurate
estimates early in the development process is much more difficult.

www.manaraa.com

Applying Fuzzy Logic Modeling to Software Project Management 25

Requirements are volatile, processes vary, personnel are transient,
technology moves rapidly - change is endemic. Under these circumstances it
would seem sensible to use modeling methods that enable us to formulate
estimates with some form of associated confidence factor, along with an
assessment of the source and level of risk that the estimate will not
correspond to the actual value. Early estimates are clearly needed - modeling
methods that enable early 'ball park' predictions to be developed, but that
deliver them to both manager and client with appropriate qualification either
as a label or as a likely range of values, would appear to be an acceptable
compromise. Methods should also be sufficiently flexible to enable the
incorporation of contingencies based on sound organizational knowledge
[17,18]. Fuzzy logic models facilitate the provision of confidence-weighted
predictions as well as the inclusion of relevant contingencies.

Varying granularity: A further related advantage of fuzzy logic models,
but one that is less frequently cited, is the ability to change the level of
granularity in the inputs and outputs without changing the underlying rule set
[19]. For example, Figure 3 shows the inputs to and outputs from a rule set at
different stages of a software development process. During requirements
analysis the inputs to and outputs from the model are linguistic, they become
fuzzy numbers during design, and evolve into exact values in later stages,
when more is known. This increasing specificity can be easily
accommodated using the same fuzzy logic model so there are no problems
with inconsistent models when moving from phase to phase. In short, we can
design a fuzzy logic model so that input granularity reflects what we actually
know, and output granularity reflects what we need to know.

'Free' modeling capability: As opposed to more formalized algorithmic
techniques, such as function point analysis and linear regression, fuzzy logic
models can include any variables at all and the inference process can easily
account for non-linearity and interactions in relationships.

Easily learned and transparent: Relatively speaking, fuzzy logic
modeling is considerably easier to understand and use than many statistical
and neural network techniques. While there are several important underlying
mathematical principles, the technique lends itself to use by novices as well
as experts [14,20]. Fuzzy logic models are also completely transparent in that
the mapping from inputs to outputs can be examined, analyzed, and revised
where necessary. This can be especially important in terms of a model's
acceptance by the personnel affected by its use. An ideal modeling method
should strike a balance between effectiveness in terms of accuracy and
consistency on the one hand and simplicity in calculation and application on
the other.

www.manaraa.com

26 Software Engineering with Computational Intelligence

In spite of what appears to be sound rationale for the application of fuzzy
logic in software engineering and management, work to date in this area has
not been extensive. One of the earliest papers to address this general area
reported on the use of fuzzy sets in assessing software correctness [21]. In
1994 Kumar et al. [22] provided an excellent introduction to the potential of
fuzzy logic and neural networks in software engineering project
management, but perhaps because it appeared in an artificial intelligence
journal rather than mainstream software engineering literature the ideas
relating to fuzzy logic were not widely adopted in this domain. The same
may be said of the work of Shipley et al. [2], which was reported in the
engineering and technology management literature. In the wider context of
systems management de Ru and Eloff [23] used a simulated case study to
illustrate the potential of fuzzy logic modeling in computer security risk
assessment. Looking specifically at the synthesis of fuzzy logic and software
management, Khoshgoftaar and Allen and their colleagues have undertaken
some of the more prominent work in this area, although their focus had
tended to be on other modeling methods, including neural networks, genetic
programming and decision trees [24,25]. Ebert [26] assessed the comparative
performance of a similar set of methods in determining error-prone modules
in a large telecommunication system. More recently, Idri, Abran and others
have used fuzzy logic in relation to software development effort prediction
using a fuzzy variant of the COCOMO model [1] and in creating more
forgiving methods for the retrieval of analogous cases in software project
management [5,6].

Analys ..
size = small

Design
size = about 100

Coding
.ize= 115

T<sting

.ize= 113

Maintenance
.ize= 132

Size

~
Complexity

Analysis
effoct = very low

IF size i. small D<Sign
effort = about Z75 AND compl""ity is low

AND ...

THEN effot! is low Coding
~ effort = about 263 IF .ize i •• mall

AND complexity i. medium
Effot!

AND ...
Testing

effort = about 712 THEN effot! is low-rncdium

IF ...

Maintenance
effort = about 119

Figure 3. Changes in input and output granularity throughout the development
process.

www.manaraa.com

Applying Fuzzy Logic Modeling to Software Project Management 27

5. THE FUZZYMANAGER TOOLSET
Since there is limited benefit in proposing solutions to problems without

providing developers and managers with the means to implement those
solutions [27], we have developed a freely available fuzzy logic modeling
toolset called FUZZYMANAGER [20]. The toolset consists of two modules,
FULSOME (FUzzy Logic for SOftware MEtrics) and CLUE SOME
(CLUster Extraction for SOftware MEtrics).

The FULSOME module (Figure 4a-d) supports the graphical creation
and refinement of membership functions (Figure 4b) and rule bases (Figure
4c) using expert knowledge, as well as tracing the inference process at the
observation, rule, and rule clause levels (Figure 4d). This latter component is
important from the perspective of credibility, delivered through model
transparency, and robustness, in that any anomalies in the inference process
can be identified and corrected where appropriate.

The FULSOME process can be augmented through the incorporation of
relevant data observations. In fact, an organization that has systematically
collected data concerning a particular relationship but that does not
understand the 'rules' governing that relationship can use the CLUESOME
module to derive membership functions and rule bases from that data (either
together or separately), using a simple form of fuzzy c-means clustering.
Two separate algorithms are used, one for membership functions and another
for rules. Some approaches to obtaining fuzzy logic systems from data use
highly complex algorithms that produce extremely effective mappings
between inputs and outputs. Here we have used a simpler method that
generally produces smaller and more intuitively acceptable rule sets, given
that there is a trade-off between understandability and accuracy in such sets.
Just as importantly, project managers in our collaborative partner
organizations have understood the algorithms without difficulty. The
extracted membership functions and rules can then be imported back into
FULSOME for further processing and possible refinement. (The case studies
discussed later in the paper both employ a data-driven approach to model
development, to illustrate the use of both CLUESOME and FULSOME
modules.)

www.manaraa.com

28 Software Engineering with Computational Intelligence

• fULSQ"1(- (System InrDrnlt'tllon - 4Gl 'illrTwoVat\fkMld.2Trl7MhUWXI "rio)

~tjt \I to 0!>tGIs R... '0 S ~

B: ~:. ~

FULSOME
Fuzzy ,bogie forSoHware Metrics

Figure 4a. FULSOME system screen.

Variable

... nRIS

'-*'!>PII_.
LGbel l!lop, ~

a "1B2.""BB"""'-~~-

b 19621

C 1117 n

ow vonobio J 0 ... vI"abIo

H MF Commanl

u

Figure 4b. FULSOME membership function screen.

www.manaraa.com

Applying Fuzzy Logic Modeling to Software Project Management 29

• I Ul. ~0"11 • (Rule {duor • • lGl~llrlwoY .. r'J6ulld2frn""hUW10 rull

EO< VIew 0pI..... R"" 1

· d.~<1al: 'ii"

Not ..

Figure 4c. FULSOME rules screen .

• fULt;OME ~ by~tenl Oulpull •

Figure 4d. FULSOME output screen.

www.manaraa.com

30 Software Engineering with Computational Intelligence

The following steps are performed in the membership function extraction
algorithm: the user selects the number of membership functions and their
shapes for each of the variables of interest; the clustering algorithm finds the
centers of the clusters for each variable; each cluster center is used for the
center of a membership function with appropriate parameters used to connect
it to its adjacent functions (if any). This process is more formally expressed
as follows:
1. select an appropriate mathematically defined function for the

membership functions of the variable of interest i, say fi(x)
2. select the number of membership functions that are desired for that

particular variable, mi
3. call each of the m;functionsfij([xJ) where} = I ... mi and [x] is an array of

parameters defining that particular function (normally a center and width
parameter are defined)

4. using one-dimensional fuzzy c-means clustering on the available data set
find the mi cluster centers, eij

5. sort the cluster centers eli into monotonic (generally ascending) order for
the given i

6. set the membership function center for fli' generally represented as one of
the parameters in the array [x], to the cluster center eij

7. set the membership function widths for fij in [x] such that I min=1

fin([cin, ... J) = 1, or as close as possible for the chosen fix) where this
cannot be achieved exactly (for example for triangular membership
functions each function can be defined using three points a, band c
where a is the center of the next smaller function and c is the center of
the next larger function).

In the rule extraction algorithm the following steps are undertaken: the
user selects the number of rules desired; the clustering algorithm finds the
cluster centers; the membership functions that are mostly highly activated for
each variable are used as the antecedents and consequents of each rule.
Optionally, the label activation degrees can be used to produce rule weights,
and rules with the same set of labels can be combined to produce a smaller
rule base. More formally, this can be described as follows:
1. start with known membership functions fii[x J) for all variables, both

input and output, where} represents the number of functions for variable
i and [x] is the set of parameters for the particular family of function
curves

2. select the number of clusters k (which represents the number of rules
involving the k-l independent variables to estimate the single output
variable)

3. perform fuzzy c-means clustering to find the centers (i dimensional) for
each cluster

www.manaraa.com

Applying Fuzzy Logic Modeling to Software Project Management 31

4. for each cluster k with center Ck

a. determine the kth rule to have the antecedents and consequent /ij
for each variable i wherejij(ck) is maximized over all}

b. weight the rule, possibly as rr n~dij(Ck) or Iin~J /ij(Ck)

S. combine rules with the same antecedents and consequents, either
summing, multiplying, or bounded summing rule weights together

6. (optionally) ratio scale all weights so that the mean weight is equal to 1.0
to aid interpretability.

The two components of the CLUE SOME module, the data entry/edit
screen and the cluster view screen, are shown in Figure Sa-b.

Figure Sa. CLUE SOME data entry/edit screen.

www.manaraa.com

32 Software Engineering with Computational Intelligence

. (lUfSOMI · IYI~w(lu.t~ .. J -:: .'."l _ '

S ...

2G05 - t- - - -1- - -j - - -t - - - - T - - -r- - .L-I-"
I I I I 1 I I
I ATTRIII- 37.6 I I I I. I
r---r-,--i----r--i----r
, I" I I I 1 1
I 1 I "I 1 1 I
I I I I I I I -r---r-i--i----r--i----r
I I" I... ". I I I I
r---r-~~-~----T--~----r

-~---~-~--~----L-~~----~
I "I"· I "I 1 I I

-r--~r--j---j----T--~----r

-~---~-~--~----~--~----~
J09

AlTFll8 115

,*
Figure 5b. CLUESOME cluster screen.

6. CASE STUDY 1 - SOFTWARE SIZING
To illustrate the viability of fuzzy logic modeling in software project

management we conducted a case study utilizing a previously published
software engineering data set concerned with code product size prediction
for 4GL systems (see [28]). Data had been routinely collected over a period
of five years relating to the development of small- to medium-sized 4GL
transaction processing systems by groups of senior students at the University
of Otago in New Zealand. This led to the availability of a data set comprising
70 observations, each incorporating measures relating to the size of the data
model and the functional decomposition chart from the requirements
specification and a count of the number of source statements of 4GL code
that comprised the delivered system. Although we did have some high-level
knowledge of the systems, and of the personnel involved in their
development and management, these individuals were no longer part of the
faculty. We therefore decided to treat this case study as one that might match
the scenario in industry whereby experienced development and management
personnel had left the organization, taking with them their knowledge of
relevant size prediction models. This implied the use of CLUESOME in
order to build a first-cut fuzzy system from the existing data set.

www.manaraa.com

Applying Fuzzy Logic Modeling to Software Project Management 33

Given that our aim here was principally to illustrate the feasibility of
fuzzy logic modeling in the context of software project management the
actual data set was not especially important - any systematically collected
software management data set could have been used. This set was chosen,
however, because we knew something about the systems and had previously
analyzed the data using standard statistical methods. This analysis, reported
in [28] along with the full data set, indicated that an effective predictive
model of 4GL system size could be constructed using linear regression and
incorporating measures of the number of attributes in the system data model
and the number of non-menu system functions (in other words, data
entry/edit screens and periodic reports) depicted in the functional hierarchy
as predictor variables. In order to provide a basis for comparison in terms of
model performance we decided to use this model as a benchmark and as a
starting point for our fuzzy logic model construction. Thus our model was to
consist of two predictor variables - the number of attributes in the system
data model (ATTRIB) and the number of non-menu functions in the
functional hierarchy (NONMENU) - and one independent variable - the size
of the implemented system in 4GL source statements (Size).

In order to develop useful predictive models it is common practice to
split any available data set into two parts - the first is used to build a 'best
fit' model, and the second is used to assess that model's accuracy on an
unseen collection of observations. We also chose to follow this convention.
Moreover, previous research has indicated that model construction using
empirical analysis of software engineering data sets can be influenced
significantly by the samples used in the construction process [29,30]. In
order to lessen the possible bias of a single sample, we therefore took two
separate random samples of twenty observations as our test samples, leaving
two samples of fifty observations for the model building process.

The CLUESOME module of FUZZYMANAGER was used to generate
membership functions and rule sets for each of the two build samples.
Several membership function structures were considered, including bell,
trapezoidal and triangular shaped sets numbering five or seven for each of
the three variables. The fit of each model was considered in terms of six
measures of accuracy (where the relative error of each prediction equals the
actual value less the predicted value all divided by the actual value): mean
magnitude of relative error (MMRE), median magnitude of relative error
(MedMRE), the proportions of predictions falling within 20% and 30% of
the actual values (pred(20) and pred(30) respectively), and two indicators of
absolute error, the sum of the absolute difference (SumAbsDiff), and the
median absolute difference (MedAbsDiff). Whilst the MMRE, MedMRE and
pred indicators have been widely used in empirical software engineering

www.manaraa.com

34 Software Engineering with Computational Intelligence

research opinion is divided on their appropriateness, hence the inclusion of
the simpler absolute error measures.

It should be noted that we did not expend a large amount of effort
optimizing the accuracy of our build models, for three reasons. One, high
accuracy on a build sample does not necessarily translate to similar or better
performance on an independent test sample, where it is actually desired; two,
we may over-fit the model to the build sample at the expense of model
generalisability; and three, we wanted to assess how well a reasonably
rudimentary fuzzy model performed against standard statistical methods. To
this end CLUESOME produces straightforward outputs - it simply looks for
important rules based on all of the predictor variables (antecedents),
combined using only the AND connective. Thus it can be considered that the
generated models are at the low end of the spectrum in terms of
sophistication (and therefore complexity). This illustrates our intent that
CLUE SOME provide easily understandable fuzzy systems as a starting point
for expert refinement, rather than highly accurate but potentially very
complex systems.

For both build samples it was found that seven rather than five
membership functions provided the most accurate models. For the ATTRIB
and NONMENU variables we used the labels VeryLow, Low, LowMedium,
Medium, MediumHigh, High and VeryHigh to indicate the spread of values.
A slightly different set of labels was used for Size: VerySmall, Small,
SmallMedium, Medium, MediumLarge, Large and VeryLarge. Trapezoidal
sets proved to be slightly more effective for build sample one, whereas
triangular sets performed most effectively for the second build sample,
although the difference in performance for both samples was not large. In
both cases, however, bell-shaped curves did not result in usefully accurate
models.

Another difference resulting from the use of two different build samples
was the number of extracted rules to provide the most accurate model. We
evaluated just two sizes of rule set, at fifteen and twenty rules respectively.
The most accurate model for build sample one comprised fifteen rules
whereas the best-performing model for build sample two was made up of
twenty rules. Again, we could have evaluated many other rule set sizes in
order to possibly achieve further incremental improvement, but for the
reasons stated above we maintained a reasonably simple build and
assessment strategy.

The form of the systems as generated and imported into FULSOME is
illustrated in the screen shots shown in figure 4. Figure 4b shows the seven
triangular membership functions created for the ATTRIB variable from build
sample two. A selection of the associated set of rules is shown in figure 4c. If

www.manaraa.com

Applying Fuzzy Logic Modeling to Software Project Management 35

no data had been available, but the organization had substantial experiential
knowledge of the important concepts (variables) and their relationships,
these same components of the system could have been created and edited
directly in FULSOME.

The selected models were then applied in a predictive capacity in
FULSOME against their corresponding test samples. Input values for the two
independent variables were mapped onto the output functions using the rule
sets, and point estimates of Size were inferred for each observation (although
linguistic labels or ranges could have been chosen instead). Table 1 provides
a summary of the accuracy of the two fuzzy models. For the purposes of
comparison, these results are shown alongside the performance of linear
regression models generated for each of the build samples and then applied
against the same test samples as their fuzzy counterparts.

Regression Fuzzy Regression Fuzzy
Modell Modell Model 2 Model 2

MMRE 0.22 0.17 0.31 0.31
MedMRE 0.16 0.10 0.17 0.17
pred(20) 55% 50% 55% 45%
pred(30) 65% 55% 65% 55%
Nopred 0% 30% 0% 10%

pred(20)s 55% 71% 55% 50%
pred(30)s 65% 79% 65% 61%

SumAbsDiff 4463 2367 5557 4992
MedAbsDiff 175 97 198 146

Table 1. Comparative performance of regression and fuzzy logic models for the
two test samples (case study 1).

It can be seen in Table I that in terms of the MMRE, MedMRE,
SumAbsDiff and MedAbsDiff measures the two fuzzy logic models
performed either as well as or better than the corresponding regression
models. Using the pred(20) and pred(30) indicators, however, the regression
models were superior for both samples. These results are confounded,
however, by the fact that in both cases the fuzzy logic model failed to
provide predictions for some of the observations in the test samples. This
occurred for six of the twenty observations in sample one and two .of the
twenty cases in sample two (indicated as 30% and 10% in the 'No pred' line
of Table I). These cases made no contribution to the MMRE and MedMRE
calculations leading to what might be seen as optimistic values for the fuzzy
logic models. On the other hand, the pred values for the fuzzy logic models
are pessimistic as they were calculated over the entire set of twenty
observations even though for some no estimates were made. In order to
provide further insight in terms of performance we have also included

www.manaraa.com

36 Software Engineering with Computational Intelligence

measures of pred accuracy over the subset of observations for which an
estimate was produced, denoted as pred(l)s in Table I. This indicates that
although fuzzy model I only produced an estimate for fourteen of the twenty
cases, the accuracy of those predictions was good, and superior to that
achieved using linear regression.

The fact that estimates were not produced in some cases clearly warrants
some discussion. The reason is relatively straightforward - the input values
in these observations, or more correctly the fuzzy sets to which the input
values belonged, failed to match any combination of those specified in the
rules comprising the respective rule sets. Not surprisingly, this was a more
significant issue for model one that comprised just fifteen rules when
compared to the twenty-rule set available to model two. It illustrates well the
potential impact of both sampling and rule set size selection on the efficacy
of the resulting models. This outcome could be interpreted with some
concern - an organization receiving estimates for only some of their
activities may consequently feel that the modeling method is inadequate,
particularly if it is considered that linear regression models, once
constructed, can produce an estimate for all input values. We may equally
come to an alternative, more positive interpretation, however. It may be
considered a good thing that the model does not attempt to provide a
prediction when there is no sound basis for doing so, particularly given that
we are already incorporating a degree of imprecision through the use of
fuzzy sets. If indeed no rules were fired then this would imply that there is
insufficient information to enable an accurate prediction to be made, just as
extrapolation of a regression model outside the bounds of the data on which
it was built is risky (although not prohibited).

On the basis of the results presented above, using what were relatively
rudimentary fuzzy logic models, it can be concluded that the approach has
the capacity to perform at least as well as standard linear regression
modeling in some cases. In order to assess whether slightly more advanced
analysis could lead to further improvement in accuracy we refined the two
selected models by using CLUESOME to generate weighted rule sets for
each sample, rather than using the default weight of I for every rule. This
enables a measure of confidence to be associated with each rule based on the
strength of the clustering that led to its derivation (as in step 4(b) of the rule
extraction algorithm described above). Whilst no improvement in
performance was obtained for fuzzy logic model I as a result of this further
analysis, gains were made for fuzzy logic model 2 for all of the accuracy
measures employed (see Table 2).

www.manaraa.com

Applying Fuzzy Logic Modeling to Software Project Management 37

Regression Fuzzy Regression Weighted
Modell Modell Model 2 Fuzzy Model 2

MMRE 0.22 0.17 0.31 0.29
MedMRE 0.16 0.10 0.17 0.13
pred(20) 55% 50% 55% 50%
pred(30) 65% 55% 65% 60%
Nopred 0% 30% 0% 10%

pred(20)s 55% 71% 55% 56%
pred(30)s 65% 79% 65% 67%

SumAbsDiff 4463 2367 5557 4005
MedAbsDiff 175 97 198 123

Table 2. Comparative performance of regression and weighted fuzzy logic models
(case study 1).

In the final phase of case study 1 we simulated the real-world scenario
whereby a model would be refined using expert analysis. As we had some
knowledge of the systems and their construction, there was some basis for
such an adjustment. We were by no means experts, however, so our
motivation was as much to improve model accuracy as to produce truly
representative models. In fuzzy model I we made minor changes to the lower
bound parameters of the Low and High fuzzy sets for ATTRIB. (Three of the
six observations for which no prediction had been made had relatively low
values for ATTRIB and one had a high value for the same parameter.) We
also made one adjustment to the Size label, from Small Medium to Small, in a
single rule in the fifteen-rule set. These changes had a significant impact on
both the coverage and accuracy of fuzzy modell, as shown in Table 3. For
the sample two model the addition of a rule dealing with the prediction of
large systems, along with minor refinements to the Low and Medium fuzzy
sets of the A TTRIB membership function, led to the provision of reasonably
accurate predictions for all twenty observations.

Examination of the data also revealed an outlier value in test sample two,
with an MRE more than twice that of its closest rival, at 1.59 and 1.80 for the
regression and fuzzy logic models respectively. The degree of influence of
this observation had been noted in the previous analysis [28]: "This project
was found to be the smallest of the entire sample at just 309 lines of source
code. On further investigation, it was found that the system had been
developed using the maximum of default settings and generated code, with
very little programmer adaptation to customize the functionality and user
interface employed. Although admittedly unusual, this did not make the
project invalid in terms of the study - thus the observation was left in." Its
impact is evident in the inflated MMRE values for both sample two models.

www.manaraa.com

38 Software Engineering with Computational Intelligence

Regression Amended Regression Amended
Modell Fuzzy Model 1 Model 2 Fuzzy Model 2

MMRE 0.22 0.18 0.31 0.28
MedMRE 0.16 0.10 0.17 0.12
pred(20) 55% 60% 55% 60%
pred(30) 65% 75% 65% 70%
Nopred 0% 10% 0% 0%

pred(20)s 55% 67% 55% 60%
pred(30)s 65% 83% 65% 70%

SumAbsDiff 4463 2831 5557 4206
MedAbsDiff 175 90 198 110

Table 3. Comparative performance of regression and 'expert' amended fuzzy
logic models (case study 1).

7. CASE STUDY 2 - SOFTWARE DEVELOPMENT
EFFORT

Our second case study deals with development effort prediction, and is
based on a data set published by Miyazaki et al. [31]. Development effort in
person-months (MM) had been recorded for 48 systems, along with values of
several predictor variables, including the numbers of screens required
(SCRN), forms to be produced (FORM) and files to be accessed (FILE).
Examination of the data set revealed a significant outlier observation,
illustrated clearly by the fact that the mean effort value across the sample
was 87 person-months whereas the outlier observation had an effort value of
1586 person-months. As a result this observation was removed from the
analysis, leaving a set of 47 observations for further investigation. Further
preliminary examination indicated that models employing the FORM and
FILE variables would provide the most effective predictive capability.

As in the previous case study we split the data set into build and test sub
samples, comprising 30 and 17 observations respectively. We also repeated
the sampling process so that we were able to undertake two separate analyses
on the data set. The CLUESOME module of FUZZYMANAGER was
employed to generate first-cut fuzzy models from the build sub-samples
before considering whether the resulting classes and rules might be improved
with refinement. In this case study the number of membership functions
involved in the best-performing models was different for the two build
samples, at seven and five respectively. Triangular functions proved to be the
most effective in both cases, however, and twenty rules proved to be more
useful than fifteen for both sub-samples. Applying the models as constructed
to the test sub-samples of seventeen observations and comparing this to
regression analyses resulted in performance as shown in Table 4.

www.manaraa.com

Applying Fuzzy Logic Modeling to Software Project Management 39

Regression Fuzzy Regression Fuzzy
Modell Modell Model 2 Model 2

MMRE 1.10 1.04 0.52 0.59
MedMRE 0.92 0.68 0.43 0.33
pred(20) 18% 12% 24% 18%
pred(30) 18% 12% 35% 35%
No pred 0% 18% 0% 24%

pred(20)s 18% 14% 24% 23%
pred(30)s 18% 14% 35% 46%

SumAbsDiff 521 498 719 226
MedAbsDiff 29 20 24 17

Table 4. Comparative performance of regression and fuzzy logic models for the
two test samples (case study 2).

The results presented in Table 4 generally support the use of fuzzy logic
modeling over regression analysis, but again this is at least in part a function
of the fact that the fuzzy models did not produce predictions for three and
four of the 17 test observations respectively. This has a particularly
significant impact on the SumAbsDiff value for the second sample. We also
employed CLUESOME to produce weighted rule sets for the two fuzzy
models to increase the influence of the rules in which confidence was high.
In both cases this led to small but useful improvements in performance for
most of the assessment indicators (see Table 5).

Regression Weighted Regression Weighted
Modell Fuzzy Model 1 Model 2 Fuzzy Model 2

MMRE 1.10 1.01 0.52 0.56
MedMRE 0.92 0.69 0.43 0.36
pred(20) 18% 12% 24% 24%
pred(30) 18% 18% 35% 35%
No pred 0% 18% 0% 24%

pred(20)s 18% 14% 24% 31%
pred(30)s 18% 21% 35% 46%

SumAbsDiff 521 486 719 217
MedAbsDiff 29 20 24 14

Table 5. Comparative performance of regression and weighted fuzzy logic
models (case study 2).

As we had not been involved in the development of the systems at the
center of case study 2, or in the associated data collection exercise, we were
not in a position to amend the classes and/or rules on the basis of 'expert'
knowledge. In order to provide a more direct comparison of regression
analysis and fuzzy modeling for this case study, however, we did amend the
two fuzzy systems so that coverage of the observations was increased. This

www.manaraa.com

40 Software Engineering with Computational Intelligence

involved the inclusion of one further rule for the first sample, and the
addition of two membership functions for the second sample, in order to deal
with the larger observations that had by chance only been allocated to the test
subsets. Assessment of performance of the amended systems relative to their
regression counterparts is reported in Table 6.

Regression Amended Regression Amended
Modell Fuzzy Model 1 Model 2 Fuzzy Model 2

MMRE 1.10 0.75 0.52 0.61
MedMRE 0.92 0.34 0.43 0.38
pred(20) 18% 29% 24% 29%
pred(30) 18% 47% 35% 35%
No pred 0% 0% 0% 6%

pred(20)s 18% 29% 24% 31%
pred(30)s 18% 47% 35% 38%

SumAbsDiff 521 330 719 436
MedAbsDiff 29 13 24 18

Table 6. Comparative performance of regression and amended fuzzy logic
models (case study 2).

In concluding the case studies it is evident that the use of fuzzy logic
modeling can lead to the provision of useful predictions in software project
management. Furthermore, in the first case study in particular the fuzzy logic
modeling approach, combining existing data with a small degree of 'expert'
knowledge, led to models that outperformed their linear regression
alternatives. While it is true that we did not attempt to refine the regression
models to any great extent, we feel that this is justified as our focus was
primarily on assessing the feasibility of the fuzzy logic modeling approach.

8. SUMMARY, CONCLUSIONS AND FUTURE WORK
In this paper we have illustrated that fuzzy logic modeling appears to

have potential applicability in the domain of software project management.
We have shown that fuzzy logic modeling can be used to effectively
represent software project management relationships and, in our case studies,
to do so accurately when compared to more commonly used linear regression
analysis methods. When this level of performance is considered alongside
the additional benefits of a fuzzy logic approach - ability to cope with
minimal data where necessary, robustness to data set characteristics, ability
to incorporate expert knowledge, flexibility to cope with uncertainty and
changing granularity, 'free' modeling capability, and model/process
transparency - the potential of such an approach looks promising indeed,
particularly for organizations with relatively immature or emerging
management processes.

www.manaraa.com

Applying Fuzzy Logic Modeling to Software Project Management 41

The work reported here illustrates just one application of fuzzy logic
modeling, that of simple data-driven model development followed by minor
'expert' amendment. The underlying techniques and their implementation in
the FUZZYMANAGER toolset could also be used to support direct
elicitation and modeling of knowledge, or to fuzzify concepts andlor data for
further processing using other modeling methods. While our case studies
illustrated their use in prediction, they could be applied in a similar manner
for classification tasks. They could also be used at other levels of software
management - an organization's project portfolio risk profile could be
modeled using such an approach, as could the internal structure and defect
profile oflow-Ievel code modules.

In the light of the specific results obtained in the case studies we intend
to examine the impact of sampling on the coverage and stability of extracted
rule sets. It may be possible to generate a 'core' set of rules that hold
irrespective of the sample used in their derivation. Stratified rather than
random sampling may well result in more generally effective models. We
have also placed responsibility for specifying some of the model parameters
over to the manager, including the number of membership functions and the
number of rules generated. The values chosen clearly have an impact on the
resulting models - an extreme solution would be to have sufficient
membership functions and rules to create a one-to-one mapping from input to
output values. However, this is not knowledge in any real sense, and the
models would likely be difficult to understand, analyze and revise. Our case
study samples, with either fifteen or twenty-one rules, are probably of
reasonable size in that they are small enough to be understood, but large
enough to give good coverage and accuracy.

In terms of other future work there is a pressing need to evaluate the
approach in an industry setting. While the case studies have illustrated the
potential of the approach this needs to be verified against real-world and
larger scale software management challenges, perhaps in the areas of
application mentioned above. This will almost certainly result in the
development of more complex rule sets - it remains to be seen whether such
rule sets remains intuitively appealing to managers. We also intend to assess
the effectiveness of various processes and methods for knowledge elicitation,
so that the most effective representations possible can be developed.

ACKNOWLEDGMENTS
The authors would like to thank James Calvert, Richard Kilgour and

Martin Rutherford for their work on the FUZZYMANAGER toolset, and
Martin Shepperd for valuable discussions and comments on an early draft of
this paper. This work was supported by the University of Otago, Auckland
University of Technology and Bournemouth University.

www.manaraa.com

42 Software Engineering with Computational Intelligence

REFERENCES
[I] Idri, A., Abran, A. and Kjiri, L. "COCOMO Cost Model Using Fuzzy Logic", In

Proc. 7th Inti Conference on Fuzzy Theory and Technology. New Jersey, 2000

[2] Shipley, M. F., de Korvin, A. and Orner, K. "BIFPET Methodology Versus
PERT in Project Management: Fuzzy Probability Instead of the Beta
Distribution". Journal of Engineering and Technology Management 14, 1997,
49-65

[3] Pedrycz, W. and Peters, J.F. (eds) Computational Intelligence in Software
Engineering. World Scientific: Singapore, 1998

[4] Gray, A.R. and MacDonell, S.G. "Applications of Fuzzy Logic to Software
Metric Models for Development Effort Estimation", In Proc. 1997 Annual
Meeting of the North American Fuzzy Information Processing Society - NAFIPS.
IEEE Computer Society Press, 1997, 394-399

[5] Idri, A. and Abran, A. "Towards a Fuzzy Logic Based Measures for Software
Projects Similarity", In Proc 6th MCSEAI'2000 Maghrebian Conference on
Computer Sciences. Fez, Morocco, 2000

[6] Idri, A. and Abran, A. "A Fuzzy Logic Based Set of Measures for Software
Project Similarity: Validation and Possible Improvements", In Proc 7th Inti
Symposium on Software Metrics, London, IEEE Computer Society Press, 2001,
85-96

[7] Gray, A.R. and MacDonell, S.G. "Fuzzy Logic Techniques for Software Metric
Models of Development Effort". W. Pedrycz and J.F. Peters (eds) Computational
Intelligence in Software Engineering. World Scientific: Singapore, 1998,321-
338

[8] Albrecht, A.J. and Gaffney, J.R. Software Function, Source Lines of Code, and
Development Effort Prediction: a Software Science Validation, IEEE Trans Soft
Eng 9(6), 1983, 639-648

[9] Boehm, B.W. Software Engineering Economics, Prentice-Hall: Englewood
Cliffs, N.J., 1981

[10] Host, M. and Wohlin, C. "A Subjective Effort Estimation Experiment", Info
Softw Tech 39,1997,755-762

[11] Heemstra, F. J. and Kusters, R.J. "Function Point Analysis: Evaluation of a
Software Cost Estimation Model". European Jnl Info Systems 1 (4), 1991, 229-
237

[12] Hughes, R.T. "Expert Judgement as an Estimating Method", Info Softw Tech 38,
1996,67-75

[13] Ohlsson, M.e., Wohlin, C. and Regnell, B. "A Project Effort Estimation Study",
Info Softw Tech 40, 1998, 831-839

[14] Yager, R.R. and Filev, D.P. "Essentials of Fuzzy Modeling and Control". Wiley:
New York, 1994

[15] Dubois, D. and Prade, H. Fuzzy Sets and Systems: Theory and Applications.
Academic Press: London, 1980

[16] Miyazaki, Y., Terakado, M., Ozaki, K. and Nozaki, H. "Robust Regression for
Developing Software Estimation Models", Journal of Systems and Software 27,
1994,3-16

[17] Kitchenham, B. and Linkman, S. "Estimates, Uncertainty, and Risk", IEEE
Software May/June 1997,69-74

www.manaraa.com

Applying Fuzzy Logic Modeling to Software Project Management

[18] Putnam, L.H. and Myers, W. "How Solved is the Cost Estimation Problem?",
IEEE Software Nov/Dec 1997, 105-107

[19] Gray, A.R. and MacDonell, S.G. "Fuzzy Logic for Software Metric Models
Throughout the Development Life-cycle", In Proc 1999 Annual Meeting of the
North American Fuzzy Information Processing Society - NAFIPS. IEEE
Computer Society Press, 1999,258-262

[20] MacDonell, S.G., Gray, A.R. and Calvert, I.M. "FULSOME: A Fuzzy Logic
Modeling Tool for Software Metricians", In Proc 1999 Annual Meeting of the
North American Fuzzy Information Processing Society - NAFIPS. IEEE
Computer Society Press, 1999,263-267

[21] Bastani, F.B., DiMarco, G. and Pasquini, A. "Experimental Evaluation ofa
Fuzzy-set Based Measure of Software Correctness Using Program Mutation", In
Proc 15th Inti Conference on Software Engineering, IEEE Computer Society
Press, Los Alamitos CA., 1993,45-54

[22] Kumar, S., Krishna, B.A. and Satsangi, P.S. "Fuzzy Systems and Neural
Networks in Software Engineering Project Management". Journal of Applied
Intelligence 4, 1994, 31-52

[23] de Ru, W.G. and Eloff, J.H.P. "Risk Analysis Modelling with the Use of Fuzzy
Logic", Computers & Security 15 (3), 1996,239-248

[24] Khoshgoftaar,. T.M., Evett, M.P., Allen, E.B. and Chien, P.D. "An Application of
Genetic Programming to Software Quality Prediction", W. Pedrycz and J.F.
Peters (eds) Computational Intelligence in Software Engineering. World
Scientific: Singapore, 1998, 175-196

[25] Khoshgoftaar, T.M., Allen, E.B., Jones, W.D. and Hudepohl, J.P. "Which
Software Modules Have Faults Which Will Be Discovered by Customers?"
Journal of Software Maintenance: Research and Practice 11, 1999, 1-18

[26] Ebert, C. "Experiences with Criticality Predictions in Software Development",
ACM SIGSoft SEN 22(6), 1997,278-293

[27] Wiegers, K.E. "Read my lips: no new models ", IEEE Software Sept/Oct 1998,
10-13

[28] MacDonell, S.G., Shepperd, MJ. and Sallis, PJ. "Metrics for Database Systems:
an Empirical Study", In Proceedings of the Fourth International Symposium on
Software Metrics (Metrics '97), Albuquerque NM, IEEE Computer Society Press,
1997,99-107

[29] Shepperd, MJ. and Kadoda, G. "Using Simulation to Evaluate Prediction
Techniques", In Proceedings of the 7th Inti Symposium on Software Metrics,
London, IEEE Computer Society Press, 2001, 349-359

[30] Pickard, L., Kitchenham, B.A. and Linkman, S. "An Investigation of Analysis
Techniques for Software Datasets", In Proceedings of the Sixth International
Symposium on Software Metrics (MetriCS '99). Boca Raton FL, USA, IEEE
Computer Society Press, 1999, 130-142

[31] Miyazaki, Y., Terakado, M., Ozaki, K. and Nozaki, H. "Robust Regression for
Developing Software Estimation Models", Journal of Systems and Software 27,
1994,3-16

43

www.manaraa.com

Integrating Genetic Algorithms With Systems
Dynamics To Optimize Quality Assurance Effort
Allocation

Balasubramaniam Ramesh i and Tarek K. Abdel-Hamid2

IDepartment of Computer Information Systems
Georgia State University
Atlanta, GA 30303
bramesh@gsu.edu

lNaval Postgraduate School
Monterey, California 93943
tkabdelh@nps.naby.mil

ABSTRACT

Optimal allocation of effort towards Software Quality Assurance is critical for
the successful development of software systems. A decision support system based
on systems dynamics simulation model has been developed to support software
project managers in making this decision. The effectiveness of the decision
support system has been enhanced with a genetic algorithm to optimize this
decision variable. The architecture of the DSS, and results from an empirical
experiment to validate the effectiveness of our approach are presented.

KEYWORDS
Software quality assurance, Project Management Decision Support, Genetic
Algorithms, Systems Dynamics.

1. INTRODUCTION

Software quality assurance (QA) constitutes a set of activities undertaken
during the development of software systems so as to reduce the risks of
unacceptable system performance and to ensure that the produced software does
conform to established technical requirements [Pressman 2001]. Increasingly,
software quality assurance is being recognized as a critical factor in the
successful development of software systems. The reason is a simple one: the
evidence indicates that failure to pay attention to QA often results in unsatisfied
users and higher lifecycle costs. Software quality assurance is approached
through two complementing strategies. First, through ensuring that the quality is
initially built into the product. This involves emphasizing the early generation of
a coherent, complete, unambiguous, and non-conflicting set of user
requirements. Then, as the product moves into the design and coding stages, a
second set of QA tools are deployed to continuously review and test the system

www.manaraa.com

Integrating Genetic Algorithms with Systems Dynamics 45

(e.g., through walkthroughs, inspections, code reading, etc.) [Pressman 2001].
Even in the context of systems that are developed at Internet speed the ability to
understand and control the level of quality is important to achieve the desired
balance between quality and speed [Baskerville et al. 2001].

The utilization ofQA tools and techniques does, however, add significantly
to the cost of developing software as person-days are expended in developing
test cases, running test cases, conducting structured walkthroughs, etc. Consider,
as an example, the Omega project, in which 180 development staff worked to
port a micro-networking operating system to new hardware [Gilb 1988]: Initial
planning estimates indicated 30,000 person hours a year for inspections.
Management assumed that a third of this resource would be spent on inspection
meetings, and the average meeting would last 90 minutes and involve five
persons. This meant that there would be well over 1300 inspection meetings,
requiring 1300 conference room bookings. As there were no conference rooms in
the office area, two were quickly built!

It is no wonder then, that the added cost of QA activities is a source of
concern to QA managers, program managers and customers. As of yet this
concern has not been adequately addressed in the literature. Our objective in this
article is to present a tool to support the software project manager in efficiently
allocating the QA effort throughout the software development lifecyc1e. This tool
uses a systems dynamics simulation model that provides the ability for project
managers to experiment with decision variables such as software quality
assurance effort allocation. A genetic algorithm has been integrated with this
model to find an optimal QA effort allocation scheme.

2. A CASE STUDY

Consider the case of a software project conducted to develop a software
system for a space application. The system was estimated to be: 16,000 delivered
source instructions (nS!) in size; require 1,100 person-days for development and
testing; and be completed in 320 working days. How much should management
allocate to QA?

The above project is not a hypothetical scenario. Indeed, it is a real project
that was conducted at one of NASA's space flight centers. The basic
requirements for the project were to design, implement, and test a software
system for processing telemetry data and for providing altitude determination
and control for a NASA satellite.

As is typically the case, resources for QA were allocated as a function of the
project's total development effort. In this case, approximately 30% of the
project's development resources were allocated to QA, a level that is significantly

www.manaraa.com

46 Software Engineering with Computational Intelligence

higher than the industry norm [Dunn 1994]. Upon completion, the project's
statistics were:

Project size 24,000 DSI

Development cost 2,200 person-days

Completion time 380 working days

Obviously the project was not a total success. On the positive side, the end
product was reported to be of high quality i.e., was reliable, stable, and easy to
maintain. On the other hand, the project overshot its schedule by 20% and its
cost by 100%.

In a project postmortem, a number of issues were raised including the issue
of whether the Q A effort allocated was optimal. And if not, what the impact was
on the project's cost and schedule. In principle such issues can be addressed by
conducting a controlled experiment in which the project is repeated many times
under varied QA expenditure levels. Such an experimental approach, however, is
obviously too costly and time consuming to be practical. Furthermore, even
when affordable, the isolation of the effect (cost) and the evaluation of the
impact of any given practice (QA) within a large, complex, and dynamic social
system such a software project environment can be exceedingly difficult.

Simulation modeling, on the other hand, does provide a viable alternative for
such a task. In addition to permitting less costly and less time-consuming
experimentation, simulation-type models make "perfectly" controlled
experimentation possible. Indeed:

The effects of different assumptions and environmental factors can be
tested. In the model system, unlike the real system, the effect of
changing one factor can be observed while all other factors are held
unchanged. Such experimentation will yield new insights into the
characteristics of the system that the model represents. By using a
model of a complex system, more can be learned about internal
interactions than would ever be possible through manipulation ofthe
real system [Forrester 1961].

www.manaraa.com

Integrating Genetic Algorithms with Systems Dynamics

• Hiring Rate Turnover

\(""
HUMAN
RESOURCE
MANAGEMENT

Workforce ~----------. Workforce
Experience

Mix

SOFTWARE PRODUCTION

Error Detection
and Correction

Software
---' Development

~-~ Rate

Process
Losses

Potential

\ (productivity

Actual Productivity

) L,ry ~_
Assurance

Effort

Learning

Workforce Schedule
Level Per- Pressure

ceiV(oI N~dol S,hod,l,d _) '\

~ Completion
(Date

) Forecasted
Adjustments to ~ Completion
Workforce and ~ ./ Date

Schedule ~

PLANNING

Perceived
Productivity

ProiortTM:) perceived~
Complete

Level of
Accuracy in
Measuring
Progress

Effort ~--- Perceived
- Perceived Project Size

Still Needed

CONTROL
L--__ ~~~~ ______________ _

Figure 1. Four Subsystems of the System Dynamics Simulator.

3. A SYSTEM DYNAMICS MODEL OF SOFTWARE
DEVELOPMENT

47

As part of a wide-ranging study of software project management, a
comprehensive system dynamics model of the software development process has

www.manaraa.com

48 Software Engineering with Computational Intelligence

been developed. The model was developed on the basis of field interviews of
software project managers in five organizations, complemented by an extensive
database of empirical findings from the literature. The model integrates the
multiple functions of the software development process, including both the
management-type functions (e.g., planning, controlling, and staffing) as well as
the software production-type activities (e.g., designing, coding, reviewing, and
testing). Figure 1 is an overview of the simulation model's four major
subsystems: (1) the human resource management subsystem; (2) the software
production subsystem; (3) the controlling subsystem; and (4) the planning
subsystem.

As the model is quite comprehensive and highly detailed, it is infeasible to
fully explain it in the limited space of this article. Therefore, the description will
be limited to a high level overview of the four subsystems. The model's QA
component (which is part of the software production subsystem), is, however,
discussed in more detail in the following section. (For a more detailed
description of the model's structure, its mathematical formulation, and its
validation the interested reader can refer to [Abdel-Hamid and Madnick 1991].

The human resource management subsystem captures the hiring, training,
and transfer of the human resource. Such actions are not carried out in a vacuum,
but are affected by the other subsystems; for example, the hiring rate is a
function of the work force level needed to complete the project by a given date.
Similarly, the available work force has a direct bearing on the allocation of
manpower among the different production activities.

As the software is developed, it is also reviewed using quality assurance
activities such as structured walkthroughs to detect any errors. Errors detected
through such activities are reworked. However, some errors "escape" detection
until the testing phase. The development lifecycle phases incorporated in the
software production subsystem include the designing, coding, and testing
phases. Three sets of factors affect the error generation rate. The first set includes
organizational factors (e.g., the organization's use of structured techniques, the
overall quality of the staff). A second set includes project-specific factors (e.g.,
project complexity, system size, programming language). While these two sets of
factors differ from organization to organization and from one project to another,
they tend to remain constant throughout the development lifecycle of any single
project. A third set of factors affecting error generation includes the work force
mix and schedule pressures. Unlike the factors in the first two sets, these two
variables change dynamically throughout the lifecycle.

As progress is made, it is reported. A comparison of the degree of project
progress to the planned schedule is captured within the control subsystem.
Once an assessment ofthe project's status is made, it becomes an important input

www.manaraa.com

Integrating Genetic Algorithms with Systems Dynamics 49

to the planning function. In the planning subsystem, initial project estimates are
made and then revised, when necessary, throughout the project's life. For
example, to handle a project that is behind schedule, plans can be revised to
(among other things) hire more people, extend the schedule, or do both.

4. SOFTWARE QUALITY ASSURANCE MODEL

A primary objective of the software quality assurance (QA) activity is to
detect the software errors that have been generated. Typically, the QA effort is
planned and allocated as a fixed schedule of periodic group-type functions e.g.,
as two-hour walkthroughs scheduled once a week [Abdel-Hamid and Madnick
1991]. During these periodic "QA windows," all tasks developed since the
previous review are supposed to be processed. A surprising finding showed that
all completed tasks, irrespective of how many these were, were always indeed
"processed." No backlogs, therefore, develop in the QA pipeline even when QA
activities are suspended temporarily because of schedule pressures. For example,
when walkthroughs are suspended on a project, the requirement to review the
affected tasks is bypassed, not postponed. Since the objective ofthe QA activity
is to detect errors and since undetected errors are by their very nature invisible, it
is almost impossible to tell whether an adequate QA job was done (except much
later in the lifecyc1e). Under such circumstances it is easy to rationalize both to
oneself and to management that the QA job that was "convenient" to do, was not
insufficient. Furthermore, the QA effort that is convenient to expend (given
scheduling considerations) is usually never exceeded even when more effort is
called for. There seems to be no significant incentives to do otherwise. First, at a
psychological level, there are actually disincentives for working harder at QA,
since it only "exposes" more of one's mistakes. Second, at the organizational
level, there are seldom any real reward mechanisms in place to promote quality
or quality-related activities [Abdel-Hamid and Madnick 1991].

www.manaraa.com

50 Software Engineering with Computational Intelligence

SOFTWARE
DEVELOPEMT
RATE

~-----+------------

AVERAGE
QA DEALY

MPDMCL
MULTIPUER TO
PRODUCTIVITY

(
DMPQA
DAILY
MANPOWER
FORQA

P'JBAWK)
%OFJOB
WORKED

(
DMPRW 1 DAILY
MANPOWER
FORQA

CMRWED
REWORKED
ERRORS

MULTIPLIER TO

RWMPPE
ACTUAL
REWORK
MANPOWER
NEEDED PER
ERROR •~~ MPDMCL

~ PRODUCTIVITY
DUE TO COMM &
MOTIY. LOSSES

\+-----_._----------

Figure 2. Model Structure for Error Detection/Correction.

Figure 2 depicts the system dynamics model's structure for the detection and
correction of errors. This component of the model together with two others -
software development and system testing - constitute the software production
subsystem of Figure 1. To capture this "Parkinsonian" nature ofthe QA activity,
the QA RATE shown in Figure 2 is modeled as an exponential delay. This says
that software tasks that are developed will always be QA'ed (or, more accurately,
considered QA'ed) after a certain delay, which is independent of the actual QA
effort allocated!

www.manaraa.com

Integrating Genetic Algorithms with Systems Dynamics 51

4.1 Error Detection Factors

However, the effectiveness ofQA would obviously depend on the QA effort.
That is, the amount of errors that are detected will necessarily be a function of
the amount of QA effort allocated. This is evident in Figure 2, where the error
DETECTION RATE equals DAILY MANPOWER FOR QA divided by QA
MANPOWER NEEDED TO DETECT AN ERROR.

The QA MANPOWER NEEDED TO DETECT AN ERROR, is a function
of both error-type (e.g., design errors versus coding errors) and on the efficiency
of how people work. Work inefficiencies such as man-hours lost on
communication and other non-project activities (e.g., personal business, coffee
breaks, etc.) are captured by the model's MULTIPLIER TO PRODUCTIVITY
DUE TO COMMUNICATION AND MOTIVATION LOSSES.

Finally, there is the effect of error density on the error detection activity. At
any point in time, the set of POTENTIALLY DETECTABLE ERRORS
constitutes a hierarchy of errors, in which some are subtler, and therefore more
expensive to detect than others. Empirical results reported by Basili and Weiss
[1985] suggest that the distribution is pyramid-like, with the majority of errors
requiring a few hours to detect, a few errors requiring approximately a day to
detect, and still fewer errors requiring more than a day to detect. In the model it
is assumed that as QA activities are performed, the more obvious errors will be
detected first. As these are detected, it becomes increasingly expensive to
uncover the remaining, more elusive (although less pervasive) errors.

4.2 Error Correction Factors

Errors detected through QA are reworked. The REWORK RATE is a
function of how much effort is allocated to the rework activity (DAILY
MANPOWER FOR REWORK) and the ACTUAL REWORK MANPOWER
NEEDED PER ERROR. The ACTUAL REWORK MANPOWER NEEDED
PER ERROR has two components. The first is the NOMINAL REWORK
MANPOWER NEEDED PER ERROR, which is a function of error-type, i.e.,
design versus coding errors. Design-type errors are thus generated at a higher
rate, are more costly to detect, and are more costly to rework [Pressman 2001].
The ACTUAL REWORK MAN-POWER NEEDED TO CORRECT AN
ERROR also depends on the work efficiency of the project staff. That is, the
communication and motivation losses must be accounted for. For example, if the
MULTIPLIER TO PRODUCTIVITY DUE TO COMMUNICATION AND
MOTN ATION LOSSES is 0.5 (indicating that 50 percent of the time is lost in
nonproductive activities), then the actual rework manpower needed to correct an
error becomes twice the nominal.

www.manaraa.com

52 Software Engineering with Computational Intelligence

As further demonstrated in Figure 2, the reworking of software errors is not,
itself, an errorless activity. As detected errors are reworked, some fraction of the
corrections will be bad-fixes. The detection and correction of such bad-fixes,
together with errors that escape QA detection during the project's development
phases, are activities that are captured in the model's system testing sector.

5. A DECISION SUPPORT SYSTEM (DSS) FOR QUALITY
ASSURANCE EFFORT ALLOCATION

Controlled experimentations are very costly and time consuming in software
engineering [Myers 1976]. Even when experimentation is affordable, the
isolation of the effect of any given practice within a large, complex and dynamic
project environment can be extremely difficult [Glass 1982]. Simulation
modeling offers a viable alternative for testing software engineering hypotheses.
The Systems Dynamics Simulation has been used to support decision-making in
software project management in a variety of contexts. For example, it has been
used to support a continuous resource planning and allocation activity. Software
managers use the model to update project cost and schedule estimates due to
factors such as changes in user requirements [Abdel-Hamid 1993]. The model
also allows managers to conduct trade-off analyses, e.g., between extending the
duration of a project versus adding more personnel. In this research, the Systems
Dynamics Simulation is used to study the allocation of effort towards software
quality assurance.

The QA effort is a function of a large number of factors that are interrelated
in a complex non-linear fashion. For example, one ofthe critical factors, cost of
undetected errors, grows exponentially and not linearly over time. Therefore,
analytical solutions to develop an "optimal" QA scheme are not available. The
systems dynamics simulator provides a viable tool to assess QA effort allocation
scenarios. In the simulation model, managerial policies, such as the QA effort
allocation throughout the life cycle, are captured as table functions. This
representation allows a policy variable (e.g., person-days allocated to QA over
time) to be defined as a function of project life cycle stage or the project
completion status. Once a policy is defined, the model can be run to assess its
impact on project performance. Such experimentation can help a project
manager make informed decisions.

Specifically, simulation can be run with any QA effort allocation scheme
(keeping all the other parameters constant). At the end ofthe simulation run, the
total project cost is estimated by the simulation system. The user can vary the
QA effort allocation scheme and study its effect on total project cost. By
experimenting with various schemes, the user may decide on an appropriate
scheme.

www.manaraa.com

Integrating Genetic Algorithms with Systems Dynamics 53

However, this process has a serious limitation. The QA effort allocation as a
fraction of total effort can vary theoretically between 0% and 100% for any
period. If the life cycle is divided into 10 periods (10% complete, 20% complete
etc.) and the decision maker has to select a specific value in this range for each
ofthe 10 periods, then the total number of possible QA schemes will be 100 10.

The decision maker can, however, use his domain knowledge to limit the search
space. For example, it can be decided that very high (say, over 75%) or very low
(say, below 10%) levels ofQA effort are undesirable from implementation and
productivity considerations. Even with such constraints, the search space for
potential solutions is extremely large. Running the simulation manually to find
an optimal solution can, therefore, be very difficult. The development of an
automated procedure to try different values of the decision variables to find the
"optimal" solution can be significantly enhance the usefulness of the systems
dynamic simulator as a DSS.

QA Effort Allocation
Scheme

Systems Dynamics
Simulator

~~

~r

Genetic Algorithm
Module

To
De

tal Software
velopment Effort

Figure 3. Overview of the System Architecture.

5.1 Genetic Algorithm To Optimize QA Effort Allocation

The search for a "good" solution can be done using classical exhaustive
search methods if the search space is small. However, when the search space is
very large, such as in the case of the QA allocation problem, computational
intelligence techniques such as Genetic Algorithms (GA) have been found to be
very effective. GAs are very effective in searching complex, non-linear,
multidimensional search spaces even in the absence of specific knowledge about
the problem domain. GAs are probabilistic algorithms that combine features of
stochastic and directed search and are more robust than most existing search

www.manaraa.com

54 Software Engineering with Computational Intelligence

methods [Michalewicz 1996]. The problem of finding an optimal QA allocation
scheme can be thought of as a dynamic non-linear optimization problem in
which the objective is to minimize the total development effort. GAs have been
used successfully in optimizing system behavior in such problems [Sholtes
1994].

Figure 3 provides the architecture of a DSS in which the Systems Dynamics
simulator is coupled with a Genetic Algorithm module for optimizing the model
behavior. The GA module proposes different QA effort allocation schemes.
These are provided as inputs to the simulation model. The simulation model is
executed and estimates the total software development effort with that scheme.
This information is used by the GA to develop an efficient QA scheme.

5.2 Genetic Algorithms

Genetic Algorithms are a class of search, adaptation and optimization
techniques that are based on the principles of natural evolution in which
individuals and species that adapt to changing environments have a higher
chance of survival [Forrest 1993; Srinivas and Patnaik 1994; Forrest 1996]. The
features that distinguish individuals are determined by a set of genes or
chromosomes. Selection involves the principle of "survival of the fittest" that
characterizes natural evolution. It implies that the fittest genes survive during
evolution. Reproduction involves the combination of the genetic material of
parents to form the genetic material of offsprings. Crossover refers to the
exchange of segments of chromosomes of the parents during reproduction.
Mutation involves random changes in the genetic make up. Genetic algorithms
attempt to use these principles of crossover, mutation and recombination and a
variety of mechanisms inspired by natural evolution to solve search or
optimization problems.

In a GA, solutions to a problem are represented as (often binary) strings. A
one-to-one mapping between the strings and the actual solution to the problem
must exist. A fitness function that measures the quality of the solution is either a
formal objective function (e.g., directly computed or results from a simulation)
or a subjective judgment. The basic steps in finding an "optimal" solution are:
1. Create a population of initial solutions randomly
2. Evaluate the fitness of each individual in the population
3. Create a new population using genetic operators (such as selection,

crossover and mutation)
4. Repeat steps 2 & 3 until the termination condition (such as convergence,

resource limitation) is reached.
5. Select the individual with the best fitness value as the solution to the

problem in that generation.

www.manaraa.com

Integrating Genetic Algorithms with Systems Dynamics 55

This process mimics evolution in achieving novelty in its approaches to
maintaining fitness [Levy 1992]. Genetic algorithms generate high quality
solutions but have fewer tendencies to terminate on local optima than traditional
techniques. Genetic algorithms outperform traditional learning techniques,
especially when the solutions that have to be learned are complex. They are
especially useful when there is no domain knowledge available to guide the
search for solutions [Holsheimer and Siebes 1994] or when the noisy data is used
in data mining [Goldberg 1994].

5.2.1 How do GAs work

The notions of schemata and building blocks proposed by Holland [Holland
1992] are used in explaining the working of a GA. In simple terms, schemata are
similarity templates or subsets that have some features in common. Building
blocks are schemata that have high fitness values. These are preferred in
selection and exchanged by genetic operations. The building-block hypothesis
states that the strings with high fitness values can be identified by sampling and
combining building blocks. The fundamental theorem governing the working of
a GA is Holland's schemata theorem, which states that the schemata with high
fitness values grow exponentially with time. Later empirical and theoretical
research [Goldberg et al. 1992; Koza et al. 1996] provides more insights into the
workings of a GA.

5.2.2 Comparison with other techniques

Genetic algorithms differ considerably from other search and optimization
techniques such as hill-climbing and random walk in several ways [Goldberg
1989]:

• The parameters of the functions to be optimized are coded in a GA, typically
as fixed length strings.

• GA employs a highly parallel search using a population of potential
solutions, rather than a single search point.

• The fitness of a solution is determined by a payoff or cost function, rather
than auxiliary information (such as derivatives used in gradient techniques
or the various tabular parameters needed by combinatorial optimization)

• GAs employ probabilistic rather than deterministic rules to guide the search
towards regions in the search space that are likely to improve performance.

Genetic algorithms are increasingly popular to solve problems in a variety of
domains including engineering, economics, management science and other areas
(see [De-Jong 1999] [Holland 1992] for surveys). Building on the principles of
GA, Koza introduced genetic programming (GP) [Koza 1992]. GP uses symbolic
expressions (S-expressions)- rather than bit strings - as units being evolved by a

www.manaraa.com

56 Software Engineering with Computational Intelligence

genetic program. A Genetic programming has been successfully used in
automatic induction in a wide variety of applications ranging from generating
small subroutines to real-time problems such as robot control. Koza [Koza 1994;
Koza et al. 1999; Koza 2000] asserts that GP has already achieved the goal of
producing results that equal or exceed human performance in a variety of
domains such as algorithm design, game playing, pattern recognition, control and
design. Taking a high-level statement of a problem's requirements, GP is
capable of producing solutions that infringe on or improve on previously issued
patents in problems like circuit design [Koza et al. 1999].

The application of using GP to solving business problems is exemplified by
a system developed by Dworman, Kimbrough and Laing [Dworman et al. 1995]
that discovers high quality negotiation patterns in a multi-agent game. Though
this approach has similarities to our work on integrating a systems dynamics
simulation with GAs, our approach has the benefit of learning from data drawn
from a validated systems dynamics model. In contrast, the outcomes of the
negotiations in the multi-agent game can be very easily evaluated for optimum
results.

Holland [Holland 1992] establishes the appropriateness of using Genetic
Algorithms for learning patterns such as the QA effort allocation scheme. The
GLOWER system [Dhar et al. 2000] represents an approach to learning rules
from data using genetic algorithms. The system exploits the power of GA to
scour the search space thoroughly in finding interesting trading rules. This
approach is especially useful when the search space includes continuous
variables. Unlike greedy search processes used by machine leaning systems,
Genetic Algorithms are less constrained in searching for all applicable rules. In
GLOWER, the chromosomes are made up of sets of genes that represent
constraints on a single descriptor variable. The characteristics of our search space
are similar to those used in GLOWER. However, instead of relying on data from
past trades, our system learns from data drawn from the systems dynamics
simulator.

Simulated annealing, genetic algorithms and evolutionary strategies are
similar in that they use probabilistic search mechanisms to find the best solution.
Simulated annealing generates a sequence of states that converge to an optimum
solution based on cooling schedules. The principal difference between
evolutionary strategies and genetic algorithms is that the former uses mutations
as the primary search mechanism, whereas GA uses crossover and mutation as
search mechanisms.

www.manaraa.com

Integrating Genetic Algorithms with Systems Dynamics 57

6. THE NASA SOFTWARE PROJECT REVISITED

In this section, we describe how a GA can be used to find an optimal QA
resource allocation scheme for the NASA software project.

6.1 Representation

The representation of the problem in terms of strings that can be manipulated
by the GA is a critical step in successful application of the method. Our problem
involves finding the "best" QA effort allocation scheme, specified as a vector
representing the fraction of the total resources employed in QA during each
period.

6.1.1 Limiting the search space

Knowledge about the problem domain can be used to limit the search space
of potential solutions so that the GA can converge to an "optimal" solution
quickly. Theoretically, the values ofQA allocation in each period can range from
0% (no QA at all) to 100% (all resources allocated to QA) during each
development phase. However, it is unreasonable to assume extremely high levels
of QA effort in large scale projects. The return on the QA investment typically
flattens out when it exceeds the 40% of the development effort [Abdel-Hamid
1988]. Similarly, using very low levels of QA allocation may not be feasible
from a project manager's perspective; a project manager may want to maintain at
least a minimal QA effort during all phases of the life cycle for reasons of
gradual staffing, training, and maintaining a QA "presence". Under these
conditions, the range of candidate values for the GA to select may be set between
say, 10% and 75% (to allow sufficient room for plausible values)'.

Though the GA may find the same optimal solutions even with the larger
search spaces, it is more efficient to eliminate infeasible regions to speed up
convergence towards the solution. However, care must be exercised in
constraining the search space to minimize the risk of eliminating potentially
optimal solutions from consideration.

6.1.2 Fitness measure

The total development effort for a project is the sum of the effort required in
the design, coding, QA, rework and testing. As discussed in Section 3, the QA
activity has significant effect on these activities. Therefore, the total development
effort is an appropriate measure of fitness of a QA effort allocation scheme. It
may be used as a surrogate for the total project cost that should be minimized.
When provided with a candidate QA effort allocation scheme, the simulation

www.manaraa.com

58 Software Engineering with Computational Intelligence

model can compute the total development effort for the project that is used as the
measure of fitness of the scheme.

Specifically, the GA generates candidate QA effort allocation schemes. Each
scheme is passed onto the simulation for evaluation. The simulation is executed
with the scheme as the input (keeping all the other parameters constant). The
simulation estimates the total project cost and returns it to the GA. The GA uses
this total project cost as the fitness value ofthe scheme. The objective ofthe GA
is to evolve a QA effort allocation scheme that minimizes this cost.

6.2 GA parameters

A variety of parameters can be controlled while evolving solutions using a
GA. The population size, total number of generations, frequency of crossover
and mutation are some of the important variables. The choice of the 'best' values
for each of these variables is typically determined by varying each of the
parameters over a range of values and observing the effect on convergence of a
solution. Several "rules of thumb" for different classes of problems are also
discussed in the literature [Koza 1992; Koza et al. 1996). Often, simple hand
optimization is used by starting with' standard' parameter settings and changing
each parameter one at a time and see what results are obtained. In our
experiments, crossover rates between 0.6 and 0.9 were used to examine the
effect of various values. Mutation rates were varied between 0.01 and 0.15 and
the population sizes ranging from 500 to 1500 were used in the experiments. The
values of the various parameters that produced the best results is shown in Table
1. It should be noted that such parameter tuning by experimentation may lead to
sub-optimal choice of these parameters. A variety of techniques for find good
parameter settings for genetic algorithms have been discussed in the literature
[Grefenstette 1986]. However, the problem of controlling parameters of an
evolutionary algorithm is still a subject of active research and theoretical
investigations on selecting optimal parameters do not provide results with wide
generalizability {Eiben, 2000 #19. Further, the cost of finding such parameter
tuning could be very significant and the rewards in solution quality may not
justify the cost [Beasley et at. 1993].

The experiment uses a crossover-dominated GAs (i.e., with a low mutation
rate). Here, mutation is performed randomly on a gene ofa chromosome and it
ensures that every region of the problem space can be reached. When a gene is
mutated it is randomly selected and randomly replaced with another symbol from
the alphabet. To eliminate the risk of pathological initial populations in which an
important low-order schema my be missing, and needs to be created by only by
mutation, the GA creates a super-uniform initial population in which all
schemata are equally represented using a reduced-variance stochastic algorithm

www.manaraa.com

Integrating Genetic Algorithms with Systems Dynamics 59

which produces a population with no local, but large global correlations
[Schraudolph and Belew 1992; Schraudolph and Grefenstette 1992]. The trials
are stopped when the maximum generation is reached or the convergence
threshold (the percentage of the population that needs to have the same values
for it to be considered to have converge) is achieved. A high convergence
threshold implies that the genetic make up ofthe population is not significantly
different enough to produce better results with more trials.

Parameter
Population Size

Max. Generations
Crossover Rate
Mutation Rate

Convergence Threshold

Table 1. GA parameters.

6.3 Incorporating constraints

Value
1000
100

0.60
0.05
0.95

Problem specific constraints can be easily incorporated to guide the GA
towards desirable solutions and away from those that are undesirable. This can
be done by incorporating in the fitness function, a penalty for solutions that have
desirable characteristics. Similarly, a reward for solutions that have desirable
characteristics can be incorporated into the fitness function. For instance, the
management may specify that the QA effort allocation may not vary by more
than say 5% between periods, except in the initial stages of the project. Such a
constraint can be easily incorporated in a GA using a penalty function as a part
of the fitness function. Solutions that violate the following constraint may be
assigned a very high fitness value (in this fitness minimization problem) so that
they will become unattractive:

ABS[QA,-QAt+d > 5%

When such a fitness consideration is used, a scheme that provides a smooth
QA scheme will perform well. Thus, through the process of careful evaluation of
potential solutions, a project manager may identify and impose constraints on the
solution space. Finding the best possible solution within those constraints is well
achieved by the GA.

6.4 Results from GA

The GA produced several hundred schemes that did better than the actual
NASA project in terms of the total project cost. Figure 4 shows the best QA
effort allocation scheme suggested by the GA. This scheme would require only
1475.9 person-days for the project compared to the 2200 person-days required in

www.manaraa.com

60 Software Engineering with Computational Intelligence

the actual project. In other words, by adopting the QA effort allocation scheme
suggested by the GA, the project could have saved nearly a third of the total
project costs.

7. SIMULATION EXPERIMENTS

Though the above results from the GA are impressive, it is useful to evaluate
its performance against other possible approaches. However, as discussed earlier,
no analytical formulations to this problem are available. Therefore, it is not
possible to use traditional analytical procedures to find a solution. However, the
results from the GA can be compared to those developed by other procedures.
We have chose two candidates:

• a series of randomly generated QA effort allocation schemes. and
• QA effort allocation schemes used by human decision makers using the

systems dynamics simulator as a DSS.

The performance of the GA can be compared to the results from these
experiments on the basis of both

• the total development effort as a measure of the impact of the solution on
total proj ect costs, and

• qualitative assessment of the implementability of the proposed schemes.

This section describes the simulation experiments that were conducted for
such a comparison.

7.1 Randomly Generated Schemes

The first of the simulation experiments involved randomly creating several
QA effort allocation schemes and running to simulation experiment to evaluate
the effectiveness of these schemes on the basis of the total development effort
produced by the simulation. These experiments were based on the premise that
given access to a simulator, a decision maker will be able to experiment with a
large number of possible QA effort allocation schemes and may be able to find
an appropriate scheme.

In the experiment 2000 QA effort allocation schemes were randomly
created. Each was passed on to the simulation for the estimation of the total
development effort. Table 2 summarizes the results from these runs.

www.manaraa.com

Integrating Genetic Algorithms with Systems Dynamics

Random QA Scheme

"Best" scheme
"Worst" scheme

Average
Standard Deviation

Actual project

Table 2. Results from Random Schemes.

61

During this experiment, the average total effort from randomly created
schemes was well above the level experienced in the project. The worst scheme
increased the development effort more than six fold. However, the best scheme
generated a QA scheme that was about 30% lower than that observed in the
actual project. But this scheme did not perform as well as the best scheme
developed by the GA. As the GA starts with a set of random schemes and
evolves better performing solutions based on feedback from the simulation, this
result is not surprising. It should be noted that even with such a simulation
available, human decision makers are unlikely to be able to evaluate thousands
of schemes manually to find the best scheme. Instead, the use of a GA to
automate and optimize this task appears a more reasonable approach.

7.2 Manual Simulations

Another experiment was set up in which subjects played the roles of project
managers making QA resource allocation decisions over the life of a software
project. As project managers, the subjects were required to use the what-if
capabilities of the model to derive "optimal" QA allocation for the project. The
objective function was to minimize the total project cost as measured by the total
effort. The simulation was based on the NASA project and the QA scheme was
the only variable manipulated by the subjects.

The experiment was conducted with 25 graduate students at a U.S.
university. The subjects were master's students in a computer systems
management curriculum, and had an average of 12 years of full time work
experience. The experiment was part of a course on software engineering. The
experiment was conducted on desktop computers with interactive simulation
software system written in Dynamo. All students were given a hands-on
demonstration on the use of the simulation package before the experiment. The
experimental set up had been tested in a variety of contexts to ensure that the
software performed as intended.

The subjects were also given a one-hour tutorial on software project
management, explaining the key principles involved. Further, they had
undergone graduate level work in the area of software engineering. Each subject

www.manaraa.com

62 Software Engineering with Computational Intelligence

was provided a five-page set of written instructions. A pilot was conducted to
ensure that the subjects understood the instructions properly.

The experimental task involved the development of different QA effort
allocation schemes which were used as inputs in simulation runs. At the end of
each run, the simulator provided information on percentage of defects detected,
rework cost, testing cost etc. in addition to assessing the impact on project cost.
The subjects would use this information to revise their QA effort allocation
schemes, and rerun the simulation (with the objective of minimizing the total
development effort) until they are satisfied with the results. No limits were
placed on how many times the simulation can be run by the subjects. Each
subject reported the "optimal" QA scheme and the effort estimate at the
conclusion of the experiment.

7.2.1 Manual Experiment Results

Table 3 summarizes the results from the experiments and the result from the
actual NASA project. The "best" scheme (with minimum total project cost), the
"worst" scheme (with the maximum total project cost) developed by the subjects
as well as summary statistics are presented.

Manual QA Scheme

"Best" scheme
"Worst" scheme

Average
Standard Deviation

Actual project

Total Development
Effort

Table 3. Results from Manual Simulation.

Several factors may explain the superior performance of the subjects
compared to the actual project. In the actual project, the project manager had to
rely only on prior limited experience on similar projects in arriving at a QA
scheme. Subjects in the experiment had the benefit of experimenting with a
variety of QA schemes using the Systems Dynamics simulation and observing
the effect on total project costs. The subjects had conducted an average of eight
trials before arriving at their final solution. The results from the experiment
indicate that using the simulation, a significantly improved solution may be
found. Even the "worst" scheme from the experiment achieved a significantly
lower cost compared to the actual project. The best scheme arrived at during the
experiment would have saved more than 33% of the total project cost. The

www.manaraa.com

Integrating Genetic Algorithms with Systems Dynamics 63

results illustrate the usefulness of the systems dynamics simulation as a DSS in
making policy decisions such as QA effort allocation.

The examination of the QA schemes developed by the subjects in our
simulation experiment suggests that they had used their knowledge of software
engineering principles in lirpiting their search spaces. For instance, most subjects
had developed QA schemes with high level of effort early in the life cycle,
declining to a lower level later in the life cycle - consistent with practices
advocated in software engineering literature. Similarly, no subject had used very
high (over 70%) or very low (less than 10%) levels ofQA effort indicating that
they had considered values outside this range infeasible.

7.3 Comparison with GA results

A comparison of the results from the actual project, the best QA schemes
from the GA, random generation and the manual experiment is presented in
Table 4. Figure 4 graphically shows the corresponding QA schemes.

www.manaraa.com

64

0.45

0.4

~ 0.35
::J
~ 0.3
c
~ 0.25
x
~ 0.2

1
....J

0.15

0.1

0.05

o

Software Engineering with Computational Intelligence

Planned QA Effort
(Percent De-.elopment Person-Days)

-+- Actual Project

-.-Manual

-e-GA

Random

o 50 100

Percent of De-.elopment Phase
Completed

Figure 4. QA Effort Allocation Schemes.

7.3.1 Project Costs

The best scheme developed by the GA outperforms the manual simulation
by about 12 person-days. In addition, the GA developed over 120 solutions that
were better than the best solution produced manually. Also, the GA and the
manual solutions outperformed the best results produced by the random scheme.
The result is significant in that it the actual project costs were nearly 50% more
than that would have been obtained by using any ofthese schemes suggested by
the GA.

www.manaraa.com

Integrating Genetic Algorithms with Systems Dynamics

Source of QA Scheme

Actual Project
Random Scheme

Manual
GA

Total Development
Effort

Table 4. Project Cost under different QA schemes.

7.3.2 Qualitative Evaluation

65

The GA worked with no domain knowledge about the "optimal" shape of the
QA scheme. In contrast, the human subjects possessed superior domain
knowledge. For instance, they tried only schemes with high QA effort in the
early phases, declining to lower levels at the later phases. It is interesting to note
that the solution suggested by the GA also has similar characteristics (see Figure
4). The QA effort starts with a high effort in the early phases, tapering off to a
uniform level during the middle of the project. Also, the QA effort increases
towards the end of the project. This scheme is consistent with research results
[Pressman 200 I] that suggest that

• the cost of not detecting errors injected in the early phases can be very high
and therefore a high QA effort during these phases is likely to have high
pay-off.

• the cost per bug fix during the final stages of the project is very low and
therefore increasing QA effort during these phases is likely to have high pay
off.

The above comparisons suggest that the GA produces a scheme that not only
improves the objective function, but also has desirable characteristics from an
implementation perspective. In summary, the GA enhances the usefulness ofthe
dynamics simulator as a DSS by automating the search for an optimal solution.
Further, it provides the project manager the ability to control the direction ofthe
search (by specifying appropriate fitness functions with penalty or rewards)
based on domain specific knowledge.

The results seem to suggest that the project managers in the DE-A project
used more than QA personnel than necessary throughout the project, possibly
explaining the increased total development costs. It should be noted that a variety
of factors beyond cost considerations may explain their behavior. First, the
project was a critical for the launch of a satellite system by NASA and serious
schedule slippages were not permitted. In fact, all software was required to be
accepted and frozen three months before the launch date. As the deadline
approached, the project managers were under pressure to reduce the chances of

www.manaraa.com

66 Software Engineering with Computational Intelligence

delays by adding more personnel to the QA task, even at the risk of increasing
the total project costs. Also, the management had underestimated the project's
estimated schedule (time for completion) but was not inclined to change this
estimate until very late in the project's lifecycle. Instead, additional workforce
was added to various activities (possibly at more than necessary levels) to meet
this schedule. Such behavior is typical for political reasons [Demarco and
Boehm 1998] suggesting that the optimal schemes may at times not get
implemented for considerations other than project cost.

8. CONCLUSIONS

The GA when used with the system dynamic simulation has proved to be
effective decision support mechanism for arriving at an optimal QA scheme. The
dynamic simulator is similar to a flight simulator for software project
management and provides the ability for project managers to experiment with
decision variables. Such a DSS may help the project manager understand
repercussions of various assumptions and scenarios on critical outcomes of a
project. Further, examination of various solutions may assist in problem
redefinition and the identification of constraints on the solution space. Then, a
GA can be assigned the task of finding the best solution within those constraints.
As Holland advocates in [Holland 1992], the focus of our approach is more on
improvement and less on optimization. The dynamic simulation model combined
with a GA can be a very powerful tool for solving a variety of similar, complex
problems in software project management.

NOTES
In our experiments, the values were set between 10% and 74% as this is
considered an appropriate range for the problem.

REFERENCES
Abdel-Hamid, T. (1988), "The Economics of Software Quality Assurance: A
Simulation-based Case Study," MIS Quarterly, 395-411.
Abdel~Hamid, T. (1993), "Adapting, Correcting, and Perfecting Software Estimates: A
Maintenance Metaphor," IEEE Computer March, 20-29.

Abdel-Hamid, T. and S. E. Madnick (1991), Software Project Management, Prentice
Hall Inc, Englewood Cliffs, NJ.

Basili, V. R. and D. M. Weiss (1985), "Evaluating Software Development by Analysis
of Changes: Some Data from the Software Engineering Laboratory," IEEE Transactions
on Software Engineering II 2, 157-168.
Baskerville, R., L. Levine, J. Pries-Heje, B. Ramesh and S. Slaughter (2001), "How
Internet Software Companies Negotiate Quality," IEEE Computer 345,51-57.

Beasley, D., D. R. Bull and R. R. Marin (1993), "An Overview of Genetic Algorithms:
Part 2, Research Topics," 15 4, 170-181.

www.manaraa.com

Integrating Genetic Algorithms with Systems Dynamics

De-Jong, K. A. (1999), "Evolutionary computation for discovery," Communications of
the ACM42 11,51-53.

Demarco, T. and B. W. Boehm (1998), Controlling Software Projects: Management,
Measurement, and Estimates, Prentice Hall, Englewood Cliffs, NJ.

Dhar, V., D. Chou and F. Provost (2000), "Discovering Interesting Patterns for
Investment Decision Making with GLOWER -- A Genetic Learner Overlaid With
Entropy Reduction," Data Mining and Knowledge Discovery 4 4, 251-280.

Dunn, R. (1994), "Quality Assurance," In Encyclopedia of Software Engineering. J.
Marciniak, Ed., John-Wiley, New York, NY, pp. 941-958.

Dworman, G., S. O. Kimbrough and J. D. Laing (1995), "On Automated Discovery of
Models using Genetic Programming: Bargaining in a three-agent coalition game,"
Journal of Management Information Systems 123,97-125.
Forrest, S. (1993), "Genetic Algorithms: Principles of natural selection applied to
computation," Science 261, 872-878.

Forrest, S. (1996), "Genetic Algorithms," Computing Surveys 28 I, 77-80.

Forrester, 1. W. (1961), Industrial Dynamics, The MIT Press, Cambridge, MA.

Gilb, T. (1988), Principles of Software Engineering, Addison-Wesley, Reading, MA.

Glass, R. L. (1982), Modern Programming Practices: A reportfrom Industry, Prentice
Hall, Englewood Cliffs, NJ.
Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley, Reading, MA.

Goldberg, D. E. (1994), "Genetic and Evolutionary Algorithms Come of Age,"
Communications of the ACM37 3,113-119.

Goldberg, D. E., K. Deb and 1. H. Clark (1992), "Genetic Algorithms, noise, and the
sizing of populations," Complex Systems 6 8, 333-362.

Grefenstette, J. 1. (1986), "Optimization of control parameters for genetic algorithms,"
IEEE Transactions on Systems, Man, and CybernetiCS 16 I, 122--128.

Holland, 1. H. (1992), Adaptation in Natural and Artificial Systems, The MIT Press,
Cambridge, MA.

Holsheimer, M. and A. Siebes (1994), "Data Mining: The Search for Knowledge in
Databases," CS-R9406, CWI, Amsterdam, The Netherlands.

Koza,1. (1994), Genetic Programming II: Automatic discovery of reusable programs,
MIT Press, Cambridge, MA.

Koza, 1. (2000), "Human-Competitive machine intelligence by means of genetic
programming," IEEE Intelligent Systems 15 3,76-878.

Koza, J. R. (1992), Genetic Programming: On The Programming of Computers by
Means of Natural Selection, MIT Press, Cambridge, MA.
Koza, J. R., F. H. Bennett, M. Keane and D. Andre (1999), Genetic Programming III:
Darwinian Invention and Problem Solving, Morgan Kaufmann, San Mateo, CA.

Koza,1. R., D. E. Goldberg and D. B. Fogel, Eds. (1996,LGenetic Programming 1996:
Proceedings of the First Annual Conference. Cambridge, MA, MIT Press.

Levy, S. (J 992), Artificial Life, Vintage Books, New York.

Michalewicz, Z. (1996), Genetic Algorithms + Data Structures = EvolutionPrograms,
Springer-Verlag, New York, NY.

Myers, G. 1. (1976), Software Reliability: Priciples and Practices, John Wiley & Sons,
Inc, New York, NY.
Pressman, R. (2001), Software Engineering: A Practitioner's Approach, Fifth Edition,

67

www.manaraa.com

68 Software Engineering with Computational Intelligence

McGraw Hill, New York, NY.

Schraudolph, N. N. and R. K. Belew (1992), "Dynamic Parameter Encoding for Genetic
Algorithms," Machine Learning 9,9-21.

Schraudolph, N. N. and 1. 1. Grefenstette (1992), "A User's Guide to GAucsd 1.4,"
CS92-249, CSE Department, University of California, San Diego, CA.

Sholtes, R. M. (1994), "Optimizing System Behavior using Genetic Algorithms," In
Proceedings of the International System Dynamics Conference, Boston, MA.,pp. 237-
247

Srinivas, M. and L. M. Patnaik (1994), "Genetic Algorithms: A survey," IEEE
Computer 276, 17-26.

www.manaraa.com

Improved Fault-Prone Detection Analysis of
Software Modules Using an Evolutionary Neural
Network Approach

Robert Hochman I , Taghi M. Khoshgoftaar l , Edward B. Allen2 and John P.
Hudepohl3

I Empirical Software Engineering Lab
Department of Computer Science and Engineering
Florida Atlantic University, Boca Raton, Florida, USA
taghi@cse.fau.edu

2 Department of Computer Science
Mississippi State University
allen@cs.msstate.edu

3Nortel Networks
Research Triangle Park, NC 27709-3478, USA

ABSTRACT
This paper describes an application of genetic algorithms to the evolution of
optimal or near optimal back propagation neural networks for the
classification of fault-prone/not fault-prone software modules to support
decision making On resource allocation. The algorithm treats each network
in a population of neural networks as a potential solution to the optimal
classification problem. Variables governing the learning and other
parameters and network architecture are represented as substrings (genes)
in a machine-level bit string (chromosome). When the neural net population
undergoes simulated evolution using genetic operators - fitness-based
selection, crossover, and mutation - the average performance increases in
successive generations as better-performing neural nets emerge. We found
that, On the same data, the classifications obtained were significantly better
using a uniform crossover operator when compared with our previous work
using traditional one-point crossover. These results are compared with those
from the discriminant analysis statistical approach. The latter approach was
found to be inferior on our data set. It is suggested that evolutionary neural
networks can be used to successfully attack a broad range of data-intensive
software engineering problems, where traditional methods have been used
almost exclusively. Evolutionary enhancements of traditional methods are
also worth considering.

KEYWORDS
Backpropagation, classification, discriminant analysis, fault-prone module,
fitness function, genetic algorithm, neural network, simulated evolution,
software metrics, uniform crossover.

www.manaraa.com

70 Software Engineering with Computational Intelligence

1. INTRODUCTION
Classification brings order to a problem domain and supports systematic

planning and risk-based decision making. Typically, classifying individuals
into groups is based on a set of observed characteristics, such as classifying
software modules as high or low risk [16]. Membership in a particular group
may imply unobserved information about the individual or may indicate or
necessitate a specific treatment of the individual. For example, a high-risk
software module may be "treated" to more rigorous testing.

In our study, the individuals to classify are software modules taken from
a large software development project. Their observed characteristics are
software product metrics. We want to be able to predict, from a vector of
attribute values for a module, which modules merit greater attention by
virtue of being fault-prone. When modules are assigned to mutually
exclusive groups (fault-prone and not fault-prone), personnel for testing and
maintenance can be assigned accordingly. Moreover, some fault-prone
modules identified early in one release may be marked for redesign in the
next release before they lead to the growth of a code base too brittle to
profitably maintain or enhance. The ultimate goal in this informed allocation
of software project resources is to contain costs and maintain schedules with
minimal impact on software quality.

Artificial neural networks [17, 18] and multivariate statistical methods,
such as discriminant analysis [16, 20], have been commonly used to build
computer models which perform this classification process. In discriminant
analysis and other statistical methods, few adjustments in the form of
configurable parameters are available when attempting to optimize the
model. Neural networks, however, offer so many adjustments that optimizing
the model by the trial and error approach is intractable, and in this domain of
software engineering, rules of thumb are not yet validated. Fortunately,
neural networks lend themselves to hybridization with evolutionary
computation methods (general purpose search and optimization algorithms
inspired by biological evolution), which automate global traversals through
the search space of candidate neural networks. Some researchers have
developed genetic algorithms for designing and optimizing neural network
architectures [8, 25].

In previous work [11, 12], we found that significantly better performing
neural networks for detection of fault-prone modules can be obtained using
the classical genetic algorithm than by manual trial and error (as is common
practice), with great savings in time and effort and greater confidence in the
optimality of the results. In the present study, we investigate techniques for
improving and extending genetic algorithms to achieve increased accuracy,

www.manaraa.com

Improved Fault-Prone Detection Analysis o/Software Modules 71

and we compare our results with those from discriminant analysis on the
same data, and the difference in results is tested for statistical significance.

In this paper, the term evolutionary neural network (ENN) will be used
to signify an artificial neural network whose architectural, learning, and
training parameters have been optimized by evolutionary computation,
usually a genetic algorithm (GA). Hence an ENN is the end product of
simulated evolution on ~ population of static competing solutions selected
for superior performance. A similar term is used in a less restricted sense
elsewhere [32].

The following sections cover methods, results and conclusions. In the
next section, we describe the techniques used for preparing data, neural
networks, genetic algorithms, discriminant analysis, and comparing two
proportions for significance. We then present the case study, which classifies
software modules as fault-prone or not. Finally, conclusions and directions
for future research are presented.

2. EXPERIMENTAL METHODS
In this study, we have measurements on a sample of n software

modules, using a set of m software metrics, X j ,j = 1, ... , m . Let X be the

n x m matrix of measurements. The following is a summary of our
methodology [14].

1. Transform the raw data.
a) Standardize measurements to a mean of zero and a variance of

one for each metric.
b) Perform principal components analysis on the standardized

product metrics to produce domain metrics.

2. Prepare data sets.

Because we had data from only one project which did have a sufficiently
large number of modules for meaningful statistical results, we
impartially split the data into training, test, and validation data sets. The
fit data set consists of all modules not in the validation data set.

3. Develop models.
a) Develop a best evolutionary neural network model based on the

training and test data sets.
b) Develop a nonparametric discriminant analysis model based on

the fit data set.

4. Predict the class of each module in the validation data set using the
discriminant model and the best neural network model.

www.manaraa.com

72 Software Engineering with Computational Intelligence

5. Evaluate the accuracy of the models by comparing proportions of
predictions to proportions of actual values, using a test for statistical
significance.

A classification model is evaluated by the portions of modules that are
assigned to the wrong class. Type I misclassifications classify not fault-prone
modules into the fault-prone group. Type II misclassifications classify fault
prone modules into the not fault-prone group. The overall misclassification
rate is all misclassifications divided by the number of modules.

2.1. Data Preparation
To render the data manageable and usable by the neural net program, and

to make the training time tractable, several data preparation steps are
followed.

2.1.1. Standardization

Because software metrics have a variety of units of measure, any
modeling methodology must reconcile the units of measure. We standardize
software metric data, so that the unit of measure becomes one standard
deviation.

Let the population mean of the j'h metric be estimated by the average,

xj , of a set of measurements, xlj , ••• , xnj , and let the population standard

deviation of the j'h metric be estimated by the sample standard deviation,

S j . A standardized metric is defined as

X.-X.
Z. = J J

J
(1)

for all j = 1, ... ,m . Thus, all Z j have a mean of zero and a variance of one.

Let Z be the n x m matrix of standardized measurements where Z ij is an

element, each row corresponds to a module, and each column is a
standardized metric.

2.1.2. Principal components analysis

When there is some degree of correlation among the input variables, as is
usually the case with software metrics, principal components analysis (peA)
enables one to reduce the dimensionality of the input data without significant
loss of information by clarifying the directions of greatest variation in the

www.manaraa.com

Improved Fault-Prone Detection Analysis of Software Modules 73

data set. The resultant gain in speed and ease of training makes the use of
this classic multivariate statistical technique worthwhile.

Software product metrics are often highly correlated with one another,
because they measure related attributes of the software. Principal
components analysis is a technique for transforming multivariate data into
variables that are not correlated, and thus, they result in a more robust model
[31]. When the original data are software metrics, we call the new principal
component variables domain metrics.

Principal components analysis is also a data reduction technique. Given
m product metrics, a stopping rule chooses p« m domain metrics, and
ignores the remaining domain metrics because they have insignificant
variation across the data set [31].

Recall that we have m product measurements on each of n modules.
Principal components analysis performs the following calculations, given an
n x m matrix of standardized metric data, Z [31].

1. Calculate the covariance matrix, :r., of Z .

2. Calculate eigenvalues, A j' and eigenvectors, e j' of :r. , j = 1, ... , m .

3. Reduce the dimensionality of the data. In this study, we chose to explain
at least 95% of the total variance of the original standardized metrics.

Choose the minimum p such that. 2:;=1 Aj / m ~ 0.95.

4. Calculate a standardized transformation matrix, T , where each column
is defined as

e·
t. = ~) for j = 1,. .. , p) A.

)

5. Calculate domain metrics for each module, where

Dj = Ztj

D=ZT

(2)

(3)

(4)

The end result is an n x p matrix of domain metric data, D, where each

domain metric, D j , has a mean of zero and a variance of one. Since they are

orthogonal, the domain metrics are suitable as independent variables.

We used the principal components analysis feature in the SAS statistical
package. Further mathematical details are available in statistics texts [22].

www.manaraa.com

74 Software Engineering with Computational Intelligence

2.1.3. Scaling

The transformed data, D, are further processed with a scaling function
for compatibility with the neural network. Each value, d ij' is thereby

mapped into the closed interval [0, I]. For each dimension of the vector, the

minimum, min j' and the maximum values, max j' of the data set are

determined. For neural network input, inij'

d .. -min.
in .. = _...:..lJ __ --'-l_

lJ •
maxj-mm j

(5)

The not fault-prone class is encoded as class I and the fault-prone class is
encoded as class 2.

2.1.4. Data splitting
We impartially split the data into two sets with similar fault distributions,

one twice the size of the other (or nearly so). For the discriminant analysis
experiments, the larger set is taken to be the fit set and the smaller serves as
the validation set. Similarly, for the neural network experiments, the smaller
of the two becomes the validation set, identical with the validation set in
discriminant analysis work. However, the larger of the two sets is further
split randomly into a training set and a test set.

In our study, the network is trained on one file and run on two other files
of similar data. The files required for the method used here are:

• The training set, from which the independent variables and the actual
class are read and fed through the network to create the weight set for the
model.

• The test set, which is used to monitor the ability to interpolate data while
the model is being developed. It allows one to avoid overfitting.

• The validation set, which is introduced only when the model is finished
to verify its ability to generalize to new data from the same environment.

The test set and the validation set should approximate the distribution of
classes expected to be found in the task environment. The training set,
however, is evenly balanced between fault-prone and not fault-prone patterns
to facilitate training by preventing fixation on the predominant class. All of
the observations in the less numerous class are concatenated with an equal
number pseudorandomly selected from the more numerous class.

www.manaraa.com

Improved Fault-Prone Detection Analysis o/Software Modules 75

2.2. Neural Network
The neural-net classification model for this study is a supervised

learning, multilayer, feedforward backpropagation network. This is a rather
standard form of neural network. It is well suited to modeling complex non
linear functions, including classification functions. A more thorough
treatment is available in many excellent references on various levels [5, 9,
10].

As illustrated in Figure 1, the architecture of this system consists of
connected nodes, or processing units, organized hierarchically into layers,
and, except in the last layer, the units of one layer are fully connected to all
of the nodes in the next forward layer. The connections communicate
weighted real-number values from one unit to another. In the feedforward
neural network paradigm, no connections occur within layers, across layers,
or in the backward direction: connections are made between units in adjacent
layers in only one direction.

In our neural net classifier, the activation states of the output units
represent the degree of membership in each class. The output with the larger
value indicates the predicted class.

in!

im
Qut!

in}
Quiz

inm

Input layer Hidden layer Output layer

Figure 1. Multilayer feedforward neural network.

Each neuron-to-neuron connection has a variable weight quantifying the
connection strength. Let Wij be the connection weight between neurons i

and j . Each input-layer neuron receives its input directly from a single input

www.manaraa.com

76 Software Engineering with Computational Intelligence

variable. Let in j be the value of the input variable for input-layer neuron j .

Then the summed input at a neuron j is given by

{
in j if j is an input - layer neuron

Net. = n
J :L WijOut i - OJ otherwise

i=1

where OJ is the threshold of neuron j having n neural inputs. The

output of neuron j is given by the logistic function

Out - } {
Net.

j - 1/(1 + eP Nelj)

if j an input - layer neuron

otherwise

where fJ adjusts the gain of the function.

(6)

(7)

The network learns by finding a vector of interconnection weights that
minimizes its error on the training data set, a data set having known inputs
and known outputs. After the connection weights have been selected, the
network can predict the outputs for data having known inputs and unknown
outputs. These actions, learning and predicting, occur in the two phases of
neural network activity.

During training on a data set having N observations, a network with
M output layer neurons attempts to find a vector of connection weights, W,
that minimizes

N M

E(W) = :L:L(dpi -Outp;)2
p=1 i=1

where d pi and Out pi are, respectively, the desired and actual output values

of i lh output layer neuron on the plh observation. In our study, M = 2 . In

this study, the neural networks achieve this using a backpropagation learning
algorithm. At the beginning of the training phase, W is a random vector. The

network iterates through the training data adjusting W. Let Wij (n) be the

interconnection strength between neuron i in layer (l - 1) and neuron j in

layer I after the nih iteration through the training data set. The following
relationship adjusts the weights:

Wij(n + 1) = W;j(n) + 170uti6J + a(Wij (n) - Wij (n -1))

www.manaraa.com

Improved Fault-Prone Detection Analysis o/Software Modules 77

where 17 and a set the learning and momentum rates, respectively, and g)

gives the error contribution for neuron j . For the output layer,

g) = (d) -Out)Out/l-Out))

The desired output for the hidden layer neurons is not known. However,
since the error contribution of the hidden layer neurons propagates to the
output layer, backward propagation of error allows estimation of the hidden
layer neuron error contributions,

g) = ("L gkW)k)Out /1- Out))
k

where k is the running index for the neurons in layer (I + 1) .

The algorithm iterates through all of the inputs until the maximum
number of iterations is reached. To facilitate training, the order of
presentation to the net of the training set observations is randomized with
respect to class membership.

In our study, no attention is given to whether the net converges to a
minimum error level. The theoretical justification for this is given by Lin and
Vitter [21] and Blum and Rivest [3], who proved that the training problem
for even the simplest neural networks is NP-complete. In practical terms, a
test for convergence is difficult to precisely define, would greatly increase
running time, and, for the success of the genetic algorithm in our problem
domain, is unnecessary. Furthermore, reducing the training error in a neural
net to zero is not desirable since this often leads to overfitting: it will perform
perfectly on the memorized training set but will not perform well on other
similar sets of new data. The optimizing program needs only to determine for
each net the best classification (on the test set) within the window from 1 to
the specified maximum number of epochs. When the model is incorporated
into an application, new data must have the same dimensionality and scaling
(or lack of scaling), and the activation function and gain parameters for the
neural net must match those of the model (the training parameters used to
build the model - learning parameter, momentum, update method for weight
adjustment - do not matter in the application stage).

2.3. Genetic Algorithm
The genetic algorithm (GA), inspired by natural evolution, is a global

search method which can simplify and automate searches in complex,
multimodal spaces. It was developed and formalized by Holland [13]. It was
further developed and shown to have wide applicability by Goldberg [7].
Schaffer, et al. [30] showed that it could be used to improve the learning
ability of neural networks for simple pattern discrimination on a small data

www.manaraa.com

78 Software Engineering with Computational Intelligence

set. Evolving the weight set for a neural net classifier with the inverted error
as the fitness function has also been studied [27]. Ways of combining GAs
with neural networks to form improved hybrid algorithms constitute a major
research direction. For a good introduction to GAs and an examination of
recent work, see Mitchell [26]. Michalewicz [24] is also an invaluable
pnmer.

GAs can be modified in many nontraditional ways, but they generally
have the following computationally simple steps:

1. Initialize a population of individuals P(O) with random gene values; set

i = O.

2. Evaluate the fitness of each member of P(O) according to specified
criteria.

3. If the terminating condition is satisfied, stop.

4. Select according to fitness members of the current generation P(i) as
parents.

5. Recombine the genes of selected parents (crossover) to get the members
of the next generation P(i + 1) .

6. Mutate some genes in the members of P(i + 1) according to a given
mutation probability.

7. Evaluate the fitness of each member of P(i + 1) ; increment i.

8. Go to 3.

Most importantly, a GA operates on populations. A population provides
a multitude of potential solutions to a problem, and maintains, in effect, a
reservoir of potentially valuable gene combinations. Each individual is a
combination of genes which characterize it or influence its behavior. The
genes occur in a usually fixed-length sequence called a chromosome. In each
generation, each chromosome is assessed by the fitness function for its value
in solving the problem. A chromosome, in this study, is the binary encoding
of the blueprint for a neural net, which demonstrates some performance
value when it is run on the test data. This performance value is determined
by the fitness function.

In the next generation, new solutions are created with crossover and
mutation, which operate on chromosomes. Bitwise mutation was
implemented, where mutation operates on each bit of an offspring
chromosome. After crossover has occurred with a likelihood given by the
crossover rate, each bit is flipped or not with a probability equal to the
mutation rate. Some mutation is needed to maintain the diversity of the gene
pool - the collective genetic information in a population. But this should

www.manaraa.com

Improved Fault-Prone Detection Analysis of Software Modules 79

occur at a low rate. With a high mutation rate, the GA would degenerate to
no better than a random search; any good building blocks developed would
quickly disappear from a highly unstable gene pool.

Crossover is a mean of recombining good genetic building blocks from
the most fit individuals into individuals of the next generation. It provides the
major driving force for progress in the run of a GA, and the crossover rate is
usually set to a high value.

For our prior experiments [11], the traditional one-point crossover was
used. A crossover point in the chromosome is selected randomly. All genes
after that point are swapped in the pair of offspring. For example, let the
parents be 111000 and 000111 (to make it easy to see). If the crossover point
is 3, then the offspring are 111111 and 000000. This crossover operator
suffers from positional bias. The genes at the end of chromosome string will
always be exchanged. Using two crossover points (two-point crossover) or
more (n-point crossover), will overcome this drawback to some extent, but
sequences of adjacent genes are likely to be exchanged in a crossover. While
uniform crossover eliminates positional bias, it is the most disruptive to the
integrity of the chromosome.

Uniform crossover is a generalization of one-point crossover. In one
point crossover, all bits before and including the bit at the crossover point
have probability 0 (no probability) of exchange and all bits after the
crossover point have probability 1 (the probability of certainty). In uniform
crossover, the number of crossover points is the number of bit positions in
the chromosome and each is exchanged with some probability p between 0

and 1. Usually, p is 0.5 (O.S-uniform crossover), but higher values may be
better. Of course, when p is 1, no recombination occurs because crossover
occurs at every point and the offspring are identical to the parents, the first of
the pair to the second parent and the second to the first parent.

Uniform crossover is in some ways analogous to the generalized sets
exploited in fuzzy logic, which extends the 011 set membership of classical
set theory by admitting intermediate values. This analogy suggests another
apparently untried variation of one and two-point crossover, which may be
worth investigating, in which crossover points are selected as usual but bits
after the crossing point are exchanged with a probability intermediate
between 0 and 1.

For the software engineering data, selection of individuals for mating is
done by the fitness proportionate method. If the fitness of a particular
individual a is fa' then the probability of selection for a in a population of

size N is

www.manaraa.com

80 Software Engineering with Computational Intelligence

p = fa
a L:lh

where L:l h is the population fitness, the sum over. all individual

fitnesses. Thus, an individual is selected in proportion to its contribution to
the population fitness.

Tournament selection of size 2 was used in one experiment. In
tournament selection of size n, n individuals are randomly selected from
the population and the individual with highest fitness among these is used in
mating. This selection process is repeated for the number of mates required.

In the fixed population size, generational paradigm used here, while the
population size has not been reached, two individuals are selected as parents
to produce a pair of offspring to replace the parents in the new generation.
Selecting the best individual or the best n individuals to copy without
modification into the next generation, is known as elitist selection. It is
helpful in preventing the degeneration of the gene pool. In our experiments,
elitist selection was used, with n set to 4. When a run of our GA optimizing
program terminates, the four best results are output, thus giving a range of
good choices rather than a single, inflexible answer. Typically, one model
may give somewhat better class 2 performance at the slight expense of class
I, or vice versa. We have two often conflicting objectives: optimizing the
identification rate for each of two classes. So, providing a range of choices to
the user is a rational strategy.

The genetic algorithm, itself, is application independent, but in order for
it to work in a specific application, two problems must be addressed in terms
of the application - the representation problem and the fitness problem. Their
solutions are not always straightforward. The following two subsections will
explain the solutions developed for our problem domain.

2.3.1. Representation problem

At the machine level, an individual in the population is a string of bits
(non-binary alphabets may also be used). To the GA, this string is a
chromosome, and algorithmically, an individual is identical with its
chromosome. The chromosome is a sequence of genes (bit substrings),
whose encoded values (alleles) characterize the individual. How to encode
the essential attributes of an individual in its chromosome is known as the
representation problem. Its solution is application-specific.

Since we want to build high-performance classification nets, the genes
should encode network characteristics that are controlled by parameters
which influence network performance. For the backpropagation algorithm,

www.manaraa.com

Improved Fault-Prone Detection Analysis ofSofiware Modules 81

probably the most important parameters are the number of hidden layers, the
number of units in each layer, the learning rate 17, and the momentum a . To
these, we added the update method (continuous or periodic updating of the
weights during training) and the gain, the factor in the activation function.
For most of these experiments, the number of hidden layers was fixed at one,
since our empirical evidence [11,12] showed no significant advantage in
more than one layer in this domain.

Half of the results below used a chromosome for an individual that was
33 bits in length and had the following gene sequence:

• Number of hidden layers - 2 bits.
(Not used because the number of layers was fixed at 1)

• Number of units in hidden layer (maximum 128) -7 bits.
• The learning rate (range 0 to 1) - 8 bits.
• The momentum (range 0 to 1) - 8 bits.
• Update (continuous or periodic) - 1 bit.
• Gain (range 0 to 1) - 7 bits.

The other half of the results below used & 41 bit-length chromosome. An
extra 8-bit gene was added to encode separate learning rates on the the input
layer to hidden layer error and on the hidden layer to output layer error. As a
consequence, the size of the binary search space was increased by a factor of
256.

Each gene encodes a real-valued or an integer-valued parameter. The
integers are decoded by the GA from their binary number representations
into decimal integers for use by the program. In the case of the number of
hidden layers or the number of units in a hidden layer, the value is
augmented by 1, since a zero value for these variables is not permitted in the
neural net algorithm. Update needs only one bit to represent it in the
chromosome since it is coded as a Boolean variable - continuous or not
continuous (periodic). The genes for the learning rate (17), the momentum
(a), and the gain encode real numbers. Representation of real numbers in a
string of binary values entails some difficulties. In our representation, eight
bit substrings for 17 and a were coded as binary fractions and decoded to
decimal fractions with division by 255. The gain was represented as a seven
bit substring and divided by 127 to obtain a decimal fraction.

A real-number encoding was also developed for comparison tests. In this
representation, the chromosome is an array of real numbers. Each of the
above mentioned parameters is represented by a gene whose value is a real
number between 0 and 1. If, however, the range of permissible values for the
parameter is between 0 and a, the real-number value of the gene is
multiplied by a . If the parameter is Boolean, the value of its gene is tested

www.manaraa.com

82 Software Engineering with Computational Intelligence

to determine whether or not it is less than 0.5. The comparable real-number
chromosome has a length of 6. Crossover for real-number chromosomes can
be implemented in the same way as for binary chromosomes - by swapping
corresponding genes (real numbers rather than binary digits) from the parents
in opposite ways for the two offspring - or the genetic information from the
selected parents can be recombined by taking the mean of the values of
corresponding genes. In this latter case, two parents have just one offspring.
Mutation for a gene with real value a , 0 ~ a ~ 1, is implemented by either
incrementing the gene value by a random percentage of 1- a or, with equal
probability, decrementing by a random percentage of a .

2.3.2. Fitness problem

A fitness function is needed to rank the members of a generation for
selection. What the fitness function actually measures (often not what the
researcher expects it to measure) is maximized. Since what it measures is
dependent on an application-specific decoding of chromosomes, the fitness
function must be specifically designed for the application.

Most work in evolving neural networks has made the complement or
inverse of the error used for weight readjustment the measure of fitness [1,4,
19,25,27]. For our problem, however, the optimization task is complicated
by the fact that minimization of the learning error is not sufficient. The
magnitude of the error does not clearly indicate how successful the net is in
separating classes with different frequencies since an undesirable reduction
in the the accuracy for one class can nevertheless greatly reduce the total
error.

A neural network's degree of success with respect to class separation is
readily determined from the confusion matrix it produces for a data set. For
the two-category problem considered here, this is a 2 x 2 matrix of integers.
The first row contains the number of correctly classified modules of class 1
(not fault-prone) and the number of incorrectly classified modules of class 1.
The second row contains the number of incorrectly classified modules of
class 2 (fault-prone) and the number of correctly classified modules of class
2 in that order. The position of a number in the matrix encodes its semantic
interpretation.

A perfect classification would have zeroes on the minor diagonal and the
total numbers of class 1 and class 2 modules on the major diagonal, as
follows:

[20
0
04 0]

320

www.manaraa.com

Improved Fault-Prone Detection Analysis a/Software Modules 83

Here, 2004 means the total number of class I and 320 the total number
of class 2 patterns (the actual numbers for the validation set used in the
neural network experiments and for discriminant analysis). In the N-
category problem, A is an N x N matrix whose entry Aij (in the ith row,

/h column of A) is the number of times a pattern in class i has been

identified as a member of class j. For our problem, if Nil and N22 denote
the number of correct class 1 and class 2 identifications, respectively, and
NI2 and N21 the number of class 1 patterns identified as class 2 and the
number of class 2 patterns identified as class 1, respectively, then

is the general confusion matrix which is output by a neural net routine for a
set of patterns. This matrix is the input to the fitness function f .

In prior work [11], several different fitness functions were devised,
tested, and evaluated. The fittest of these is the surviving fitness function
used in the present experiments. It is as follows:

PI ~ ~ or P2 ~ P2

PI > ~ & P2 > P2

where PI and P2 are the model's identification rates for class I and class 2

respectively, and ~ and P2 are the corresponding minimum cutoff rates.
When the identification rate for either class is less than or equal to the
minimum cutoff rates for the class the individual is penalized with a fitness
value of 0.1. Otherwise, the fitness value is 0.1 plus the sum of the amounts
by which each class identification rate exceeds its specified minimum rate -

i. e., I:~I (p i - P;). The minimum fitness is 0.1 in order not to exclude the

poorest performers from the gene pool. They have a contribution to make to
the diversity of the gene pool and have a nonzero albeit small chance of
being selected for reproduction. For our experiments, ~ ranged from 0.30 to

0.60, and P2 ranged from 0.72 to 0.75. In many cases, ~ was set to 0.40

and P2 to 0.74. Higher values limit the gene pool but generally produce
higher performing individuals. Other data sets may require different values.

www.manaraa.com

84 Software Engineering with Computational Intelligence

2.3.3. Implementation
The computational complexity of the code for the genetic optimizer (see

Figure 2) is of the order of magnitude of the product of three variables: the
maximum number of generations (G), the population size (P), and the
aggregate complexity (A) - in big Oh notation, O(GP A). The aggregate

complexity A is the complexity of the backpropagation algorithm and its
input. It depends on E, the number of epochs (the amount of training), the
connectivity of the network (which depends largely on the number of layers
as well as the number of units in each layer), and the complexity of the data
the size of the training set, the size of the test set, and the dimensionality of
the pattern space. The connectivity must be summed over the variety of
architectures in each generation and that sum must itself be summed over the
total number of generations. The bit length of the chromosome will also have
an effect. Thus, the running time on our Unix-based workstations for
experiments of modest size (say, G = 30, P = 10, E = 100) was hours.
The code will be most effective when ported to a distributed environment (a
cluster of workstations), or a massively parallel machine, with one processor
allocated for each neural net in the population.

www.manaraa.com

Improved Fault-Prone Detection Analysis of Software Modules

for initial neural net (nn) population
initialize fixed parameters
randomly configure other nn params

end for (initial nn population)
set fitness of best nn to zero
for 1 to maximum number of generations

for 1 to population size
build nn from its parameters
set fitness of nn to zero
for 1 to maxepochs by stepsize

for stepsize epochs train nn
run on test data set
generate the confusion matrix
compute fitness
if fitness > previous fitness of nn
update fitness of nn
if fitness > fitness of best nn

update best nn record
endif (> fitness of best nn)

endif (> previous fitness of nn)
end for (training epochs)

end for (population)
using genetic operators, generate

new population from old population
replace old pop. with new population

end for (generations)
evaluate the best nn on validation data set

Figure 2. Pseudocode for the genetic optimizing program.

85

However, for a single-processor machine, some time-saving strategies
can be exploited. These include running the inner loop for an initial number
of iterations without computing the evaluations and comparisons for the best
neural net. This can usually be done without any sacrifice because there is a
latent, initial formation stage in which the only strategy the net exhibits is to
identify all patterns as belonging to one category. The initial step size for this
study was often set to 30. Another way to save some time is to skip the inner
loop if the offspring neural net has not undergone crossover and mutation
and is a copy of one of the parents. It would also be a copy if it is the result
of elitist selection. In these cases, the fitness is already known (it is the
fitness of the parent), so entering the inner loop is not necessary.

If the training set is sufficiently large and representative, it can often be
reduced by uniformly random selection to half its size without loss of
essential information. The training set initially used was reduced in this way
for the present study - 850 patterns were cut by random selection to 425
patterns. If the stepsize for the inner loop is increased the running time will
be shortened. But in these experiments this feature was little used. Probably,

www.manaraa.com

86 Software Engineering with Computational Intelligence

the possibility of missing good results with stepsize greater than one
becomes negligible only when the number of epochs needed for convergence
is very large.

2.4. Discriminant Analysis
Discriminant analysis is a multivariate statistical modeling technique for

estimating classification. It can determine with some accuracy to what extent
separation into predefined classes is possible for an observation sample with
given metrics. As a tool for making decisions about group membership, it is
available in many modern statistical packages. We use the nonparametric
discriminant analysis tool in the SAS package [29]. We chose the
"nonparametric" form of discriminant analysis because density functions
were unlikely to be normally distributed [14]. Estimated density functions for
two mutually exclusive classes are computed using a normal kernel function
on the vectors of independent variables, Bayesian posterior probabilities of
membership in a particular class, and the a priori probability distributions of
the labeled classes in the fit data set from which the discriminant model is
built [16]. One configurable parameter, a smoothing parameter A, exists for
attempting to minimize classification error over a number of runs with
different A values.

2.4.1. Stepwise discriminant analysis

Recall that our purpose was to classify modules as belonging to either
the not fault-prone group or the fault-prone group. We used stepwise
discriminant analysis model selection at the 5% significance level to choose

the domain metrics, D j , that should be included as independent variables in

the discriminant model [31].

Variables are entered into the model in an iterative manner, based on an
F test from analysis of variance which is recomputed for each change in the
current model. Begin with no variables in the model. Add the variable not
already in the model with the best significance level, as long as its
significance is better than the threshold (5%). Then remove the variable
already in the model with the worst significance level, as long as its
significance is worse than the threshold (5%). Repeat these steps until no
variable can be added to the model. The final result is a subset of

D j , j = 1 " .. , p, that are significantly related to the module class.

2.4.2. Estimating parameters

We applied nonparametric discriminant analysis, a standard statistical
technique, to predict the membership of each module in the not fault-prone

www.manaraa.com

Improved Fault-Prone Detection Analysis o/Software Modules 87

group (G1) or the fault-prone group (G 2)' We defined the selected domain

metrics, Dj' as independent variables, and the group membership was

given. We estimated a discriminant function based on the fit data set [31].

Consider the following notation. Let d i be the vector ofthe i1h module's

independent variables, and let nk be the number of modules in group

G k , k = 1 , 2 . Let S k be the covariance matrix for all samples in G k' and

let IS k I be its determinant. Let fk (d i) be the multivariate probability

density giving the probability that a module, d i' is in G k' and let
" fk (d i I 2) be an approximation of fk (d i)' where 2 is a parameter. From

a Baysian probability viewpoint, let 1l k be the prior probability of

membership in Gk. We choose the prior probability, 1lk' to be the

proportion ofjit modules in Gk •

Since the density functions, fk' are not likely to conform to the normal
distribution, we use nonparametric discriminant analysis. Let 2 be a
smoothing parameter in this context. We select the multivariate normal
kernel on vector u with modes at v. This is the most commonly used
kernel, and has been studied the most mathematically.

Kk(u I v,2) = (21l 22 rnkl2lSkl-lf2

exp((-1/22 2)(U - v)' S;I (u - v)) (8)

Let d kl ,[= 1,'" ,nk be a vector of independent variable values for the

[Ih observation in group Gk • The estimated density function is given by the
multivariate kernel density estimation technique.

(9)

The estimated discriminant function is given by

(10)

This classification rule minimizes the total number of misclassifications [31].

www.manaraa.com

88 Software Engineering with Computational Intelligence

2.5. Comparing Two Proportions For Significance
The following statistical test was used for comparing two proportions

[33].

Let PI = XI I nl and P2 = X 2 I n2 be the estimates of two proportions,

PI and P2' where Xi is a count for a sample of size ni . If we want to test

the hypothesis H 0 : PI = P2' with alternate hypothesis H A : PI > P2 then
A A

Z= PI - P2

pq +pq
nl n2

where

and

q=l-p.

When n l = n2 ' as in our case, then we get the following reductions:

where n is the common sample size, and

- PI + P2 P=
2

Assuming roughly normal distributions for PI and P2' we can determine the
proportion of the normal curve which is greater than or equal to the
computed value of Z. This proportion is the level of significance. It is most
conveniently found in a table of proportions of the normal curve (one-tailed)
by looking up the proportion corresponding to the Z value. If the level of
significance is less than a specified limit (usually 5%), the null hypothesis is
rejected.

3. CASE STUDY
The software engineering data used in this study was derived from a

telecommunications system with about 12 million lines of code written in a
Pascal-like proprietary language. About 7000 modules, all of which have

www.manaraa.com

Improved Fault-Prone Detection Analysis afSoftware Modules 89

undergone some revision since their prior releases, were the source for the
data set. In this context, a module is a set of source files designated as such
by designers.

The source code was measured by a version of the Datrix metric analyzer
[2] customized for the proprietary programming language of the subject
software. The metric data was collected for another purpose, and was
subsequently made available for this study. The nine metrics listed in Table 1
were selected for study from about fifty metrics collected by the metric
analyzer. Selected metrics were limited to those that could be derived from
design and pseudocode documentation and to those with properties suitable
for modeling [6,15]. These metrics can be collected from pseudocode or
source code. They are drawn (at least, theoretically) from call graphs (to
measure the connectivity and interdependency of modules) and control-flow
graphs (to measure the logical complexity of modules).

The control-flow graph terminology, although standard, may require
some explanation here. A vertex of a flow graph (for the design of a
procedural computer program) is a conditional (if-then) or a sequential
declarative (executable) statement, and the transfer of control from one
vertex to another is called an arc (represented graphically as an arrow). A
loop is a control structure having a cycle of control from a vertex (usually
containing a conditional test) back to itself. A control structure embedded
within another control structure (for example, a while loop inside another
while loop) is said to have nesting level 1. Cyclomatic complexity is a widely
known [28] quantitative measure of the logical complexity of a program
[23]. For a control flow graph with one entry and one exit, cyclomatic
complexity is the number of decision nodes plus one. Zuse presents an in
depth study of its properties [34].

For the training and test sets used to build our model, the nine metrics
were matched with the corresponding number of faults reported in the testing
of each module (when applying the completed model in normal use, the
number of faults will not be available). The frequency distribution of faults
was skewed toward the low end - approximately half of the modules had
zero reported faults (50.7%) and a few had many faults. The distinction
between fault-prone and not fault-prone modules is necessarily subjective,
but it ought to be defined to correspond with a practical difference in the
software development environment to which it is applied, for example, the
percentage of modules to which a manager intends or is able to devote extra
attention and resources. In our case, the threshold between these two classes
was placed by software development managers at 3. Thus, modules with less
than three reported faults were considered not fault-prone (86.3%), and
modules with three or more faults were considered fault-prone (13.7%).

www.manaraa.com

90 Software Engineering with Computational Intelligence

Metrics from Call Graph

Unique procedure calls

Total procedure calls

Distinct include files

Metrics from Control Flow Graph

McCabe's cyclomatic complexity

Total loops

Total if-then structures

Total nesting level over all arcs

Total vertices within conditional structures

Total arcs + vertices within loop structures

Table 1. Software metrics used to build classification models.

Given the nine software design metrics, principal components analysis
retained four domains under the stopping rule that we retain components
which account for 95% or more of the total variance. Table 2 shows the
relationship between the original metrics and the domain metrics. Each table
entry is the correlation between the metrics. The largest correlation in each
row is bold.

Metric DJ Dz
Total vertices within
conditional structures 0.884 0.313
Total nesting level 0.853 0.362
Total if-then structures 0.665 0.601
Total procedure calls 0.360 0.853
Unique procedure calls 0.359 0.838
McCabe's CYclomatic complexity 0.617 0.632
Total loops 0.290 0.407
Total arcs + vertices within loops 0.418 0.316
Distinct include files 0.003 0.004
Eigenvalues 2.85 2.69
% Variance 31.67% 29.89%
Cumulative 31.67% 61.56%

Changed Modules

Table 2. Domain Pattern.

D3 D4

0.275 0.009
0.335 0.012
0.374 0.013
0.307 0.005
0.367 0.001
0.416 0.005
0.841 0.046
0.827 0.019
0.030 0.999
0.12 1.00

23.56% 11.11%
85.12% 96.23%

www.manaraa.com

Improved Fault-Prone Detection Analysis of Software Modules 91

We developed evolutionary neural network models according to our
methodology. For each of the classifications of class 2 from 225 correct to
236 correct the best class 1 classifications using ENNs are shown in the
confusion matrices in Table 3. The crossover method is identified in column
1. All of the best results, it should be noted, come from models built with
uniform crossover. For each entry in Table 3, Table 4 presents in the same
order the neural net and GA parameters used to develop the ENN model. The
column "max units" is the maximum number of hidden units to which the
search space was limited. The column "layers" gives the number of units in
the input, hidden, and output layers. The column marked TJ2 is the learning
rate for connections between the input layer and the hidden layer; the one
marked TJ, the learning rate for connections between the hidden layer and
the output layer. Those marked a , "pop", "gen", "Xover", and "mut." are,
respectively, the momentum, the population size, the maximum number of
generations, the crossover rate, and the mutation rate. In half of these
models, the chromosome length was 33, using the representation scheme of
prior work [12] - the maximum units was 128 and TJ2 was fixed at 0.5. In

one of these, a was fixed at 1.0. For all of these models except one, the
selection method was fitness proportionate. Tournament selection of size 2
was used to build the model represented by the fifth table entry. The other
half of the models used a chromosome length of 41 bits.

The stepwise model selection process found the first three domain
metrics significant at the 5% significance level, but not D 4 , and therefore,

the inputs to the discriminant model were D1 , D2 , and D3 .

The discriminant procedure used the fit data set to estimate the
" " multivariate density functions, J; ,/2' and thus, the discriminant function

per Equation (lO). We empirically determined the kernel density estimation
smoothing parameter to be A = 0.005. The discriminant function was then
used to classify each module in the validation data set.

The best classification results obtained using evolutionary neural nets
and discriminant analysis are shown in Table 5. To simulate subsystem
performance, results were also obtained on randomly created subsets of the
validation data.

It is fair to say that, in any large data collection process, some of the data
will be noise - erroneous data. If we assume that the noise in the data set is
sparse and not uniformly distributed, it is likely that proper subsets of the
data have less noise. These plausible assumptions may help to explain the
better performance of the neural net seen in Table 5. Neural nets, because of
the distributed nature of their computation, are tolerant of training noise but

www.manaraa.com

92 Software Engineering with Computational Intelligence

perform better when noise is reduced in the task environment. A statistical
model, however, can be expected to be accurate only to the extent that the
random sample data on which it is built is representative of the population.
Therefore, a statistical model built with data containing substantial noise
should show no significant improvement in performance tests when the noise
is reduced and the probability distribution of the data is altered. This inherent
difference in the ability to handle noise may be an explanation for the
indisputable difference in performance. The increasingly better neural net
results for overall classification on progressively smaller subsets (Table 5)
appear to strongly support this hypothesis.

In Table 6 the errors (as real numbers rather than percentages) on class 1,
class 2, and overall for each approach on the full set and the random subsets
of Table 5 are compared for level of statistical significance. Our null
hypothesis is H 0 : PI = P2 and the alternate hypothesis is H A : PI > P2 '

where PI and P2 are the error proportions to be compared for the
discriminant analysis and ENN approaches, respectively. The superior
performance of ENNs on the full set is most significant on class 2 error and
on overall error because, when the discriminant analysis results approach the
ENN results on class 1 error, the models diverge considerably in
performance on class 2 error.

Real number encoding of the chromosome did not produce significantly
better classification results than binary encoding. The results were similar in
extensive trials of the two representation schemes - on our data, for our
problem, for our real number implementation.

www.manaraa.com

Improved Fault-Prone Detection Analysis of Software Modules 93

Type of Count confusion Percent confusion [% right % wrong]
crossover matrix matrix

0.8-uniform [1489
84

515]
236

[74.30
26.25

25.70]
73.75

[74.23 25.77]

0.8-uniform [1485
85

509]
235

[74.60
26.56

25.40]
73.44

[74.44 25.56]

O.5-uniform [1500
86

504]
234

[74.85
26.88

25.15]
73.12

[74.61 25.69]

0.8-uniform [1506
87

498]
233

[75.15
27.19

24.85]
72.81

[74.83 25.17]

O.5-uniform [1521
88

483]
232

[75.90
27.50

24.10]
72.50

[75.43 24.57]

0.8-uniform [1503
89

501]
231

[74.61
27.81

23.39]
72.19

[74.61 25.39]

0.8-uniform [1525
90

479]
230

[76.10
28.12

23.90]
71.88

[75.52 24.48]

O.5-uniform [1524
91

488]
229

[76.05
28.44

23.95]
71.56

[75.43 24.57]

0.8-uniform [1528
92

480]
228

[76.25
28.75

23.75]
71.25

[75.56 24.44]

O.5-uniform [1540
93

464]
227

[76.85
29.06

23.15]
70.94

[76.03 23.97]

0.8-uniform [1551
94

453]
226

[77.40
29.38

22.60]
70.62

[76.46 23.54]

[1566 438] 0.5-uniform
95 225

[78.14
26.69

21.86]
70.31

[77.07 22.93]

Table 3. The Best ENN Classifications.

www.manaraa.com

N
eu

ra
l n

et
 p

ar
am

et
er

s

ep
oc

hs
 I p

op

G
en

et
ic

 p
ar

am
et

er
s

M
ax

L

ay
er

s
ga

m

17
17

2
a

G
en

X

ov
er

M

ut
.

U
ni

ts

12

4
6

2
.0

.3
54

33
1

0.
01

56
86

0.

38
43

14

0.
68

23
53

85

24

2

4

0.
90

0.

09

9
4

6
2

0.
22

04
72

0.

09
01

96

0.
13

72
55

0.

70
19

61

56

16

20

0.
90

0.

09

12

4
9

2
0.

00
78

74

0.
30

19
61

0.

85
09

80

0.
83

52
94

40

16

3

0.
90

0.

09

12
8

4
2

2
0.

63
77

95

0.
26

66
67

0.

50
00

00

1.
00

00
00

36

16

20

0.

95

0.
09

12
8

4
92

2

0.
53

54
43

0.

04
72

44

0.
50

00
00

0.

53
54

33

64

16

20

0.
90

0.

09

12

4
8

2
0.

08
66

14

0.
12

54
90

0.

83
92

16

0.
54

50
98

51

24

24

0.

90

0.
09

12
8

4
94

2

0.
80

00
00

0.

03
13

73

0.
50

00
00

0.

53
33

33

66

16

20

0.
90

0.

09

12
8

4
53

2

0.
38

58
37

0.

07
84

31

0.
50

00
00

0.

59
60

78

45

10

10

0.
90

0.

09

10

4
2

2
0.

06
29

92

0.
21

17
65

0.

50
00

00

0.
56

47
06

48

16

20

0.

90

0.
09

12

4
6

2
0.

03
93

70

0.
81

17
65

0.

18
43

14

0.
70

19
61

5

4

16

3
0.

90

0.
09

12
8

4
5

9

2
0.

17
32

38

0.
14

11
76

0.

50
00

00

0.
65

49
02

43

12

10

0.

90

0.
09

12
8

4
12

2
2

0.
07

08
76

0.

50
19

61

0.
50

00
00

0.

61
17

65

54

16

2
0

0.

90

0.
09

T
ab

le
 4

. N
N

 a
nd

 G
A

 p
ar

am
et

er
s

fo
r

be
st

 E
N

N
 m

od
el

s.

www.manaraa.com

Integrating Genetic Algorithms with Systems Dynamics 95

Number Counting Percent confusion [% right % wrong]
of cases confusion matrix

matrix

The evolutionary neural network results

[1521 483] [75.90 24.10] [75.43 24.57] 2324
88 232 27.50 72.50

[776 227] [77.37 22.63] [77.11 22.89] 1162
39 120 24.53 75.47

[395 112] [77.91 22.09] [77.45 22.55] 581
19 55 25.68 74.32

[1~1 53] [78.28 21.72] [79.31 20.69] 290
39 15.22 84.78

[1~2 22] [82.26 17.74] [82.07 17.93] 145
17 19.05 80.95

The discriminant analysis results

[1444 560] [72.06 27.94] [70.48 29.52] 2324
126 194 39.38 60.62

[750 253] [74.78 25.22] [73.24 26.76] 1162
58 101 36.48 63.52

581 [362 145]
29 45

[71.40
39.19

28.60]
60.81

[70.05 29.95]

[188 56] [77.05 22.95] [75.17 24.83] 290
16 30 34.78 65.22

[92 32] [74.19 25.81] [70.34 29.66] 145
11 10 52.38 47.62

Table 5. The experimental results.

www.manaraa.com

96 Software Engineering with Computational Intelligence

set no. class DA error ENN error no. of cases significance

1 0.2794 0.2410 2004 0.0028

2 0.2522 0.2423 1003 0.3050

3 0.2860 0.2158 507 0.0049

4 0.2295 0.2213 244 0.4129

5 0.2581 0.2283 124 0.2912

1 2 0.3938 0.2750 320 0.0007

2 2 0.3648 0.2830 159 0.0594

3 2 0.3919 0.2500 74 0.0322

4 2 0.3478 0.2391 46 0.1271

5 2 0.5238 0.1667 21 0.0075

overall 0.2952 0.2457 2324 0.0001

2 overall 0.2676 0.2478 1162 0.1379

3 overall 0.2995 0.2203 581 0.0010

4 overall 0.2483 0.2241 290 0.2451

5 overall 0.2965 0.2207 145 0.0708

Table 6. Significance tests for discriminant analysis and ENNs.

4. CONCLUSIONS AND FUTURE DIRECTIONS
Clearly, the discriminant analysis model did not outperform the ENN

model on the data sets of the present study. The discriminant model is
limited by one degree of freedom (the smoothing parameter) for adjustment
in the range of results. The ENN model, however, has numerous degrees of
freedom including, but not limited to, the population size, the number of
generations, the crossover rate, the mutation rate, and the minimum
acceptance rates in the fitness function. Ultimately, the comparison is
between a deterministic statistical algorithm and a directed stochastic one.
The latter has the advantage of adaptability.

The results shown in Table 3, for which uniform crossover was used, are
all improvements over those published previously [11]. For example, the best
previous class 1 identification for 232 correct identifications was 1499. The
best corresponding result in this study is 15.21. These results establish the
suitability of ENNs as a software engineering tool.

While our earlier work dealt with the curse of parametrization in
designing neural nets, the present work has explored the blessings of higher
level parametrization for optimizing the design of neural nets.

www.manaraa.com

Integrating Genetic Algorithms with Systems Dynamics 97

Neural net design requires decisions about the number of layers, the
number of hidden units, the learning parameter, the momentum, the update
method, the transfer function, to name a few. All of these make the search
space for the optimum neural network very large, making the search by
manual control intractable. When this is left to a genetic algorithm, the
search is automated. The solutions it produces may well be satisfactory for
many managerial purposes.

In the training and test data, the accuracy of the number offaults depends
on consistent human reporting practices. The fault reports are imperfect in
that it is unclear to what extent standardized fault definitions were
consistently applied. For example, two reported faults may be caused by the
same piece of code. The accuracy of the metrics data depends on the
correctness of the metrics analyzer software and the consistency between
versions. Since only synthetic software engineering problems come with
perfect data, there is a need for real-world methods of learning from
imperfect data (noisy or incomplete or inconsistent data). The results
obtained show what is possible using ENNs - even with imperfect data.

In the software engineering data set, the data are partly human-supplied,
partly automatically generated discrete variables characterizing objects
which are human-contrived logical constructs. These discrete quantities are
linked to fault counts which are used to partition the data set to accord with
two interval classes separated by a threshold which are given names which
are made to imply quality. It may be the case that the employed software
metrics insufficiently characterize the two classes to be identified. A set
including additional product metrics may improve the model. Pooling
product, process, and resource metrics may lead to a better characterization
and a model with greater predictive accuracy. Using number of code lines
added or deleted from a module may produce more accurate data than the
number of faults found. These are important areas for future investigation.

The evolutionary neural network approach appears promising for a broad
range of software engineering problems where historical data are available.
With the accumulating mass of information on past software development
projects, it becomes possible to develop evolutionary data mining techniques
to draw latent lessons from it all. Although genetic algorithms and other
evolutionary computation methods have been little used in most software
engineering domains, the rapidly growing records of success in other fields
should be noted for the examples they provide.

Future work may include comparison of evolutionary neural networks to
other machine-learning classification approaches. This classification
technique could also be compared to a prediction technique combined with a
simple decision rule. One would also do well to compare any machine
learning approach with human parameter choices. Finally, future work may

www.manaraa.com

98 Software Engineering with Computational Intelligence

also include validation of the practical usefulness of the approach III an
industrial software development setting.

ACKNOWLEDGMENTS
We thank Stephen J. Aud and Jean Mayrand for collecting the data used

in this research. We are indebted to Donald R. Tveter for the original form of
the neural net code which became the kernel of our program. We also thank
the anonymous reviewers for their helpful comments and suggestions. This
work was supported in part by a grant from Nortel Networks to Florida
Atlantic University. The findings and opinions in this paper belong solely to
the authors, and are not necessarily those of the sponsor. Moreover, our
results do not in any way reflect on the quality of the sponsor's software
products.

REFERENCES
[I] N. Baba, H. Handa, and M. Hayashi. Utilization of neural networks and GAs for

constructing an intelligent decision support system to deal stocks. In S. K. Rogers
and D. W. Ruck, editors, Applications and Science of ArtifiCial Neural Networks
II, volume 2760 of Proceedings ojSPIE, pages 164-174, Orlando, FL, Apr. 1996.
SPIE-International Society for Optical Engineering.

[2] Bell Canada. Datrix Metric Reference Manual. Montreal, Quebec, Canada,
version 4.0 edition, May 2000. For Datrix version 3.6.9.

[3] A. L. Blum, and R. L. Rivest. Training a 3-node neural network is NP-complete.
Neural Networks 5:117-127,1992.

[4] D. 1. Chalmers. The evolution oflearning: An experiment in genetic
connectionism. In D. S. Touretsky, 1. L. Elman, T. 1. Sejnowski, and G. E.
Hinton, eds., Proceedings of the 1990 Connectionist Models Summer School,
Morgan Kaufmann, 1990.

[5] L. Fausett. Fundamentals of Neural Networks: Architectures, Algorithms, and
Applications. Prentice Hall, Englewood Cliffs, New Jersy, 1994.

[6] N. E. Fenton and S. L. Pfleeger. Software Metrics: A Rigorous and Practical
Approach. International Thomson Computer Press, London, 1997.

[7] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, Reading, Massachusetts, 1989.

[8] S. A. Harp, T. Samad, and A. Guha. Towards the genetic synthesis of neural
networks. In Proceedings of the Third International Conference on Genetic
Algorithms (ICGA-89) San Mateo, California, pages 360-369. Morgan
Kaufmann, 1989.

[9] R. Hecht-Nielsen. Neurocomputing. Addison-Wesley, Reading, Massachusetts,
1991.

[10] 1. Hertz, A. Krogh, and R. G. Palmer. Introduction to the Theory of Neural
Computation. Addison-Wesley, Reading, Massachusetts, 1991.

www.manaraa.com

Integrating Genetic Algorithms with Systems Dynamics

[11] R. Hochman, T. M. Khoshgoftaar, E. B. Allen, and J. P. Hudepohl. Using the
genetic algorithm to build optimal neural networks for fault-prone module
detection. In Proceedings: The Seventh International Symposium on Software
Reliability Engineering, White Plains, New York, pages 152-162, IEEE
Computer Society, Oct. 1996.

[12] R. Hochman, T. M. Khoshgoftaar, E. B. Allen, and J. P. Hudepohl. Evolutionary
neural networks: A robust approach to software reliability. for fault-prone
module detection. In Proceedings: The Eighth International Symposium on
Software Reliability Engineering, Albuquerque, New Mexico, pages 13-26, IEEE
Computer Society, Nov. 1997.

[13] J. H. Holland. Adaptation in Natural and Artificial Systems University of
Michigan Press, Ann Arbor, Michigan, 1975.

[14] T. M. Khoshgoftaar and E. B. Allen. Neural networks for software quality
prediction. In W. Pedrycz and J. F. Peters, editors, Computational Intelligence in
Software Engineering, volume 16 of Advances in Fuzzy Systems - Applications
and Theory, pages 33-63. World Scientific, Singapore, 1998.

[15] T. M. Khoshgoftaar, E. B. Allen, J. P. Hudepohl, S. J. Aud, and J. Mayrand.
Selecting software metrics for a large telecommunications system. In
Proceedings of the Fourth Software Engineering Research Forum, pages 221-
229, Boca Raton, Florida, Nov. 1995.

[16] T. M. Khoshgoftaar, E. B. Allen, K. S. Kalaichelvan, and N. Goel. Early quality
prediction: A case study in telecommunications. IEEE Software, 13(1):65-71,
January 1996.

[17] T. M. Khoshgoftaar and D. L. Lanning. A neural network approach for early
detection of program modules having high risk in the maintenance phase. Journal
of Systems and Software, 29(1):85-91, April 1995.

[18] T. M. Khoshgoftaar, D. L. Lanning, and A. S. Pandya. A comparative study of
pattern recognition techniques for quality evaluation of telecommunications
software. IEEE Journal on Selected Areas in Communications, 12(2):279-291,
February 1994.

[19] H. Kitano. Designing neural networks using genetic algorithms with graph
generation system. Complex Systems 4:461-476, 1990.

[20] D. L. Lanning and T. M. Khoshgoftaar. The impact of software enhancement on
software reliability. IEEE Transactions on Reliability 44(4):677-682, Dec. 1995.

[21] J.-H. Lin and J. S. Vitter. Complexity results on learning by neural nets. Machine
Learning 6:211-230, 1991.

[22] B. F. J. Manly. Multivariate Statistical Methods: a Primer, 2nd ed. Chapman &
Hall, London, 1994.

[23] T. J. McCabe. A complexity measure. IEEE Transactions on Software
Engineering, SE-2(4):308-320, Dec. 1976.

[24] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs,
3rd ed. Springer-Verlag, Berlin, 1996.

[25] G. F. Miller, P. M. Todd, and S. U. Hegde. Designing neural networks using
genetic algorithms. In J. D. Schaffer, ed., Proceedings of the Third International
Conference on Genetic Algorithms, San Mateo, California. Morgan Kaufmann,
1989.

[26] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge,
Massachusetts, \'996.

99

www.manaraa.com

100 Software Engineering with Computational Intelligence

[27] D. 1. Montana and L. D. Davis. Training feedforward networks using genetic
algorithms. In Proceedings: 11th International Joint Conference on Artificial
Intelligence. Palo Alto, California, Morgan Kaufinann, 1989.

[28] R. S. Pressman. Software Engineering: A Practitioner's Approach. McGraw-Hill,
New York, 5th edition, 200 I.

[29] SAS Institute. SAS/STAT User's Guide. vol. I, version 6, 4th ed., Carey, North
Carolina, Feb. 1990.

[30] 1. D. Schaffer, R. A. Caruana, and L. J. Eshelman. Using genetic search to
exploit the emergent behavior of neural networks. In S. Forrest (Ed.), Emergent
Computation: Self-Organizing. Collective. and Cooperative Phenomena in
Natural and Artificial Computing Networks, pages 244-248. MIT Press,
Cambridge, Massachusetts, 1991.

[31] G. A. F. Seber. Multivariate Observations. John Wiley, New York, 1984.

[32] X. Yao. A review of evolutionary artificial neural networks. International
Journal o/Neural Systems 8(4):539-567,1993.

[33] J. H. Zar. Biostatistical Analysis, 2nd ed. Prentice Hall, Englewood Cliffs, New
Jersy, 1984.

[34] H. Zuse. Software Complexity: Measures and Methods. deGuryter, Berlin, 1991.

www.manaraa.com

A Fuzzy Model and the AdeQuaS Fuzzy Tool: a
theoretical and a practical view of the Software
Quality Evaluation

Kelly R. Oliveiral and Arnaldo D. Belchior2

Mestrado em Informatica Aplicada
Universidade de Fortaleza
Av. Washington Soares 1321, Fortaleza, CE 60.811-341, Brazil
J kellyr@tutopia.com.br
2 belchior@unifor.br

ABSTRACT

This work introduces the Fuzzy Model for Software Quality Evaluation and
its implementation the AdeQuaS Fuzzy tool. The model proposed here
comprises a five-stage evaluation process, and it may involve three distinct
situations. In the first situation, the evaluation objective is to establish a
quality standard for the software product or application domain in question.
In the second one, the quality evaluation of a software product is executed,
based upon a pre-defined quality standard. In the third, a quality estimation
of a software product is found when there is not quality standard available.
The AdeQuaS Fuzzy tool, which is based on the Fuzzy Model, has the
objective of supporting the stages of software evaluation process, in order to
get more effective results about the quality degree of subjective attributes
through the judgment of a group of specialists. Besides, it is presented two
applications. The first is the evaluation process to e-commerce websites
quality. The second is an evaluation of software requirements specifications
quality.

KEYWORDS
Software quality evaluation, Software Quality Measures, Quality Evaluation
Model, Quality Evaluation Tool, Fuzzy Theory.

1. INTRODUCTION

Software evaluation structures aim primarily to estimate software quality
using basic attributes set to underline its main features. The information
about the object under analysis must be arranged orderly, so that specific
software characteristics can be readily identified to optimize the decision
making process [Boloix 1995]. The decision-making process can be seen as
the selection of alternatives that are "good enough", or the choice of action
courses so as to attain a certain goal. This process involves uncertainties

www.manaraa.com

102 Software Engineering with Computational Intelligence

and, thus, it is necessary that we have the ability to handle imprecise, vague
information, taking into account different views, attitudes and beliefs of the
involved parts [Ribeiro 1996]. Therefore, it is important to establish the
connection between the information and the decision made by a certain
individual, who is expected to choose one of many possible actions, in
different areas [Simonelli 1996].

Since the decision-making process is centered in human beings, as well
as the software evaluation in itself, we find inherent subjectivities and
inconsistencies in the problem definition. Thus, fuzzy sets are potentially
adequate to deal with this problem, since [Ibrahim and Ayyub 1992]: (i) they
are capable of representing attributes, (ii) they have convenient ways to
combine the attributes that can be defined, vaguely or precisely, and (iii)
they can handle different degrees of importance for each attribute
considered.

Just like many others areas of human knowledge, the software quality
evaluation involves the appreciation of multiples attributes, as judged by a
group of specialists. Each specialist has his or her own opinion and estimates
a rank for each attribute, according to either to his or her perception or to the
depth of his or her understanding of the problem. Thus, there is a great
interest on obtaining an aggregation process, which can consolidate the
consensus among the specialists involved in the analysis.

In the process of software quality evaluation, it is not sufficient to
identify the attributes that are determinant for the quality. It is also important
to determine the procedures that one must follow to control the development
process and attain the desired quality level. This is accomplished through the
application of some metrics, in an organized and well-planned way, which
makes the developers more conscious of both the relevance of management
and the commitment with a quality standard.

A model for quality evaluation must support the use of software quality
metrics [Fenton and Pfleeger 1997; Kitchenham et al. 1996; Moller 1993,
Schneidewind 1992], so that we can conveniently achieve our goals. In this
work, we will present the Fuzzy Model for Software Quality Evaluation
(FMSQE) [Belchior 1997] to evaluate the software quality, because it has
already been satisfactorily and efficiently used in several applications
[Albuquerque 2001; Branco Jr. and Belchior 2001; Campos et al. 1998]. Its
use will be done through the AdeQuaS Fuzzy tool, which adds much
functionality in an evaluation process.

This paper is organized in five sections. Section 2 gives the general
vision of the process of software quality evaluation, focusing the quality

www.manaraa.com

A Fuzzy Model and the AdeQuaS Fuzzy Tool 103

model and metrics use. The section 3 presents how the Fuzzy Theory can be
used in software quality. Moreover, the FMSQE is described through its
stages. The fourth section presents the ADEQUAS tool. In addition, two
evaluation results are showed: e-commerce websites quality and software
requirements specifications. Finally, in section 5, the conclusions are drawn.

2. SOFTWARE QUALITY EVALUATION

The quality requirements specification is one of the arduous stages of an
evaluation process [Boehm and Hoh 1996; Rocha et al. 2001]. Its result is
the model quality that will be used in the evaluation. The quality model
corresponds to a relevant attributes set of a certain product that has to be
adequately adapted to the evaluation context [Pfleeger 1998; Pressman
2000].

A general quality model is proposed by ISO/lEe 9126-1 [ISO 2001],
which can be applied to any kind of software. It is divided in two parts: (i)
internal quality and external quality, and (ii) quality in use.

For internal quality and external quality, characteristics and
subcharacteristics are described, related to internal operation and its
behavior into an external environment. For quality in use, characteristics are
described, related to operational context in the user's point of view.

The characteristics and subcharacteristics have to be observed under
certain conditions, according to the evaluation purpose. They are:

• Functionality: refers to the presence of functions that satisfy the user's
needs. Includes: suitability, accuracy, interoperability, security and
functionality compliance;

• Reliability: corresponds to maintenance of appropriated performance.
Includes: maturity, fault tolerance, recoverability and reliability
compliance;

• Usability: refers to using, understanding and learning facility. Includes:
understandability, learnability, operability, attractiveness and usability
compliance;

• Efficiency: means a well use of resources with maintenance of
performance. Includes: time behavior, resource utilization and efficiency
compliance;

• Maintainability: refers to the modification and correction facility.
Includes: analyzability, changeability, stability, testability and
maintainability compliance;

www.manaraa.com

104 Software Engineering with Computational Intelligence

• Portability: means the environment change adaptability. Includes:
adaptability, installability, co-existence, replaceability and portability
compliance.

The evaluation process presents the stages that must be followed by the
participants. The ISO/IEe 14598 [ISO 1998] defines the process in four
stages:

• Establishing the evaluation requirements;
• Specifying evaluation;
• Projecting evaluation;
• Executing evaluation.

On the first step, it is necessary to establish the evaluation requirements,
so that the evaluation goals, the object to be evaluated, and the quality model
will be identified.

The next step is to specify the evaluation through metrics definition and
punctuation, as well as its judgment. Each metric has to be carefully
quantified and related to a quality characteristic. The punctuation must be
mapped in a satisfaction scale, that indicates if the software is within the
stated limits between what is acceptable or not.

Next, projecting the evaluation consists of planning the procedures to be
executed by the evaluator, including action methods and time schedule.

By executing the evaluation, the metrics related to the object have to be
collected and, subsequently, compared with a predetermined satisfactory
punctuation.

The Fuzzy Model stands out from other quality models because:

• It includes all the stages of evaluation process, from the definition until
the presentation of results, according to ISO 14598 [ISO 1998];

• It gets the importance degree of the judgment of each specialist,
according to his or her professional and academic profile;

• It shows, in a quantitative way, the imprecise concepts and qualitative
attributes;

• It gets a quality index, which indicates the quality of the software.

In next section, we will give a brief overview of how to Fuzzy Theory
can be applied in software quality evaluations, so as to provide a better
understanding of our work. In addition, the Fuzzy Model for Software
Quality Evaluation is described.

www.manaraa.com

A Fuzzy Model and the AdeQuaS Fuzzy Tool

3. THE FUZZY MODEL FOR SOFTWARE QUALITY
EVALUATION

105

The Fuzzy Set Theory has been used in several areas of human
knowledge as the link between the imprecise (subjective) models of the real
world and their mathematical representations [Araujo 2000; Dubois and
Prade 1980]. In Software Engineering, many applications have been
developed, such as the following measure techniques: f-COCOMO [Idri et
al. 2000; Ryder 1998], Function points [Gray 1997; Lima Jr. et at. 2001],
McCall Method [Pedrycz and Peters 1998] and Delphi Method [Ishikawa et
at. 1993].

The Fuzzy Logic is an extension of the traditional logic that excludes the
dualistic vision of true and false simultaneously exclusive. "In fact, between
the sure of to be and the sure of not to be, there are infinite unsure degrees"
[Sousa 1995]. Starting from this presupposition, between the true (1) and
false (0) are considered infinite values in the interval [0,1] that indicates the
true degree (or membership degree) of a certain set element. For instance, it
can be considered a tones scale of gray between the black and the white.

A fuzzy set is characterized by a membership function, which maps the
elements of a domain, space or discourse universe X for a real number in [0,
1]. Formally, A : X ~[O, 1]. Thus, a fuzzy set is presented as a set of ordered
pairs in which the first element is x E X, and the second, JlACx), is the degree
of membership or the membership function of x in A, which maps x in the
interval [0, 1], or, A = {(x, JlACx)) I x E X} [20]. The membership of an
element within a certain set becomes a question of degree, substituting the
actual dichotomic process imposed by set theory, when this treatment is not
suitable. In extreme cases, the degree of membership is 0, in which case the
element is not a member of the set, or the degree of membership is 1, if the
element is a 100% member of the set [20].

In this theory's view, each quality attribute can be seen as a linguistic
variable, related with a set of linguistic terms, associated with membership
functions, in a reference set previously established. Each quality attribute
will be a composition of linguistic terms, obtained in an evaluation process.

The linguistic terms Ti, for i = 1, 2, ... , n, will be represented by LR
type normal triangular fuzzy numbers Ni (ai, mi, bi) [Bardossy et al. 1993;
Dubois and Prade 1980, 1991; Hapke et al. 1994; Hsu and Chen 1996;
Lasek 1992; Lee 1996a, b; Romer and Kandel 1995; Ruoning and Xiaoyan
1992], which denote the importance degree of each attribute considered. It is
important to remark that ai < hi and ai :$; mi or mi :$; bi. The a and b values
identify, respectively, the inferior and superior limits of the triangle base.

www.manaraa.com

106 Software Engineering with Computational Intelligence

Their membership degree is equals 0 (,uJ(a) = 0 and ,uACb) = 0). The value of
m corresponds to the triangle height, where ,uJ(m) = 1 [Zadeh 1988]. The
value of n can be set to meet the requirements of the project, the peculiar
features of the application domain, or the quality management staff's
requirements.

In the similar way, a trapezoidal fuzzy number can be represented by N
(a, m, n, b). The a and b values identify the lower and upper limits of the
larger base of the trapezoid. The m and n values are, respectively, the lower
and upper limits of the smaller base of the trapezoid [Dubois and Prade
1991].

Each fuzzy number represents an importance degree and uses a linguistic
term as a meaning. For such point of view, based on [Baldwin 1979; Hsu
and Chen 1996; Kacprzyket et a/. 1992; Lee 1996a, b; Palermo and
Rocha 1989], in Table 1 is shown an example of a linguistic terms scale with
four values, which can be used in the quality evaluation of a software
product. Each value can be transfonned to a nonnal triangular fuzzy number
using fuzzification. This scale will be used in this paper as example of fuzzy
model and evaluation tool application, described shortly afterwards.

The set of linguistic terms shown above has the following membership
functions represented in Figure 1, and adapted from Lee [Lee 1996a, b].

Scale

°
2

3

4

Fuzz Number
N = (0.0, 0.0,

1.0)
N = (0.0, 1.0,

2.0)
N = (1.0, 2.0,

3.0)
N = (2.0,3.0,

4.0)
N = (3.0, 4.0,

4.0)

Lin uistic Term
No relevance

Slightly relevant

Relevant

Very relevant

Indispensable

Table 1. Scale Example for Quality Attribute Evaluation using Normal Fuzzy
Numbers.

The FMSQE inherits the fuzzy theory robustness. It actuates as a
mechanism that is able to interpret results and summarize infonnation
through ruled procedures to quality evaluation.

www.manaraa.com

A Fuzzy Model and the AdeQuaS Fuzzy Tool

1.0 r\--""""7'<""---.,..--------,

0.8 \
0.6 \
0.4
0.2
Oi'--t--"------.->.L...---+--:>L----r"~

No Relevance

--- Slightly relevant

--- Relevant

.._ .. Very relevant

--- Indispensable

Figure 1. Membership functions for linguistic terms [Belchior 1997].

107

This model involves many stages of an evaluation process, since the
quality model determination until the assessment execution [ISO 1998].
Besides, it allows getting the consensus degree of a group of specialists,
considering the importance degree of the judgment, based on experience
levels of each one.

Attaining its objectives, the FMSQE, which is described in details in
[Belchior 1997], is defined in five steps. Such objectives may involve three
distinct situations:

• Quality Standard (QS) Determination for software product or
application domain: specialists on a certain product (or an application
domain) determine the importance degree of each attribute, in order to
get a satisfactory quality level of the product. It means that the weight
assigned to each attribute by a specialist has to portrayal how the
product ought to be. Thus, in this case, we are not evaluating a certain
product state, but the ideal quality standard that it should present. In this
context, the "quality standard" can be understood as a guide to quality
evaluation in an specific application domain.

• Evaluation of a software product quality, based on a predefined QS:
each specialist judges the quality attributes set, considering the software
state. The outcome of such appraisal is compared with the specific
predefined QS to the product or the application domain that is being
evaluated. A quality index for each considered attribute is generated,
and thus the measurement of the final product quality is performed. The
indexes mean the percentage that the product attains according to the
quality standard.

• Evaluation of a software product, without predefined QS: the results will
be investigated, taking into account only the specialists' appraisal. This
procedure generates a set of useful data that can be used by the
development staff or by the product quality manager. These data can
help them to carry on the product development or serve as a parameter to
improve a final product.

www.manaraa.com

108 Software Engineering with Computational1ntelligence

The FMSQE, presented in Figure 2, extends the Rocha Model [Rocha
1983] by the fuzzy theory application in order to facilitate the quantification
of qualitative concepts. The main concepts are:

• Quality characteristics: is an attribute set of a software product that
allows describing and evaluating this product. A software quality
characteristic can be detailed in multiple levels of subcharacteristics.
The lowest subcharacteristic level (metric) is called primitive
subcharacteristic and it is susceptible to evaluation.

• Evaluation processes: determines the process and the instruments to be
used, in order to measure the presence degree of a specific metric;

• Metrics: are the product evaluation results, according to primitive
subcharacteristics, through fuzzy linguistic terms, mapped by fuzzy
numbers;

• Aggregated measurements: are the metric aggregation results, gotten
from the evaluation of the primitive subcharacteristics. They are also
primitive subcharacteristics aggregation results into subcharacteristics or
characteristics and into the final quality value of the software product;

• Fuzzy functions: maps the primitive or aggregated quality attributes,
through linguistic terms, quantifying them.

Quantitative Relations Logic Relations

Interpretative
Relations

consist 0
,.-----...z...,

Aggregated

:
....

consist of

consist of

Figure 2. Fuzzy Model for Software Quality Evaluation.

The stages of FMSQE are the following:

www.manaraa.com

A Fuzzy Model and the AdeQuaS Fuzzy Tool 109

First Stage

It consists of the identification of the object to be evaluated, the
considered quality attributes set and the institutions that the product will be
tested.

• Establishing the object to be evaluated: in this stage, it should be
determined which software product will be evaluated. It can be
evaluated intermediary products or the final product

• Defining the quality attributes set: The set of attributes is defined according
to the evaluation's object, the application domain and the development
technology. Its consists of an hierarchical tree of software quality attributes.
Two situations may occur. In the first one, the attributes have already been
defined in previous works. There are several attributes sets based on
scientific [Kacprzyk et al. 1992], financial, educational, medical, specialists
systems, information systems and object-oriented software. In the second
one, the attributes have not been defined yet, and it must be proceeded their
identification. This task can be accomplished through the use of the tool
currently in development;

• Selecting the institution(s) that will support the research: can be (i) just
one institution: when an institution performs its own quality attributes
evaluation of a software product, or (ii) several institutions: when the
data is collected in order to be defined the quality standard of a certain
software product, in a specific application domain.

Example:

• Evaluation object: Software Requirements Specifications (SRS)
• Set of attributes: Clunie [1997] defined the hierarchical tree of software

quality attributes that has three levels: objectives, factors, and
subfactors. There are three objectives distributed in the follow:.

• Representation reliability: 2 factors and 8 subfactors;
• Conceptual reliability: 2 factors and 5 subfactors;
• Utilizability: 4 factors and 12 sub factors.
• Institutions where the survey was applied: 2 companies that has large

experience in SRS elaboration, and 1 university.

Second Stage

It is the choice of the all the specialists who will participate in the
evaluation process.

• Defining the specialists' profile: in this stage, it will be gotten the
specialists' profile [Fenton and Pfleeger 1997], Ei (i = 1,2, ... , n). The
specialists will participate of the investigation process, through the

www.manaraa.com

110 Software Engineering with Computational Intelligence

Specialist Profile Identification Questionnaire (SPIQ), in order to point
out the relative importance of each one. Generally speaking, every
person, either direct or indirectly, who is or has been involved with
products that are similar to the object under analysis, can be chosen as a
specialist. The SPIQ is constituted of n questions (iI, i}, ... , in) which
objective is to evaluate each specialist, involving essentially his or her
experience in system development and his or her training in computer
SCIence;

• Determining the specialist's weight: it should be calculated the relative
importance degree of each specialist, by the weight WEi generation
through SPIQ data and taking into account the following criteria: (i)
each SPIQ contains information about just one specialist, (ii) the total
score of each specialist, tSPIQi' is calculated according to the signs
contained in the SPIQ results [Belchior 1997], and (iii) the weight of
each specialist WEi, which is the his or her relative weight in relation to
the other specialists (weighted mean), is defined as:

tSPIQi
WEi=-------'~

'ItSPIQi
;=1

Example:

First, specialists with experience in SRS are selected. Each specialist
answers the SPIQ with seven questions. The profile of the specialists, Ei,
was calculated through the SPIQ punctuation. Next, the relative weight of
each specialist is calculated in relation of the sum of punctuation of the
others specialists.

Third Stage

It consists of the rank determination of each quality attribute, identified
in the First Stage.

The investigation consists of obtaining from the selected specialists the
rank of each attribute, in order to get the appraisal of each one relatively to
each measurable quality attribute, through the set of linguistic terms
characterized by fuzzy numbers Ni (ai, mi, bi), previously designed.

At this stage, the specialist must have been informed that the
investigation process is in progress either to determine a certain Quality
Standard (QS), or just to evaluate the state of art of a particular software
product. This information is necessary so that the specialist can make his or
her appraisal coherently. This stage comprises the following activities:

www.manaraa.com

A Fuzzy Model and the AdeQuaS Fuzzy Tool 111

• Defining of the investigation procedure: this procedure can consist of
the assembling of a questionnaire or any other investigation device, and
in the definition of the suitable application techniques, using importance
degrees (of the linguistic terms) previously set;

• Applying the investigation device: the specialists, who were selected in
previous stage, evaluate through the investigation device.

Example:

In this stage, the assessment questionnaire (AQ), which consists of a list
of relevant attributes on SRS with their, was elaborated. The AQ consist of
a list of relevant attributes in SRS (obtained in Stage 1) and their possible
answers (linguistic terms associated to fuzzy numbers). After elaboration,
the AQ is distributed among the specialists.

Fourth Stage

It is the moment that occurs the treatment of the data provided by the
specialists in the evaluation of each measurable quality attribute considered
(metric).

The individual prognoses from each specialist for the directly
measurable quality attributes (metrics) are combined, generating a consensus
of the specialists, for each metric evaluated. This consensus is formally
expressed through a characteristic membership fuzzy function N [Hsu and
Chen 1996]:

N=f(Nb N2, ... , Nn)

• Calculating the agreement degree: the agreement degree is calculated
[Hsu and Chen 1996, Chen and Hsy 1993], A(N;, Nj), combining the
appraisals of the specialists, Ei and Ej , through the ratio of the
intersection area to the total area of their membership functions:

_ _ ! (min ¥IN, (x) ,,uN/x)})dx
A(H;,N) = f

(max hi (x),,uN
j
(x)})dx

• Assembling the agreement matrix: after having calculated all the
agreement degrees between each pair of specialists Ei and Ej , an
agreement matrix should be assembled [Zwick et al. 1987], AM, which
indicates the consensus among the specialists:

www.manaraa.com

112 Software Engineering with Computational Intelligence

AI2 Alj Aln
M M M M M

AM= Ail Ai2 Aij Ain
M M M M M

AnI An2 Anj 1

Once the matrix is assembled, it must be observed the following points:

1. If Cij = 0, so there is not intersection between the ith and the jth
specialist. In this case, it is necessary get more information from these
specialists (according to the evaluation's convenience), in order to make
their opinions converge to a point or, in other words, to find an
intersection between them.

2. After having collected the additional information referred to item (i), if
any concordance degree is still zero, it is taken into matrix AM anyway,
because, in the process of aggregation, the values that are equal to zero
(those which point out to a disagreement among the specialists) will be
assigned zero weight.

3. It must be paid attention to cases that there is a great disparity among the
answers (low degree of agreement among the specialists), because it can
mean that they did not understand conveniently the definition of the
object of investigation [Dyer 1992]. In this case, item (i) must be redone,
as many times as necessary to reach a higher consensus among the
specialists.

• Calculating the relative agreement: using the data given by AM, it is
calculated the relative agreement (RAi) of each specialist involved in the
process, through the root quadratic mean of the agreement degree among
them:

1 n
RAi= -L;A2

n -I j=i U
I"'·;

This procedure assures that the RAi determination will tend to higher
indexes of consensus among the specialists in charge of the evaluation;

• Calculating the degree of relative agreement: the relative agreement
degree (RADi) of a specialist, relatively to all the others, is obtained
through the weighted mean of RAi from each specialist:

RA·
RADi=-_In

I. RA·
i=l I

www.manaraa.com

A Fuzzy Model and the AdeQuaS Fuzzy Tool 113

• Calculating the specialists' consensus coefficient: the consensus
coefficient, obtained for each specialist (SCCi) will take into
consideration both the RADi and the weight WEi, of each specialist [Hsu
and Chen 1996]:

RADj . wSj scc; = -n---'---'=--

.'f.(RADj· wSj)
1=1

• Evaluating the metrics quality: the outcome of the evaluation of each
metric quality is given by N, that is also a normal triangular fuzzy
number, where • is the algebraical fuzzy product [Hsu and Chen 1996;
Kaufmann and Gupta 1991]:

n

N= L(SCCieNi)
i=1

Example:

In Table 2 is shown the fuzzy numbers (the specialists choose the
linguistic term associated to these fuzzy numbers) that represent the values
of the factor "Conciseness".

Specialists
Fuzzy Number

N(a,m,b)

(2.00, 3.00, 4.00)
2 (2.00,3.00,4.00)
3 (3.00,4.00,4.00)
4 (3.00,4.00,4.00)
5 (3.00, 4.00, 4.00)
6 (2.00, 3.00, 4.00)
7 (1.00,2.00,3.00)
8 (3.00,4.00,4.00)
9 (2.00,3.00,4.00)
10 (2.00,3.00,4.00)
11 (3.00,4.00,4.00)
12 (2.00, 3.00, 4.00)
13 (3.00,4.00,4.00)
14 (2.00, 3.00, 4.00)
15 (3.00,4.00,4.00)
16 (3.00,4.00,4.00)

Table 2. Fuzzy numbers that the specialists choose in relation to factor
"Conciseness" .

www.manaraa.com

114 Software Engineering with Computational Intelligence

Each element of the agreement matrix is calculated through the
agreement of all the possible pairs of specialists, Ei e EJ> as shown in Table
3.

The relative agreement of the specialist E, is calculated as follow:

The degree of relative agreement of the specialist E,:

0.6501
RADI = = 0.06391

10.1723

The consensus coefficient of specialist E, and of the specialist E'6:

0.06391e 0.0592
SCC! = = 0.0621

0.0610

The metrics quality evaluation is equal the follow result:

N = {0.0621. Nl]+ K + [0.0792. Nl6n

{
[(0.0621 e 2.0)+K +(0.0792e3.0)];}

N = [(0.0621 e 3.0) + K + (0.0792 e 4.0) 1
[(0.0621 e 4.0) + K + (0.0792 e 4.0)]

N = (2.55 ;3.55;3.99)

www.manaraa.com

A Fuzzy Model and the AdeQuaS Fuzzy Tool 115

Agreement Matrix
E/ E/ Ei Ei EJ EI EJ Ei Eg/ EgI Elf! EI/ Eli E13/ EIJ Ell EIJ
E E E E E E E E Ei E E E E E E E E

E/EI 1.0 1.0 0.2 0.2 0.2 1.0
0.1

0.2 1.0 1.0 0.2 1.0 0.2 1.0 0.2 0.2
4

E/E2 1.0 1.0 0.2 0.2 0.2 1.0
0.1

0.2 1.0 1.0 0.2 1.0 0.2 1.0 0.2 0.2
4

E/E3 0.2 0.2 1.0 1.0 1.0 0.2 0.0 1.0 0.2 0.2 1.0 0.2 1.0 0.2 1.0 1.0

E/E4 0.2 0.2 1.0 1.0 1.0 0.2 0.0 1.0 0.2 0.2 1.0 0.2 1.0 0.2 1.0 1.0

E/E5 0.2 0.2 1.0 1.0 0.2 0.2
0.1

1.0 0.2 0.2 1.0 0.2 1.0 0.2 1.0 0.2
4

E/E6 1.0 1.0 0.2 0.2 1.0 1.0 0.0 0.2 1.0 1.0 0.2 1.0 0.2 1.0 0.2 1.0

E/E7
0.1 0.1

0.0 0.0 0.0
0.1

1.0 0.0
0.1

0.14 0.0 0.14 0.0 0.14 0.0 0.0
4 4 4 4

E/Es 0.2 0.2 1.0 1.0 1.0 0.2 0.0 1.0 0.2 0.2 1.0 0.2 1.0 0.2 1.0 1.0

E/E9 1.0 1.0 0.2 0.2 0.2 1.0
0.1

0.2 1.0 1.0 0.2 1.0 0.2 1.0 0.2 0.2
4

E/EIO 1.0 \.0 0.2 0.2 0.2 \.0
0.1

0.2 1.0 1.0 0.2 \.0 0.2 \.0 0.2 0.2
4

E/E11 0.2 0.2 1.0 1.0 1.0 0.2 0.0 1.0 0.2 0.2 \.0 0.2 1.0 0.2 1.0 1.0

E/E12 1.0 1.0 0.2 0.2 0.2 1.0
0.1

0.2 1.0 1.0 0.2 1.0 0.2 1.0 0.2 0.2
4

E/E13 0.2 0.2 1.0 1.0 1.0 0.2 0.0 1.0 0.2 0.2 1.0 0.2 1.0 0.2 1.0 1.0

E/EI4 1.0 1.0 0.2 0.2 0.2 1.0
0.1

0.2 1.0 1.0 0.2 1.0 0.2 1.0 0.2 0.2
4

E/E I5 0.2 0.2 1.0 1.0 1.0 0.2 0.0 1.0 0.2 0.2 1.0 0.2 1.0 0.2 1.0 1.0

E/EI6 0.2 0.2 1.0 1.0 1.0 0.2 0.0 1.0 0.2 0.2 1.0 0.2 1.0 0.2 1.0 1.0

Table 3. Matrix of agreement between the specialists E; e Ej • in relation to factor
"Conciseness" .

Thus, the fuzzy number that represent the factor Conciseness is N=(2.55,
3.55,3.99). The same procedure is executed to all others quality attributes.

Fifth Stage

It consists of the aggregation of the software quality attributes, at each
hierarchical level of the quality model.

At this stage, it is accomplished the aggregation of the quality attributes
of type lV, generating a characteristic membership fuzzy function for each
subset of quality attributes that means the aggregated ones. Each aggregated
attribute evaluated, N, composed of its constituent attributes, NCb Nc2, ... ,
Ncn, will be formally represented as:

www.manaraa.com

116 Software Engineering with Computational Intelligence

N = f(l'iJCl> Ne2, ... , Nen)

e Establishing the quality standard: the establishment of the quality
standard (QS) for a certain software product or a specific application
domain requires the calculation of the weight Wi [Belchior 1997; Liou et
al. 1992]. It means the contribution degree of each attribute comprising
the aggregated attribute evaluated. The weight of each attribute, Wi, is
obtained through the calculation of the weighted mean of the importance
degrees of each constituent attribute, wi, which is calculated by
defuzzying its correspondent fuzzy number Ni (aj, mj, bJ. Therefore:

i. Wi = mj, which corresponds to a membership degree whose
value is equal to 1. This value means the crisp number of the quality
attribute.

11. Wi = Wi I ~Wi
e Calculating the degree of aggregated agreement: we calculate the

agreement degree, A (Ni, Aj) of the quality attributes that are being
aggregated (which are fuzzy numbers lV);

e Assembling the aggregation agreement matrix: once all the Cij of the
attributes of the subset that is being aggregated have been calculated, the
aggregation agreement matrix (AAM) is generated. If Cij = 0, so there is
not intersection between the attributes i and j, and, in this case, the
degree on disagreement is calculated, Cij, among these attributes. This
value must be contained in the interval [-1,0]:

- d
Cij=--er

D

where:

1. d is the shortest distance between two fuzzy numbers considered,
that is, d = aj - bi or d = ai - bj (the smaller absolute value of d).

2. D is the greater distance between the higher and the lower linguistic
term in the set of linguistic terms considered, Nn and NI ,

respectively. Therefore, D = an - b l .

3. The ratio between the areas of the fuzzy numbers Ni, and N.i is r,
where ° < r $; 1. Thus

fe,llNieX»dx feJlNjeX»dx
r = x or

JCJlN;Cx»dx
r = -=:x,--__ _

JCJlNi(X»dx
x x

www.manaraa.com

A Fuzzy Model and the AdeQuaS Fuzzy Tool 117

• Assembling the aggregation matrix: the new aggregation matrix is

assembled, which comprises the values of Cij and C ij, that are the
degrees of the aggregation states, Eij, replacing the matrix AAM;

• Calculating the relative state of aggregation: the relative state of
aggregation (RSA) is obtained, examining the agreement or disagreement
of each attribute that are being aggregated, through the use of two
procedures:

When there are any disagreement degree (c ij) in the AM, it should
initially be calculated the "rsa" for each attribute, through the weighted
mean of the agreement degree and the disagreement degree of that attribute,
along with the others that are being aggregated. Thus, it can be quantified
the extent that the attribute agrees and disagrees relatively to the others, on
the process of aggregation.

1 n
rsai = --L Eli

n -1 j=l
j#-i

This procedure allows us to view the state of each attribute in the
aggregation process. It means how much each attribute contributes in the
composition of the new aggregated attribute. When the value of the "rsa" of
a certain aggregating attribute is non-positive, we can argue whether this
attribute should or should not belong to that branch of the attribute
composition hierarchy of that particular software product. This can be useful
information for the validation of the hierarchical tree of software quality
attributes.

Since the attributes that are being aggregated belong, in fact, to the
hierarchical branch of the quality attribute tree in question, we proceed to
the calculation of the RSA, evaluating the quadratic mean of the aggregation
states degrees, Eij, of their aggregating attributes:

1 n 2
RSAi = - LEi)

n j=l

In this case, the negative degrees (disagreement) are treated and they
influences in the same way as the positive ones. This procedure intends to
produce a compensatory value for each attribute's contribution in the
process of aggregation, through the Fuzzy Model proposed. Thus, preserving
the particular composition characteristics of the attributes that means their
location in the hierarchical tree of quality software attributes, established by

www.manaraa.com

118 Software Engineering with Computational Intelligence

the organization's quality management staff, it should be executed the
process of aggregation.

For example, if a certain software quality attribute comprises two other
attributes having different importance degrees, for a certain product and, if
the importance degree of one of these attributes is low and the other is high,
it means that the percentages of their contributions to the composition of the
aggregated attribute considered are, respectively, low and high. Applying
procedure (U) above, we can obtain a medium importance degree for the
aggregated attribute. Therefore, the aggregated attributed evaluated has a
medium importance degree, and comprises two attributes the importance
degree of which are low and high.

Nevertheless, if, during the analysis of the results, it is realized that the
aggregation process is not be adequate for the product that is being
evaluated, we must justify the reason of the aggregation can not be
accomplished as such, relating just the importance degrees of each attribute
that would be aggregated.
• Calculating the relative state of aggregation: the relative state of

aggregation degree (RSAD) of each aggregated attribute is obtained
through the evaluation of the weighted mean of its constituent attributes:

RSAi
RSADi =--n

I RSAi
i=1

• Calculating the attribute consensus coefficient: the attribute consensus
coefficient (A CCi) , obtained for each attribute that comprises the one
that is being generated, will take into account both the RSAD and the
weight Wi of each attribute. In case it has not still been established a
quality standard (QS) or it was already determined the QS software for
the product that is being evaluated, or for its application domain, we
must consider Wi = 1, that is, ACCi = GRSDi:

RSADi. Wi
Ace = -n----

l:(RSADi. Wi)
i=l

• Evaluating the aggregated attribute: the evaluation result of each
aggregated quality attribute is given by N, which is also a fuzzy number,
where. is the algebraical fuzzy product [Kaufmann and Gupta 1991],
formally written as:

_ n _
N= L(ACCeNi)

i=!

www.manaraa.com

A Fuzzy Model and the AdeQuaS Fuzzy Tool 119

Based on the results obtained from the application of this fuzzy model
in software quality evaluation, we can define quality indexes to guide in
the evaluation of new software products, according to the quality
standard established.

Example:

This stage is very similar to the previous one. In fourth stage, the result
is gotten through the fuzzy numbers that represent the answers of the
specialists. In this stage, the result is obtained, initially, through the
aggregation of fuzzy numbers calculated in fourth stage, and, after, through
the aggregation of fuzzy numbers calculated in each hierarchical level of the
tree of quality attributes.

3.1. Definition of software quality indexes

When there is a quality standard defined for the software product, or its
application domain, we can compare it with the results obtained in the fuzzy
model application. So, we obtain a quality index, that indicates whether the
evaluated software product matches the quality standard or not, as well as
the percentage of that match.

We can determine the quality index of the software product through the
following successive actions:

• Redefinition of the quality attribute characteristic function: we redefine
the fuzzy function of each quality attribute of triangular type Ni (aj, mi,
bi), obtained at the definition of the quality standard, as the quality
standard fuzzy function, Q i (ai, mi, iii i, bi) that is a trapezoidal normal
fuzzy number.

The mapping of Ni to Q i will result in the function Q i (aj, mj, bu, bu),

where n the upper limit of the previously defined referential set. This
mapping is possible because we can consider that any value that is higher
than the quality standard (situated on the right side of the characteristic
function) is also of quality and, consequently, utterly acceptable.

• Calculation of the quality index: the quality index, qk, for each attribute
k that is being evaluated, is given by:

Ix (min {.uQi(X), ,uNk(x)})dx
qk=~--~~~~~~

Ix (pfik(x»dx

Once q E [0.1], when q = 1, it means that the evaluated attribute reaches
the quality pattern; if q = 0, then the evaluated element is not up to the

www.manaraa.com

120 Software Engineering with Computational Intelligence

standard; if 0 ::::;; q ::::;; I, the attribute is found within the limits of the
standard, and it reaches q% of the quality standard.

In the calculation of the quality index for aggregated attributes, if any of
its constituent attributes has q = 1, we consider the value of QS for this
constituent attribute in our calculations.

All this stages are implemented and can be applied using the AdeQuaS
Fuzzy tool, which is described in the following sections.

4. THE ADEQUAS FUZZY TOOL

The AdeQuaS Fuzzy tool is an implementation of the FMSQE that has
the objective of support its evaluation process stages. In order that, it is
comprised of two modules: AdeQuaS-Analyzer and AdeQuaS-Assessor.

The AdeQuaS-Analyzer is the main module, where the most important
quality evaluation activities are executed, such as: (i) defining evaluation
and establishing the purposes, (ii) identifying the evaluation object, (iii)
choosing and recording the specialists, who are the evaluation process
participants, (iv) elaborating specialists profile identification questionnaire
(SPIQ), (v) establishing quahty requirements, through the assessment
questionnaire (AQ) elaboration, and (vi) generating reports with the
attributes aggregation results.

The module AdeQuaS-Assessor has the objective of facilitating the
evaluation research, being used by the specialist. It is complementary to and
dependent on the main module. For that reason, it consists of a viewer of
SPIQ and AQ, which are predefined on module AdeQuaS-Analyzer. Besides,
the specialist could modify or correct his record, if necessary. The tasks,
which can be executed by the evaluator, are: (i) viewing the assessment
information and the object definition, (ii) checking and correcting his own
record data, (iii) answering the SPIQ, and (iv) answering the AQ

4.1. The AdeQuaS Tool

The Figure 3 presents the AdeQuaS tool on the evaluation process,
focusing in the Analyzer module and the Assessor module.

Initially, the evaluation is defined. The AQ elaboration could be
undergone two situations:
• The AQ could be based on a pre-existent quality standard (QS) of an

application domain, which the objective is to confront the evaluation
results with the quality degrees defined in the chosen QS;

www.manaraa.com

A Fuzzy Model and the AdeQuaS Fuzzy Tool 121

• The AQ could be elaborated based on the definition of relevant quality
requirements.

Analyzer module

Assessment <IelllllllO

{"", aluat ion object {""

....... ./
and purpose -H • Evaluat ion

rt' QualilY
all ribute .. Dala

Assessor module I/ eciaiisl choice
Evaluation Data V~\1

• - Spccmh ts ~ SPIQ ans~ring I ~} SPIQ cIa rallon I Data
model I-' AQ an "'ring I I ". I

I

I
I

r. Q elaboral ion I , .. ,
{"", ,

I

'- -' I Assesso r module 2
Consolid:ued Specialist. • Datn I ...

~ Evaluation Data Vte\\1 Data collect

'- .. 1 - Spectah Is ~ SPIQ ans~ring I'" .. Data Analysis Data
{""- Colleled dala 11

AQ ansYA::ring I
""------"" proce ing

'-- Quality
Standards ..
y II

Allribme I
A cssor module n

aggregallon Evaluation Data VJe\\ I {""

Q gener:ltini Speclali IS - I ~ I" + Data SPIQ ons" ring -Results generating
II AQ 3ns ermg 1

Figure 3. The AdeQuaS Fuzzy tool framework.

The characteristics and subcharacteristics contained on ISO/IEe 9126
[ISO 2001] are available in the tool, which can be used. Besides, it can be
also used the quality standard characteristics of many application domains or
other characteristics proposed by the responsible for assessment definition.

After the assessment definition, the modules AdeQuaS-Assessor, jointly
the information derived from the data definition, are distributed among the

www.manaraa.com

122 Software Engineering with Computational Intelligence

specialists. At this moment, they can begin the evaluation. While the
evaluators will be finishing their judgments, the data is sent and
incorporated into the AdeQuaS-Analyzer.

At the end of evaluation collect, the data analysis could be executed
through the data processing and the attribute aggregation. Those are the
stages 4 and 5 of the FMSQE. After that, the evaluation results are finally
concluded.

If the situation consists on importance degrees determination of a
product or an application domain, the quality standard is generated at the
end of the evaluation process. The quality standards will be used as a base to
the next evaluations.

The QS generating provide more functionality, once they can be used to
evaluate a software product with same or similar context. It is easy to
identify because all generated QS are stored into categories that describe
which subject they are about.

All the quality standards are categorized according to certain domain
ontology, into AdeQuaS database. The categorization process is one of the
activities in the beginning of the QS generation, which has the objective to
char,acterize the application domain adequately and in detail. After the
categorization, the following activity is to feed the quality attributes
database. In this case, the AdeQuaS tool allows the partial or total reuse of
each attribute stored in the database. At the end, it offers the options:

• The use of the attributes of software quality, created from ISO/lEe 9126
[ISO 2001], also called of standard hierarchical tree, which is presented
as default;

• The reuse of attributes already stored, which has the same category of
the product to be evaluated. For instance: let's consider that attributes of
website quality and others of educational software are stored in
database. If we intend to evaluate a educational Website, the AdeQuaS
will suggest that the new AQ are created from the aforementioned ones,
jointly with the standard hierarchical tree;

• The reuse of QS, which have some common characteristics, according to
the categorization;

• The reuse of attributes stored, independently of their categorization.

4.2. The AdeQuaS-Analyzer Module

The module AdeQuaS-Analyzer can manage many evaluations at the
same time. Each evaluation must be identified by a name and recorded in a
chosen work directory.

www.manaraa.com

A Fuzzy Model and the AdeQuaS Fuzzy Tool 123

The assessment definition includes: (i) evaluation data, (ii) object to be
evaluated data, (iii) involved specialists record, (iv) SPIQ elaboration, (v)
linguistic terms definition, and (vi) AQ elaboration.

The evaluation data includes assessment process initial date, responsible
and general-purpose specification.

The object data, as shown in Figure 4, includes object name, version and
responsible, as well as important features to the assessment evaluation, such
as:

• Object type: could be specified whether the object is the quality standard
establishment or the software product evaluation. This specification
determines which situation the assessment is involved. In fact, it makes
clear if the context is the Situation 1 (as those described in section 3) of
the FMSQE.

• If it would be chosen the "Software Product" option, it must be filled the
following options in: (i) Software product situation: identifies whether it
will be executed an assessment of an intermediate or a final product, and
(ii) Instrument: determines whether the evaluation will be based on a
predefined quality standard or an assessment questionnaire. It makes
clear whether the context involves the Situation 2 or 3 of the FMSQE.

Figure 4. Object definitions.

Then, the specialists must be chosen. The Figure 5 presents the
specialists record window. Each specialist of the defined group to an
evaluation will receive the AdeQuaS-Assessor in order to proceed with the
judgment.

www.manaraa.com

124

I~I

l~l
]~,

Software Engineering with Computational Intelligence

..

Figure 5. Specialists group choice.

The SPIQ elaboration is built according to a tree format with until two
levels of questions, as instanced in Figure 6. Each item has an associated
score that will be used to calculate the specialist's weight.

Figure 6. Elaboration of the Specialist Profile Identification Questionnaire.

The assessment questionnaire (AQ) consists of the quality requirements
specification, related to the product in question, specified in a hierarchical
way. The Figure 7 shows the record of e-commerce Website quality form,

www.manaraa.com

A Fuzzy Model and the AdeQuaS Fuzzy Tool 125

defined in [Albuquerque 2001], that obeys the hierarchical form of
attributes.

Figure 7. Quality Requirements Specification.

By concluding the evaluation research, the results can be viewed,
through the following options:

• Evaluator profile: views the specialist weight, according to the Stage 2
calculations of the FMSQE;

• Attribute aggregation per level: shows the aggregation results of a
specific level of attributes tree. In this option, the Stage 5 calculations of
the FMSQE are executed until the chosen level.

4.3. The AdeQuaS-Assessor Module

The module AdeQuaS-Assessor was developed to speed the assessment
research. The research could be executed in many institutions, or in just one
institution, with one or more evaluators.

The main objective is collecting the specialists' assessments, even if
they would be geographically distributed, in order to the AdeQuaS-Analyzer
could get the data appropriately.

The AdeQuaS-Assessor is basically a viewer. The assessment definition
will be available to the specialists, in order to fill them in the context. The
information is given as previously shown in Figure 4.

www.manaraa.com

126 Software Engineering with Computational Intelligence

The evaluation is started with the SPIQ fulfilling, which will determine
the importance of the specialists' opinion, based on their experience level.
The SPIQ fulfilling is shown in Figure 8.

Figure 8. The SPIQ fulfilling.

Next, the attributes judgment is executed by the QA fulfilling, viewed in
Figure 9.

o-Je,llol'li
au."loon'1
Ouuhonl
au.t.bOn ,

Ou.,~'D
OtJ.,DOn 11
OlJ.,ltOn 11
Ou.,.on 13
Oueillorl14
~.11Jon'S
Oueauooli
au •• 1tQn17
0u ... 1ICN)1.
au •• lIon "

Figure 9. The AQ fulfilling.

www.manaraa.com

A Fuzzy Model and the AdeQuaS Fuzzy Tool 127

4.4. Case Study

Using the AdeQuaS Fuzzy tool, two evaluation processes was
reproduced. The first was showed in [Belchior 1997] that refers to an
evaluation of Software Requirements Specifications (SRS) . The second was
developed in [Albuquerque 2001], which consists of establishment of a
quality standard to e-commerce websites.

First Stage

They consist of the establishment of quality standards and the objective
of the survey was to obtain from each selected specialist the degree of
importance of each one of the relevant attributes, according to the
application domain.

In the Software Requirements Specifications evaluation, 16 specialists,
from 3 different institutions with a large experience in software
development, participated in the process. On the other hand, the survey of
the e-commerce websites evaluation was developed with 30 specialists.

Second Stage

The SPIQ has seven questions. The specialist's profiles and weights,
which are obtained through the completion of the SPIQ, are presented in
Figure 10 and Figure 11. These weighted values will be used in the
aggregation stages, influencing in the final result of the evaluation. The
values are showed in decreasing order of experience.

www.manaraa.com

128 Software Engineering with Computational Intelligence

un 1":4
s.)I< 1.1"

Speoalltl" U" l.1Y.

SpeO.lltiS \321 1./%

Sp«*r.15 \211 5"

S~I'll ~,., U"
SpKMII,.t3 1l< s.,,,
Speoobfll. UII S.Z%

SP4Qok'll 3,"1 s./"

Sp:«a-"t II 3.'40 s./%

Sp.aehl.t2 J,1l71 S.1"

Speoahst 15 3,"1' 5"

Speaehlt 12], .(~!1 04.,y.

S~aiI.t! '3,'311 '4,7'%

Figure 10. Specialists Profile Result on SRS evaluation.

Third Stage

The complete set of the quality attributes of the SRS is defined in
[Belchior 1997] and of the e-commerce websites in [Albuquerque 2001].
The results are shown until two levels and they are classified as factors and
subfactors. The sub factors are organized inside of the factors. The fuzzy
numbers obtained after the execution of the stages of FMSQE aggregations
are included.

www.manaraa.com

A Fuzzy Model and the AdeQuaS Fuzzy Tool 129

","2 "'tS~ , ..., ,4,«%

(152 -(3"-

~m (2"-

1.1" 1.S%

~ln 35"
(2'~ 11%

(011 UY.

(Gll l.'"
Eltl'llklakH 1 11'/ In.
E""",.,'l vn)<4'. E __ n

11H II"
E_1f JO ..]2%

£,)1)s .. 3.2h E __ 1I

"12 ll%

E:vMI~2 1.11 ll~

Eveh .. ." ll<'i l'.

Figure 11. Specialists Profile Result on the e-commerce websites evaluation.

Fourth and Fifth Stages

The Table 4 presents a subset of quality attributes to Software
Requirements Specifications (SRS) that is related to the objective
"Representation Reliability".

www.manaraa.com

130 Software Engineering with Computational Intelligence

Software Quality Attributes to ERS

Factor: Communicability

Sub factor: Method use correction

Subfactor: Terminology Uniformity

Sub factor: Abstract Level Uniformity

Subfactor: Documentation Modularity

Sub factor: Conciseness

Subfactor: Conformity

Factor: Manipulability

Subfactor: Availability

Sub factor: Traceability

SRS to QS

N = (2.42, 3.42,
3.91)

N= (2.47,3.47,
3.93)

N = (2.66, 3.66,
4.00)

N = (1.55, 2.56,
3.50)

N = (2.30, 3.30,
3.94)

N = (2.54, 3.54,
3.85)

N = (2.43,3.43,
3.99)

N = (2.74, 3.75,
3.98)

N = (2.92,3.93,
4.00)

N = (2.56, 3.56,
3.95)

Table 4. Quality Attribute Evaluation to SRS [Belchior 1997].

In [Belchior 1997], the results of the SRS evaluation were obtained with
statistics methods. They were compared with the results presented by the
tool (Figure 12) and we observed that AdeQuaS got results more precise.

" 1rroWIOd",.CIXr.won (Z.'1 . 1<1.U~ 5.1lncVert~Md 4,il" rndtlpWl

"
T __

(Z." , ~OI) l4..§C% ~"""""'wIU." 1P.di..,..~

I)

-'0Cl __
r 56 tsi .15O) 44.so."" A,t""""'IWICI SoUtH VWftt~ .. ~-... (Z..l • . U~ 1C..""Vf1lY~etld2t.iO"~...,

" Cancu~ •• (l.§4 . U~ . U~) 'CO vety"""""Md!!i"lOO'" lIMItepen.1II:IM

" c-.m.,. (Z.<l .14U.'" S1 " vW;"""""''''''' ~l.OO" WII."e,.

.........-" (Z.74).~ . 1M) KWI<Vooy_ood lUO" Iodi._._
" --- ' 11'. (00) 01 .• " V-.;.....".,.."..U.'" W..,.,....

IZ T_"Y '(2.56 . 156 . lOS) H.2!i"Vflly~~St~"""~

Figure 12. SRS Results View.

www.manaraa.com

A Fuzzy Model and the AdeQuaS Fuzzy Tool 131

It is important to remark that the Availability subfactor was considered
the most important. The result obtained indicates that, in Software
Requirement Specifications, availability is the most relevant attribute. This
tendency confirms the importance that many users could easily handle the
specification in its updated version, through its development process. This
subfactor obtained the defuzzification value of 3.93, which means 7% very
relevant and 93% indispensable [Albuquerque, 2001]. In the same way, the
Table 5 presents a set of quality attribute to e-commerce websites. The
results presented by the tool appear in Figure 13.

E-commerce Websites Quality

Factor: Usability

Sub factor: Efficiency

Subfactor: User friendliness

Subfactor: Navigability
Sub factor: Maintainability

Subfactor: Technology suitability

Sub factor: Reusability

Sub factor: Implementation feasibility

Sub factor: Profitability

Sub factor: Involvement Capacity

Factor: Conceptual Reliability

Sub factor: Functionality

Sub factor: Security

Sub factor: Reliability

Sub factor: Integrity

Subfactor: Trustworthiness

Sub factor: Content adequacy

Factor: Representation Reliability

Sub factor: Readability

Sub factor: Standards conformance

Sub factor: Easy of manipulation

Websites to QS

N = (2.05, 3.05, 3.81)

N= (2.27,3.28,3.87)

N = (1.80, 2.79,3.56)
N = (1.58, 2.58, 3.43)
N = (2.98,3.98,3.81)

N = (2.15, 3.14, 3.88)

N = (2.08,3.08,3.86)
N = (2.12, 3.11, 3.76)

N = (2.08,3.07,3.89)

N = (1.89, 2.89,3.66)

N = (2.23,3.22,3.81)

N = (2.23, 3.22, 3.85)

N = (2.79,3.79,3.97)
N = (2.13.3.13,3.81)

N = (2.24,3.24,3.76)

N = (2.29, 3.29, 3.85)

N = (1.95, 2.95, 3.70)

N = (1.94,2.94,3.71)

N = (2.06,3.06,3.81)

N = (2.99,3.99,3.75)

N = (1.72,2.72,3.53)

Table 5. Quality attribute evaluation to e-commerce websites quality [Albuquerque
2001].

This result portrays the web context, wherein electronic Commerce is
inserted. It is important to remark that the Security subfactor was considered
the most important. The result obtained indicates that, in e-commerce
websites, security is fundamental, especially when it comes to electronic

www.manaraa.com

132 Software Engineering with Computational Intelligence

payments, which cannot be vulnerable to any kind of attack, and when it
comes to the subject of site authentication itself.

The websites that don't pay enough attention to those three items
especially, which are taken as indispensable safety requirements, may not
even be accessed by possible commercial transactions through the Internet,
or may not be accessed later by potential users. This factor obtained the
defuzzification value of 3.79, that is 21.37% very relevant and 78.63%
indispensable [Albuquerque 2001].

~s...y.VefY~ MdkstX~ ___

?t~1"'Yetty"""""",....a2'1.S"'''''patlttoble

IZ Va .. ~,. p ... t." l.SI] n.~?'" At~"'CII7Ul%V~r~

Il - p,. t,. HI) ..z..]lY. Relwwlt Md 5751'" VWYf~ .. "'""-""'fy p." l." 111) It"'" Rtlwent.ntJ ''','t5K V..-y'~
1 S T",,-,_ ctlS 114 111) M.Iir.(Vwy~..-.c:IIt."" bM.,..,.

" - (1. .. . llO 310) n41~ v.ry,..~.,,(11 11,SNC p<tfI4I ...

" -- (t.l:t)n 315) n." v~~"''II:n'''x~,.., • .o&e
II - (2.._,1'111fJ n_II"'\I."..~III'ICII07.)tX;/loIcMpef\"MM

II --c.,....." 'P I! 1" 1") l' . 1Z"~I"""oIfId".XVtty~ """"'-- (1.ZJ '" 111) l'.1"'V~,.~Md'tt2 .. " ~ ...
21 F_ (1.ZJ .U' '''l 1"1''''V.ryrwtr..wltWK:IZ1.''''~.'''
2l - (I." liS '.!1) 21.)1" v~, end 7U)X ~prtI"I.."'"

11 ~ (1.13 113.111) Ii, "" Vwy rwI...,.,. Md I l ,.lIIX hfiIIpMlt:.tM

l' ..,.fy (1.1'U' l1iJ ?il?'" v~r*Yn n :n.11" ~ .. .w.

" T",,~I. (1.1' 11' US) ~71"V«yr-.l"""'end2'tn-"' ~

Ii ec.-ode_ pOS t.OS 119) 1S.4D"..F\tIr...w!cMd!"," v.ry~

1 _.,-,...,.." 0." t.,. 111) Iill"lIo_oods.n",,"Y_ .
3 1 Aood&iooooy (I." 1" lIl) ''''JI,hVety~Md05U''~ ... ' ''''

Figure 13. E-commerce websites quality results view.

This model has been satisfactory used to evaluate others application
domains or software development stages, like:

• Software Project Management Quality Evaluation [Branco Jr. and
Belchior 2001];

• Software Component Quality [Simao 2002].

5. CONCLUSION

The Fuzzy Model for Software Quality Evaluation has some relevant
characteristics, which some of them are considered necessary by Bardossy et
al. [1993]:
1. Agreement preservation: if all estimates are identical, the combined

result will be the common estimate;
2. Order independence: the result does not depend on the order with which

individual opinion or estimate are pooled;

www.manaraa.com

A Fuzzy Model and the AdeQuaS Fuzzy Tool 133

3. Joint influence of degree of concordance and specialist weight: if a
specialist have a small agreement degree the final weight attribute to his
or her opinion will be smaller than the original weight correspondent to
the specialist experience; and

4. Fuzzy number preservation: if all opinions are normal triangular fuzzy
numbers, the aggregation will also be a normal triangular fuzzy number.

Some evaluation problems were minimized by the FMSQE, once it acts
as an instrument to aggregate attributes, to get the evaluators' consensus and
to get the degree that represents quantitatively the software quality level.
Although this model is flexible to be used in many situations, its use requires
a reasonable effort.

The AdeQuaS Fuzzy tool, an evaluation process automation fuzzy tool
based on the FMSQE, makes transparent to the participants most arduous
tasks in the model. Also it brings a greater functionality on FMSQE use,
allowing the use of stored quality characteristics and quality standards.

Besides of a quicker evaluation application and result generation, the
tool makes possible to obtain more accurate and reliable results. The
presented benefits increased the practicability of the process execution,
promoting greater trust in the quality improvement.

The e-commerce websites evaluation, which was executed as an
application of the AdeQuaS Fuzzy tool, allows analyzing the importance of
its relevant characteristics, confirming that the factor Security is one of the
most important characteristics with the best score of the evaluation.

REFERENCES
Albuquerque, A. B. (2001), "Electronic Commerce Web sites Quality". MSc Thesis,
Department of Computer Science, University of Fortaleza, Fortaleze, CEo (in
Portuguese).

Araujo, K. (2000), "Fuzzy Logic: history, concepts and fuzzy model applications",
Develop'ers Magazine, April, 28-33 (in Portuguese).

Baldwin, J. F. (1979), "A new approach to approximate reasoning using a fuzzy logic",
Fuzzy Sets and Systems 2, 309-325.

Bardossy, A., Duckstein. L. and Bogardi, 1. (1993), "Combination offuzzy number
representing expert opinions",. Fuzzy Sets and Systems 57, 173-181.

Belchior, A. D. (1997), "A Fuzzy Model for Software Quality Evaluation", DSc Thesis,
Department of Systems Engineering and Computer Science, Federal University of Rio
de Janeiro, RJ (in Portuguese).

Boehm, B. and Hoh, I. (1996), "IdentifYing Quality Requirements Conflicts",. IEEE
Software, 25-35.

Boloix, G. et.a!. (1995), "A software system evaluation framework", IEEE Software, 17-
26.

www.manaraa.com

134 Software Engineering with Computational Intelligence

Branco Jr., E. C., Belchior, A. C. (200 I), "Management processes of software projects: a
qualitative approach", In VIII Software Quality Workshop, Rio de Janeiro, RJ.

Campos, F. et a!. (1998), "Farming software quality: a user's view", IX International
Conference of Software Technology, Curitiba, PR (in Portuguese).

Chen, C. T., Hsy, H. M. (1993), A study of fuzzy TOPSIS model, Proc. of the Chinese
Institute ofIndustrial Engineers National Conference, in (Hsu, 1996).

Clunie, C. E. (1997) Quality Evaluation of Object-Oriented Specifications. DSc. Thesis,
Department of Systems Engineering and Computer Science, Federal University of Rio
de Janeiro, RJ (in Portuguese).

Dubois, D. and Prade, H. (1980), Fuzzy Sets and Systems: Theory and Applications,
Academic Press, NY.

Dubois, D. and Prade, H. (1991), "Fuzzy sets in approximate reasoning. Part 1:
Inference with possibility distributions", Fuzzy Sets and Systems 40, IFSA, Special
Memorial Volume: 25 years of fuzzy sets, North-Holland, Amsterdam, 143-202.

Dyer, M. (1992), The cleanroom approach to Quality Software Development, John
Wiley & Sons, Inc. NY.

Fenton, N. E. and Pfleeger, S. L. (1997), Software Metrics: a rigorous & practical
approach, Second Edition, PWS Publishing Company, Boston, MA.
Idri, A. et.a!. (2000), "COCOMO - Cost model using fuzzy logic", In 7th International
Conference on Fuzzy Theory & Technology. Atlantic City, NJ.

Gray, A. (1997), "Applications of fuzzy logic to software metric models for
development effort estimation", In Proceedings of the 1997 Annual Meeting of the
North American Fuzzy Information Processing Society. IEEE Computer Society Press,
Syracuse, NY, pp. 394-399.

Hapke, M. et.a!' (1994), "Fuzzy project scheduling system for software development",
Fuzzy Sets and Systems 67,101-117.

Hsu, H. M. and Chen, C. T (1996), "Aggregation offuzzy opinions under group
decision making", Fuzzy Sets and Systems 79, 279-285.

Ibrahim, A. and Ayyub, B. M. (1992), "Multi-criteria ranking of components according
to their priority for inspection", Fuzzy Sets and Systems 48, 1-14.

ISO (2001), ISO/IEC 9126-1, "Software engineering - Product quality - Part I: quality
model".

ISO (1998), ISO/IEC 14598-1, "Information technology - software product evaluation
Part I: general overview".

Ishikawa, A. et.a!. (1993), "The max-min Delphi method and fuzzy Delphi method via
fuzzy integretion", Fuzzy Sets and Systems 55, 241-253.

Kacprzyk, J. et.a!. (1992), "Group decision making and consensus under fuzzy
preference and fuzzy majority", Fuzzy Sets and Systems 49, 21-31.

Kaufmann, A. and Gupta, M. M. (1991), Introduction to Fuzzy Arithmetic: theory and
applications. Van Nostrand Reinhold, NY.

Kitchenham, B. et.a!' (1996), "Software Quality: the elusive target", IEEE Software, 12-
2!.
Lasek, M. (1992), "Hierarchical structures offuzzy ratings in the analysis of strategic
goal of enterprises", Fuzzy Sets and Systems 50, 127-134.
Lee, H. M. (1996a), "Applying fuzzy set theory to evaluate the rate of aggregative risk
in software development", Fuzzy Sets and Systems 79,323-336.

www.manaraa.com

A Fuzzy Model and the AdeQuaS Fuzzy Tool

Lee, H. M. (1996b), "Group decision making using fuzzy theory for evaluating the rate
ofaggregative risk in software development", Fuzzy Sets and Systems 80, 261-271.

Lima Jr. O. S. et.al. (2001), "Maintenance project assessments using fuzzy function
point analysis", Seventh Workshop on Empirical Studies of Software Maintenance,
IEEE Computer Society, Florence, Italy, 114-121.

Liou, T. S., Jiun, M. and WG, J. (1992), "Fuzzy weighted average: an improved
algorithm", Fuzzy Sets and Systems 49, 307-315.

Moller, K. H. (1993), Software metrics: a practitioner's guide to improved product
development, Chapman & Hall Computing, London, England.

Palermo, S. and Rocha, A. R. C (1989), "An experience on evaluating software quality
for high energy physics", Computer Physics Communications.

Pedrycz, W. and Peters, J. F. (1998) "Software Quality Measurement: concepts and
fuzzy neural relational model",
http://neuron.et.ntust.edu.tw/homeworkl89/FLl89homeworklM8709022/3.pdf.

Pfleeger, S. L. (1998) Software Engineering: theory and practice, Prentice Hall, NJ.

Pressman, R. S. (2000), Software engineering: a practitioner's approach. Fifth Edition.
McGraw Hill, NY.

Ribeiro, R. A. (1996), "Fuzzy multiple attribute decision making: a review and new
preference elicitation techniques", Fuzzy Sets and Systems 78,155-181.
Rocha, A. R. C. (1983), "A model for specification quality evaluation", D.Sc. Thesis,
Department of Systems Engineering and Computer Science, Pontifical Catholic
University (PUC), Rio de Janeiro, RJ (in Portuguese).

Rocha, A. R. C. et al. (2001), Software Quality: theory and practice, Prentice Hall, Sao
Paulo, Brazil. (in Portuguese).

Romer, C. and Kandel, A. (1995), "Statistical tests for fuzzy data", Fuzzy Sets and
Systems 72, 1-26.

Ruoning, X. and Xiaoyan, Z. (1992), "Extensions of the analytic hierarchy process in
fuzzy environment", Fuzzy Sets and Systems 52, 251-257.

Ryder, J. (1998) "Fuzzy modeling of software effort prediction.", IEEE Information
Technology Conference, Syracuse, NY, pp 53-56.

Schneidewind, N. F. (1992), "Methodology for validating software metrics", IEEE
Transaction Software Engineering, vol. 18, nO 5, May, 1992, in (Fenton, 1994).

Simao, R. P. S. (2002), "A quality standard to software components", In I Brazilian
Symposium of Software Quality, Gramado, RS, 249-260.

135

Simonelli, M. R. (1996), "On fuzzy interactive knowledge", Fuzzy Sets and Systems 80,
159-165.

Sousa, C. P. (1995) "Fuzzy Logic Introduction".
http://dee.ufe.br/-pimentellica/ica.html. (in Portuguese).

Zadeh, L. A. (1988), "Fuzzy Logic", IEEE Transaction Computer., vol. 21, 83-93.

Zimmermann, H. J. (1996), Fuzzy Set Theory and Its Applications, Third Edition,
Kluwer Academic Publishers, Boston, MA.

Zwick, R., Edward Carlstein and David V. Budescu (1987), "Measures of similarity
among fuzzy concepts: A comparative analysis," International Journal of Approximate
Reasoning 1. 221-242.

www.manaraa.com

Software Quality Prediction Using Bayesian
Networks

Martin Neil', Paul Krause2 and Norman Fenton'

lQueen Mary
University of London and Agena Ltd., UK
martin@dcs.qmul.ac.uk

2 Department of Computing
University of Surrey and Philips Research Laboratories, UK

ABSTRACT
Although a number of approaches have been taken to quality prediction for
software, none have achieved widespread applicability. Our aim here is to
produce a single model to combine the diverse forms of, often causal,
evidence available in software development in a more natural and efficient
way than done previously. We use Bayesian Belief Networks as the
appropriate formalism for representing this evidence. We can use the
subjective judgements of experienced project managers to build the
probability model and use this model to produce forecasts about the software
quality throughout the development life cycle. Moreover, the causal or
influence structure of the model more naturally mirrors the real world
sequence of events and relations than can be achieved with other formalisms.
The paper focuses on the particular model that has been developed for
Philips Consumer Electronics, using expert knowledge from Philips
Research Labs. The model is used especially to predict defect rates at
various testing and operational phases. To make the model usable by
software quality managers we have developed a tool (AID) and have used it
to validate the model on 28 diverse projects from within Philips. In each of
these projects, extensive historical records were available. The results of the
validation are encouraging. In most cases the model provides accurate
predictions of defect rates even on projects whose size was outside the
original scope of the model.

1. INTRODUCTION
Important decisions need to be made during the course of developing

software products. Perhaps the most important of these is the decision when
to release the software product. The consequences of making an ill-judged
decision can be potentially critical for the reputation of a product or its
supplier. Yet, such decisions are often made informally, rather than on the
basis of more objective and accountable criteria.

www.manaraa.com

Software Quality Prediction Using Bayesian Networks 137

Software project and quality managers must juggle a combination of
uncertain factors, such as use of tools, skill and experience level of
personnel, development methods and testing strategies to achieve the
delivery of a quality product to budget and on time. Each of these uncertain
factors influences the introduction, detection and correction of defects at all
stages in the development life cycle from initial requirements to product
delivery.

In order to achieve software quality during development special
emphasis needs to be applied to the following three activities in particular:

• Defect prevention;
• Defect detection;
• Defect correction.

The decision challenge during software development is to apply finite
resources to all of these activities, and based on the division of resources
applied, predict the likely quality that will be achieved when the product is
delivered. To date the majority of software projects have tended to rely upon
the judgement of the project or quality manager. Unfortunately, where
mathematical or statistical procedures have been applied their contribution
has been marginal at best [Fenton and Neil, 1999]. We will briefly outline
the problems with current approaches in Section 2.

Our aim here is to extend the work introduced in [Fenton and Neil, 1999]
and produce a single model to combine the diverse forms of, often causal,
evidence available in software development in a more natural and efficient
way than done previously. We use graphical probability models (also known
as Bayesian Belief Networks) as the appropriate formalism for representing
this evidence. We can use the subjective judgements of experienced project
managers to build the probability model and use this model to produce
forecasts about the software quality throughout the development life cycle.
Moreover, the causal or influence structure of the model more naturally
mirrors the real world sequence of events and relations than can be achieved
with other formalisms.

After outlining the problems with current approaches to defect
prediction, we will provide an introduction to probabilistic modelling. We
will then describe the probabilistic model for defect prediction that has been
built for use in Philips software development organisations, and provide
results from initial validation studies.

www.manaraa.com

138 Software Engineering with Computational Intelligence

2. THE PROBLEMS WITH SOFTWARE DEFECT
PREDICTION

In this paper we examine the general issues relating to software defect
prediction. However, it is worth phrasing the problem in general terms to
emphasise that the longer-term goal is to apply Bayesian Networks (BNs) to
other quality characteristics, like reliability and safety [Neil et al 1996,
Fenton and Neil 2000].

There are two different viewpoints of software quality as defined by
Fenton and Pfleeger [Fenton and Pfleegar 1997]. The first, the external
product view, looks at the characteristics and sub-characteristics that make
up the user's perception of quality in the final product - this is often called
quality-in-use. Quality-in-use is determined by measuring external properties
of the software, and hence can only be measured once the software product is
complete. For instance quality here might be defined as freedom from
defects or the probability of executing the product, failure free, for a defined
period.

The second viewpoint, the internal product view, involves criteria that
can be used to control the quality of the software as it is being produced and
that can form early predictors of external product quality. Good development
processes and well-qualified staff working on a defined specification are just
some of the pre-requisites for producing a defect free product. If we can
ensure that the process conditions are right, and can check intermediate
products to ensure this is so, then we can perhaps produce high quality
products in a repeatable fashion.

Unfortunately the relationship between the quality of the development
processes applied and the resulting quality of the end products is not
deterministic. Software development is a profoundly intellectual and creative
design activity with vast scope for error and for differences in interpretation
and understanding of requirements. The application of even seemingly
straightforward rules and procedures can result in highly variable practices
by individual software developers. Under these circumstances the
relationships between internal and external quality are uncertain. Typically
informal assessments of critical factors will be used during software
development to assess whether the end product is likely to meet
requirements:
• Complexity measures: A complex product may indicate problems in the

understanding of the actual problem being solved. It may also show that
the product is too complex to be easily understood, de-bugged and
maintained. Assessing the complexity of software programs and designs
has remained central to much of software measurement since the topic's

www.manaraa.com

Software Quality Prediction Using Bayesian Networks 139

inception in the early 1970s. Useful examples of empirical validation of
complexity measures can be found in [Cartwright and Shepperd 1997,
Basili et al 1996, Koshgoftaar and Munson 1990].

• Process maturity: Development processes that are chaotic and rely on the
heroic efforts of individuals can be said to lack maturity and will be less
likely to produce quality products, repeatedly.

• Test results: Testing products against the original requirements can give
some indication of whether they are defective or not. However the results
of the testing are likely only to be as trustworthy as the quality of the
testing done.

The above types of evidence are often collected in a piecemeal fashion
and used to inform the project or quality manager about the quality of the
final product. However there is often no formal attempt, in practice, to
combine these evidences together into a single quality model.

A holy grail of software quality control could be the identification of one
simple internal product measurement that provides an advanced warning of
whether or not the goals for the external product characteristics will be
achieved. Unfortunately, in software engineering the causal relationships
between internal and external quality characteristics are rarely
straightforward. We will illustrate this with one simple example. More
detailed analyses of naIve regression models for software engineering can be
found in [Fenton and Neil 1999], and [Fenton and Ohlsson 2000].

Suppose we have a product that has been developed using a set of
software modules. A certain number of defects will have been found in each
of the software modules during testing. Perhaps we might assume that those
modules that have the highest number of defects during testing would have
the highest risk of causing a failure once the product was in operation? That
is, we might expect to see a relationship similar to that shown in Figure 2.1.

www.manaraa.com

140 Software Engineering with Computational Intelligence

Post- 30
release
defects _

20

, ..

40 60
Pre·release defects

•

80 100

Figure 2.1. A hypothetical plot of pre-release against post-release defects for a
range of modules. Each dot represents a module.

What actually happens? It is hard to be categorical. However, two
published studies indicate quite the opposite effect - those modules that were
most problematic pre-release had the least number of faults associated with
them post-release. Indeed, many of the modules with a high number of
defects pre-release showed zero defects post-release. This effect was first
demonstrated by [Adams 1984], and replicated by [Fenton and Ohlsson
2000]. Figure 2.2 is an example of the sort of results they both obtained.

Post- 30
release •
defects •

20 •

10

20 40 60 80 100
Pre-release defects

Figure 2.2. Actual plot of pre-release against post-release defects for a range of

www.manaraa.com

Software Quality Prediction Using Bayesian Networks 141

modules.

So, how can this be? The simple answer is that faults found pre-release
gives absolutely no indication of the level of residual faults unless the
prediction is moderated by some measure of test effectiveness. In both of the
studies referenced, those modules with the highest number of defects pre
release had had all their defects "tested out". In contrast, many of the
modules that had few defects recorded against them pre-release clearly
turned out to have been poorly tested - they were significant sources of
problems in the final implemented system.

Typically, the search is for a simple relationship between some predictor
and the number of defects delivered. Size or complexity measures are often
used as such predictors. The result is a "naIve" model that could be
represented by the graph of Figure 2.3.

The difficulty is that whilst such a model can be used to explain a data
set obtained in a specific context, none has so far been subject to the form of
controlled statistical experimentation needed to establish a causal
relationship. Indeed, the analysis of Fenton and Neil suggests that these
models fail to include all the causal or explanatory variables needed in order
to make the models generalisable. Further strong empirical support for these
arguments is demonstrated in [Fenton and Ohlsson, 2000].

Figure 2.3. Graphical representation ofa naive regression model between some
predictor S (typically a size measure), and the number of software defects D.

The model of Figure 2.3 can simulate the model of Figure 2.4 under
certain circumstances. However, the latter has greater explanatory power,
and can lead to quite a different interpretation of a set of data. One could take
"Smoking" and "Higher Grades" at high school as an analogy. Just looking
at the covariance between the two variables, we might see a correlation
between smoking and achieving higher grades. However, if "Age" is then
included in the model, we could have a very different interpretation of the
same data. As a student's age increases, so does the likelihood of their
smoking. As they mature, their grades also typically improve. The
covariance is explained. However, for any fixed age group, smokers may
achieve lower grades than non-smokers.

We believe that the relationships between product and process attributes
and numbers of defects are too complex to admit straightforward curve

www.manaraa.com

142 Software Engineering with Computational Intelligence

fitting models. In predicting defects discovered in a particular project, we
would certainly want to add additional variables to the model of Figure 2.4.
For example, the number of defects discovered will depend on the
effectiveness with which the software is tested. It may also depend on the
level of detail of the specifications from which the test cases are derived, the
care with which requirements have been managed during product
development, and so on.

Figure 2.4. The influence of S on D is now mediated through a common cause
PS. This model can behave in the same way as that of Figure 2.3, but only in

certain specific circumstances.

We believe that graphical probabilistic models are the best candidate for
situations with such a rich causal structure. Our primary reason for saying
this is that we believe the influences on, for example, the presence of residual
defects are too complex and varied to allow the development of effective and
generalis able regressions using the sparse data that is available in the
software engineering domain. Instead, we propose an alternative approach in
which expert judgement can be used to help develop an initial model. This
model can then be refined and revised while in use, to improve the accuracy
of its predictions.

3. INTRODUCTION TO BAYESIAN NETWORKS

3.1. Conditional probability
The foundation for Bayesian Networks (BNs) is probability theory.

Probabilities conform to three basic axioms:

• peA), the probability of an event (outcome/consequence ...), A, is a
number between 0 and 1;

• peA) = 0 means A is impossible, p(A)=l means A is certain;
• peA or B) = peA) + pCB) provided A and B are disjoint.

However, merely to refer to the probability p(H) of an event or
hypothesis is an oversimplification. In general, probabilities are context

www.manaraa.com

Software Quality Prediction Using Bayesian Networks 143

sensitive. For example, the probability of suffering from certain forms of
cancer is higher in Europe than it is in Asia. Strictly, the probability of any
event or hypothesis is conditional on the available evidence or current
context. This can be made explicit by the notation p(R I E), which is read as
"the probability ofH given the evidence E". In the coin example, R would be
a "heads" event and E an explicit reference to the evidence that the coin is a
fair one. If there was evidence E' that the coin was double sided heads, then
we would have p(R IE') == 1.0.

As soon as we start thinking in terms of conditional probabilities, we
begin to need to think about the structure of problems as well as the
assignment of numbers. To say that the probability of an hypothesis is
conditional on one or more items is to identify the information relevant to the
problem at hand. To say that the identification of an item of evidence
influences the probability of an hypothesis being valid is to place a
directionality on the links between evidences and hypotheses.

Often a direction corresponding to causal influence can be the most
meaningful. For example, in medical diagnosis one can in a certain sense say
that measles "causes" red spots (there might be other causes). So, as well as
assigning a value to the conditional p('red spots' I measles), one might also
wish to provide an explicit graphical representation of the problem. In this
case it is very simple (Figure 3.1).

Figure 3.1. A very simple probabilistic network.

Note that to say that p('red spots' I measles) = p means that we can
assign probability p to 'red spots' if measles is observed and only measles is
observed. If any further evidence E is observed, then we will be required to
determine p('red spots' I measles, E). The comma inside the parentheses
denotes conjunction.

Building up a graphical representation can be a great aid in framing a
problem. A significant recent advance in probability theory has been the
demonstration of a formal equivalence between the structure of a graphical
model and the dependencies that are expressed by a numerical probability
distribution. In numerical terms, we say that event A is independent of event
B if observation of B makes no difference to the probability that A will
occur: peA I B) == peA). In graphical terms we indicate that A is independent

www.manaraa.com

144 Software Engineering with Computational Intelligence

of B by the absence of any direct arrow between the nodes representing A
and B in a graphical model.

So far, we have concentrated on the static aspects of assessing
probabilities and indicating influences. However, probability is a dynamic
theory; it provides a mechanism for coherently revising the probabilities of
events as evidence becomes available. Conditional probability and Bayes'
Theorem playa central role in this. We will use a simple example to
illustrate Bayesian updating, and then introduce Bayes' Theorem in the next
section.

Suppose we are interested in the number of defects that are detected and
fixed in a certain testing phase. If the software under test had been developed
to high standards, perhaps undergoing formal reviews before release to the
test phase, then the high quality of the software would in a sense "cause" a
low number of defects to be detected in the test phase. However, if the
testing were ineffective and superficial, then this would provide an
alternative cause for a low number of defects being detected during the test
phase. (This was precisely the common empirical scenario identified in
[Fenton and Ohlsson, 2000]).

This situation can be represented by the simple graphical model of
Figure 3.2. Here the nodes in the graph could represent simple binary
variables with states "low" and "high", perhaps. However, in general a node
may have many alternative states or even represent a continuous variable.
We will stay with the binary states for ease of discussion.

Figure 3.2. Some subtle interactions between variables captured in a simple
graphical model. Node TE represents "Test Effectiveness", SQ represents

"Software Quality" and DD represents "Defects Detected.

www.manaraa.com

Software Quality Prediction Using Bayesian Networks 145

It can be helpful to think of Figure 3.2 as a fragment of a much larger
model. In particular, the node SQ ("Software Quality") could be a synthesis
of, for example: review effectiveness; developer's skill level; quality of input
specifications; and, resource availability. With appropriate probability
assignments to this model, a variety of reasoning styles can be modelled. A
straightforward reasoning from cause to effect is possible. If TE (test
effectiveness) is "low", then the model will predict that DD (defects
discovered and fixed) will also be low. If earlier evidence indicates SQ
(software quality) is "high", then again DD will be "low".

However, an important feature is that although conditional probabilities
may have been assessed in terms of effect given cause, Bayes' rule enables
inference to be performed in the "reverse" direction - to provide the
probabilities of potential causes given the observation of some effect. In this
case, if DD is observed to be "low" the model will tell us that low test
effectiveness or high software quality are possible explanations (perhaps
with an indication as to which one is the most likely explanation). The
concept of "explaining away" will also be modelled. For example, if we also
have independent evidence that the software quality was indeed high, then
this will provide sufficient explanation of the observed value for DD and the
probability that test effectiveness was low will be reduced.

This situation can be more formally summarised as follows. If we have
no knowledge of the state DD then nodes TE and SQ are marginally
independent - knowledge of the state of one will not influence the
probability of the other being in any of its possible states. However, nodes
TE and SQ are conditionally dependent given DD - once the state of DD is
known there is an influence (via DD) between TE and SQ as described
above.

We will see in the next section that models of complex situations can be
built up by composing together relatively simple local sub-models of the
above kind (See also [Neil et ai, 2000]). This is enormously valuable.
Without being able to structure a problem in this way it can be virtually
impossible to assess probability distributions over large numbers of
variables. In addition, the computational problem of updating such a
probability distribution given new evidence would be intractable.

3.2. Bayes' theorem and Conditional Dependence
As indicated in the previous section, probability is a dynamic theory; it

provides a mechanism for coherently revising the probabilities of events as
evidence becomes available. Bayes' theorem is a fundamental component of
the dynamic aspects.

www.manaraa.com

146 Software Engineering with Computational Intelligence

As mentioned earlier, we write peA I B) to represent the probability of
some event (an hypothesis) conditional on the occurrence of some event B
(evidence). If we are counting sample events from some universe n, then we
are interested in the fraction of events B for which A is also true. In effect we
are focusing attention from the universe n to a restricted subset in which B
holds. From this it should be clear that (with the comma denoting
conjunction of events):

(AIB)= p(A,B)
P pCB)

This is the simplest form of Bayes' rule. However, it is more usually
rewritten in a form that tells us how to obtain a posterior probability in a
hypothesis A after observation of some evidence B, given the prior
probability in A and the likelihood of observing B were A to be the case:

peA I B) = pCB I A)p(A)
pCB)

This theorem is of immense practical importance. It means that we can
reason both in a forward direction from causes to effects, and in a reverse
direction (via Bayes' rule) from effects to possible causes. That is, both
deductive and abductive modes of reasoning are possible.

However, two significant problems need to be addressed. Although in
principle we can use generalisations of Bayes' rule to update probability
distributions over sets of variables, in practice:

1. Eliciting probability distributions over sets of variables is a major
problem. For example, suppose we had a problem describable by seven
variables each with two possible states. Then we will need to elicit (27_1)
distinct values in order to be able to define the probability distribution
completely. As can be seen, the problem of knowledge elicitation is
intractable in the general case.

2. The computations required to update a probability distribution over a set
of variables are similarly intractable in the general case.

Up until the late 1980's, these two problems were major obstacles to the
rigorous use of probabilistic methods in computer based reasoning models.
However, work initiated by Lauritzen and Spiegelhalter [1988] and Pearl
[1988] provided a resolution to these problems for a wide class of problems.
This work related the independence conditions described in graphical models
to factorisations of the joint distributions over sets of variables. We have
already seen some simple examples of such models in the previous section.
In probabilistic terms, two variables X and Yare independent if p(X,Y) =

www.manaraa.com

Software Quality Prediction Using Bayesian Networks 147

p(X)p(Y) - the probability distribution over the two variables factorises into
two independent distributions. This is expressed in a graphic by the absence
of a direct arrow expressing influence between the two variables.

We could introduce a third variable Z, say, and state that "X is
conditionally independent of Y given Z". This is expressed graphically in
Figure 3.3. An expression of this in terms of probability distributions is:

p(X,Y I Z) = p(X I Z)p(Y I Z)

Figure 3.3. X is conditionally independent ofY given Z.

A significant feature of the graphical structure of Figure 3.3 is that we
can now decompose the joint probability distribution for the variables X, Y
and Z into the product of terms involving at most two variables:

p(X,Y,Z) = p(X I Z)p(Y I Z)p(Z)

In a similar way, we can decompose the joint probability distribution for
the variables associated with the nodes DD, TE and SQ of Figure 4.2 as

p(DD, TE, SQ) = p(DD I TE,SQ)p(TE)p(SQ)

This gives us a series of example cases where a graph has admitted a
simple factorisation of the corresponding joint probability distribution. If the
graph is directed (the arrows all have an associated direction) and there are
no cycles in the graph, then this property is a general one. Such graphs are
called Directed Acyclic Graphs (DAGs). Using a slightly imprecise notation
for simplicity, we have [Lauritzen and Spiegelhalter, 1988]:

3.2.1. Proposition

Let U = {XI, X2, ... , Xn} have an associated DAG G. Then the joint
probability distribution p(U) admits a direct factorisation:

n

p(U) = IT p(Xi I pa(Xi»
i=1

www.manaraa.com

148 Software Engineering with Computational Intelligence

Here pa(Xi) denotes a value assignment to the parents of Xi. (If an arrow
in a graph is directed from A to B, then A is a parent node and B a child
node).

The net result is that the probability distribution for a large set of
variables may be represented by a product of the conditional probability
relationships between small clusters of semantically related propositions.
Now, instead of needing to elicit a joint probability distribution over a set of
complex events, the problem is broken down into the assessment of these
conditional probabilities as parameters of the graphical representation.

The lessons from this section can be summarised quite succinctly. First,
Bayesian network graphs may be used to represent qualitative influences in a
domain. Secondly, the conditional independence statements implied by the
graph can be used to factorise the associated probability distribution. This
factorisation can then be exploited to (a) ease the problem eliciting the global
probability distribution, and (b) allow the development of computationally
efficient algorithms for updating probabilities on the receipt of evidence. We
will now describe how these techniques have been exploited to produce a BN
model for software defect prediction.

3.3. Evidence Propagation in Bayesian Networks
Once a BN is built it can be executed using an appropriate propagation

algorithm, such as the Hugin algorithm [Jensen 1996]. This involves
calculating the joint probability table for the model (probability of all
combined states for all nodes) by exploiting the BN's conditional probability
structure to reduce the computational space. Even then, for large BNs that
contain undirected cycles the computing power needed to calculate the joint
probability table directly from the conditional probability tables is enormous.
Instead, the junction tree representation is used to localise computations to
those nodes in the graph that are directly related. The BN graph is
transformed into the junction tree by collapsing connected nodes into cliques,
eliminating cyclic links between cliques and by creating separators to
communicate probability updates between the cliques when new evidence is
observed. The key point here is that propagating the effects of observations
throughout the BN can be done using only messages passed between - and
local computations done within - the cliques of the junction tree rather than
the full graph. The graph transformation process is computationally hard but
it only needs to be produced once off-line. Propagation of the effects of new
evidence in the BN is performed using Bayes' theorem over the compiled
junction tree. For full details see [Jensen 1996].

www.manaraa.com

Software Quality Prediction Using Bayesian Networks 149

Once a BN has been compiled it can be executed and exhibits the
following two key features:

• The effects of observations entered into one or more nodes can be
propagated throughout the net, in any direction, and the marginal
distributions of all nodes updated;

• Only relevant inferences can be made in the BN. The BN uses the
conditional dependency structure and the current knowledge base to
determine which inferences are valid.

4. THE BAYESIAN NETWORK FOR DEFECT
PREDICTION

We will now look at how Bayesian Networks (BNs) can be applied to
quality prediction. '"(he network we will describe was developed as a pilot
study. However, the results that we obtained were quite positive - indeed
rather more successful than we were expecting. The important point to
mention at the outset is that the network was developed using experience
form one part of a multinational organisation (Philips Electronics) in one
continent (Europe). It was then validated using data from a different part of
that organisation, in a different continent (India). Although these were two
parts of the same organisation, it provides us with some confidence that the
approach we are about to describe is capable of generalisable prediction
models.

Assessing and controlling software quality is hard. You cannot hold it or
touch it, yet its behaviour has an impact on all of our lives. We all are
stakeholders in the drive to improve the quality of the software that we work
with, yet few of us are able to explicate precisely how we define measures to
discriminate between "poor" quality and "high" quality products.

This may seem strange as quality control is a precise science in most
other industries, and an important product discriminator. There are, however,
a number of reasons for this. Consider three main aspects of quality control
in traditional manufacturing:

• The control of manufacturing defects
• The assessment of mean time to failure of a product through wear or

agemg
• The use of statistical sampling to provide quality predictions with well

defined uncertainties

In general, these have limited applicability in software engineering. The
main reason for this is that in software engineering we are concerned with

www.manaraa.com

150 Software Engineering with Computational Intelligence

controlling the design process and not the manufacturing process. We want
to:

• Know how to control the design and development process so that design
faults and weaknesses are minimised

• Assess the likelihood that failures to meet the quality requirements of
users (through design and development faults) will be manifest in a
specific context of use - and, ideally, how that likelihood might vary as
the context of use (inevitably) changes over time

• Develop quality measurement and assessment techniques that can be
applied in cases where a specific design and development process may
only be applied to a small number of projects - perhaps even just an
individual project.

The model we describe focuses on one specific quality characteristic -
what we may call maturity, or freedom from defects. We will construct a
model which we hypothesise contains the most important casusal influences
on the presence of defects in a software module. Note that the model focuses
specifically on functionality related defects, and not faults in performance or
other quality requirements. The latter will be addressed in the next phase of
this research programme.

BN models are a good candidate solution for an effective model of
software defect prediction for the following reasons:
1. They can easily model causal influences between variables in a specified

domain;
2. The Bayesian approach enables statistical inference to be augmented by

expert judgement in those areas of a problem domain where empirical
data is sparse;

3. As a result of the above, it is possible to include variables in a software
reliability model that correspond to process as well as product attributes;

4. Assigning probabilities to reliability. predictions means that sound
decision-making approaches using classical decision theory can be
-supported.

Our goal was to build a module level defect prediction model that could
then be evaluated against real project data. Although it was not possible to
use members of Philips' development organisations directly to perform
extensive knowledge elicitation, PRL were able to act as a surrogate because
of their experience from working directly with Philips business units. This
had the added advantage that the BN could be built relatively quickly.
However, the fact that the probability tables were in effect built from
"rough" information sources and strengths of relations necessarily limits the
precision of the model.

www.manaraa.com

Software Quality Prediction Using Bayesian Networks 151

The remainder of this section will provide an overview of the model to
indicate the product and process factors that are taken into account when a
quality assessment is performed using it.

4.1. Overall structure of the Bayesian Network
The BN is executed using the generic probabilistic inference engine

Hugin (see http://www.hugin.com for further details). However, the size and
complexity of the network were such that it was not realistic to attempt to
build the network directly using the Hugin tool. Instead, Agena Ltd used two
methods and tools that are built on top of the Hugin propagation engine:

• The SERENE method and tool [Fenton, 1999], which enables: large
networks to be built up from smaller ones in a modular fashion; and,
large probability tables to be built using pre-defined mathematical
functions and probability distributions.

• The IMPRESS method and tool [Neil, 1999], which extends the
SERENE tool by enabling users to generate complex probability
distributions simply by drawing distribution shapes in a visual editor.

The resulting network takes account of a range of product and process
factors from throughout the lifecycle of a software module. Because of the
size of the model, it is impractical to display it in a single figure. Instead, we
provide a first schematic view in terms of sub-nets (Figure 4.1). This
modular structure is the actual decomposition that was used to build the
network using the SERENE tool.

The main sub-networks (sub-nets) in the high-level structure correspond
to key software life-cycle phases in the development of a software module.
Thus there are sub-nets representing the specification phase, the specification
review phase, the design and coding phase and the various testing phases.
Two further sub-nets cover the influence of requirements management on
defect levels, and operational usage on defect discovery. The final defect
density sub-net simply computes the industry standard defect density metric
in terms of residual defects delivered divided by module size.

This structure was developed using the software development processes
from a number of Philips development units as models. A common software
development process is not currently in place within Philips. Hence the
resulting structure is necessarily an abstraction. Again, this will limit the
precision of the resulting predictions. Work is in progress to develop tools to
enable the structure to be customised to specific development processes.

The arc labels in Figure 4.1 represent 'joined' nodes in the underlying
sub-nets. This means that information about the variables representing these
joined nodes is passed directly between sub-nets. For example, the

www.manaraa.com

152 Software Engineering with Computational Intelligence

specjication quality and the defect density sub-nets are joined by an arc
labelled 'Module size'. This node is common to both sub-nets. As a result,
information about the module size arising from the specification quality sub
net is passed directly to the defect density sub-net. We refer to 'Module size'
as an 'output node' for the specification quality sub-net, and an 'input node'
for the defect density sub-net. The figures in the following sub-sections show
details of a number of sub-nets. In these figures, the dark shaded nodes with
dotted edges are output nodes, and the dark shaded ones with solid edges are
input nodes.

Sp.c qualil¥

~eci&atioll
review

R.o ,idut.l
opocilil.tion

dehcts

Design and coding
process

defects

N.w
nquir.., .. ,4s

Figure 4.1. Overall network structure.

DeJect deJISDy

Op eratio nal usage

R.o ,idut.l
def.cts

de liven d

www.manaraa.com

Software Quality Prediction Using Bayesian Networks 153

4.2. The specification quality sub-net
Figure 4.2 illustrates the Specification quality sub-net. It can be

explained in the following way: specification quality is influenced by three
major factors:

• the intrinsic complexity of the module ~this is the complexity of the
requirements for the module, which ranges from "very simple" to "very
complex");

• the internal resources used, which is in tum defined in terms of the staff
quality (ranging from "poor" to "outstanding"), the document quality
(meaning the quality of the initial requirements specification document,
ranging from "very poor" to "very good"), and the schedule constraints
'which ranges from "very tight" to "very flexible";

• the stability of the requirements, which in tum is defined in terms of the
novelty of the module requirements (ranging from "very high" to "very
low") and the stakeholder involvement (ranging from "very low" to
"very high"). The stability node is defined in such a way that low novelty
makes stakeholder involvement irrelevant (Philips would have already
built a similar relevant module), but otherwise stakeholder involvement
is crucial.

The specification quality directly influences the number of specification
defects (which is an output node with an ordinal scale that ranges from 0 to
10 - here "0" represents no defects, whilst "10" represents a complete
rewrite of the document). Also, together with stability, specification quality
influences the number of new requirements (also an output node with an
ordinal scale ranging from 0 to I 0) that will be introduced during the
development and testing process. The other node in this sub-net is the output
node module size, measured in Lines of Code (LOC). The position taken
when constructing the model is that module size is conditionally dependent
on intrinsic complexity (hence the link). However, although it is an indicator
of such complexity the relationship is fairly weak - the Node Probability
Table (NPT) for this node models a shallow distribution.

4.3. The Requirements match sub-net
The Requirements match sub-net (Figure 4.3) contains just three nodes.

These could have been incorporated into the specification quality sub-net,
but we have separated them out as a sub-net to highlight the overall
importance that we attach to the notion of requirements match. This crucial
output variable (ranging from poor to very good) represents the extent to
which the implementation matches the real requirements. It is influenced by
the number of new requirements and the quality of configuration and

www.manaraa.com

154 Software Engineering with Computational Intelligence

traceability management. When there are new requirements introduced, if
the quality of configuration and traceability management is poor then it is
likely that the requirements match will be poor. This will have a negative
impact on all subsequent testing phases (hence this node is input to three
other sub-nets that model testing phases). For example, if the requirements
match is poor then no matter how good the internal development is, when it
comes to the integration and independent testing phases the testers will
inevitably be testing the wrong requirements.

- - .
spec. defects

new rqmts ..:

Figure 4.2. Specification quality sub-net.

www.manaraa.com

Software Quality Prediction Using Bayesian Networks 155

........ _-_._-------.
,"~"

newrqmls)

-------------- ~--~.,--~,,~~'

rqmls. match

Figure 4.3. Requirements match sub·net.

4.4. The Specification Review and Test Process sub-nets
The Specification Review, Unit, Integration and Independent testing

process, and Operational usage sub-nets are all based on a common testing
idiom (Figure 4.4). The basic structure of each is that they receive defects
from the previous life-cycle phase as 'inputs' , and the accuracy of testing and
rework is dependent on the resources available. The 'output' in each case is
the unknown number of residual defects, which is simply the number of
inserted defects minus the number of discovered defects.

www.manaraa.com

156 Software Engineering with Computational Intelligence

.. -------

doc quality

In!. testIng quality resources

Figure 4.4. Integration testing process sub-net. This is an example of the generic
testing idiom.

4.5. Design and coding process sub-net
The Design and coding process sub-net (Figure 4.5) is an example of the

so-called "process-product" idiom. Based on various input resources
something is being produced (namely design and code) that has certain
attributes (which are the outputs of the sub-net). The inputs here are
specification quality (from the specification quality sub-net), development
staff quality and resources. These three variables define the design and

www.manaraa.com

Software Quality Prediction Using Bayesian Networks 157

coding quality. The output attributes of the design and coding process are the
design document quality and the crucial number of code defects introduced.
The latter is influenced not just by the quality of the design and coding
process but also by the number of residual specification defects (an input
from the specification sub-net).

resources

dealgn doc quality

Figure 4.5. Design and coding process sub-net - an example of the "process
product" idiom.

4.6. Defect density sub-net
The final sub-net is the Defect density sub-net (Figure 4.6). This sub-net

simply computes the industry standard defect density metric in terms of
residual defects delivered divided by module size. Notice that defect density
is an example of a node that is related to its parents by a deterministic, as
opposed to a probabilistic, relationship. This ability to incorporate
deterministic nodes was an important contribution of the SERENE project.

www.manaraa.com

158 Software Engineering with Computational Intelligence

~,~-"-------~- ...

\

module size)

,,#' '~--

: defects

""... '*'
,,'

Figure 4.6. The Defect density sub-net.

4.7. The probability tables
The work on BNs outlined in Section 3 means that the problem of

building such models now factorises into two stages:
• Qualitative stage: consider the general relationships between the

variables of interest in terms of relevance of one variable to another in
specified circumstances;

• Quantitative stage: numerical specification of the parameters of the
model.

The numerical specification of the parameters means building Node
Probability Tables (NPTs) for each of the nodes in the network. However,
although the problem of eliciting tables on a node-by-node basis is
cognitively easier than eliciting global distributions, the sheer number of
parameters to be elicited remains a very serious handicap to the successful
building of BNs. We will outline some of the techniques we used to handle
this problem in this sub-section.

Note that for reasons of commercial sensitivity, the parameter values
used in this paper may not correspond to the actual values used.

The leaf nodes (those with no parents) are the easiest to deal with since
we can elicit the associated marginal probabilities from the expert simply by
asking about frequencies of the individual states. For example, consider the
leaf node novelty in Figure 4.2. This node has five states "very high", "high",
"average", "low", "very low". Suppose the expert judgement is that modules
typically are not very novel, giving the following weights (as surrogates for
the probability distribution), respectively, on the basis of knowledge of all
previous modules in a development organisation:

5,10,20,40,20

www.manaraa.com

Software Quality Prediction Using Bayesian Networks /59

These are turned into probabilities 0.05, 0.11, 0.21, 0.42, 0.21 (note the
slight change of scale to normalise the distribution).

The NPTs for all other leaf nodes were determined in a similar manner
(by either eliciting weightings or a drawing of the shape of the marginal
distribution).

The NPTs for nodes with parents are much more difficult to define
because, for each possible value that the node can take, we have to provide
the conditional probability for that value with respect to every possible
combination of values for the parent nodes. In general this cannot be done by
eliciting each individual probability - there are just too many of them (there
are several million in total in this BBN). Hence we used a variety of methods
and tools that we have developed in recent projects SERENE [1999] and
IMPRESS [1999]. For example, consider the node specification quality in
Figure 4.2. This has three parent nodes resources, intrinsic complexity, and
stability each of which takes on several values (the former two have 5 values
and the latter has 4). Thus for each value for specification quality we have to
define 100 probabilities. Instead of eliciting these all directly we elicit a
sample, including those at the 'extreme' values as well as typical, and ask the
expert to provide the rough shape of the distribution for specification quality
in each case. We then generate an actual probability distribution in each case
and extrapolate distributions for all the intermediate values. To see how this
was done, Table 1 shows the actual data we elicited in this case. The first
three columns represent the specific sample values and the final column is
the rough shape for the distribution of "specification quality" given those
values.

In the "best case" scenario of row 2 (resources good, stability high,
complexity low) the distribution peaks sharply close to 5 (i.e. close to "best"
quality specification). If the complexity is high (row 3) then the distribution
is still skewed toward the best end, but is not as sharply peaked. In the "worst
case" scenario of row 3 (resources bad, stability low, complexity high) the
distribution peaks sharply close to I (i.e. close to "worst" quality
specification) .

On the basis of the distributions drawn by the expert we derive a
function to compute the mean of the specification quality distribution in
terms of the parents variables. For example, in this case the mean used was:

Min (resource_effects, (5 *resource _ effects+intrinsic _ complexity+5
*stability_effects) / II)

In this example, to arrive at the distribution shapes drawn by the expert,
we make use of intermediate nodes as described in Section 4.2. For example,
there is an intermediate node stability which is the parent of the node

www.manaraa.com

160 Software Engineering with Computational Intelligence

stability effects. The stability effects node NPT is defined as the following
beta distribution that is generated using the IMPRESS tool:

Beta (2.25 * stability - 1.25, -2.25 * stability + 12.25, 1, 5)

Figure 4.7 shows the actual distribution in the final BBN (using the
Hugin tool) for the node specification quality under a number of the
scenarios of Table 1. This figure provides a good consistency check - there
is an excellent match of the distributions with those specified by the expert .

0.00 1 ·1.2
0.00 12·14
0.00 14 · 1.&
0.00 1 6 · 1.8
00018·2
0.04 2 · 2.2
004 22 · 2.4
004 24 · 2.6
004 26 · 2.8
1104 2B·3
171 3 · 32
In 32 · 34
17634·36
2.1236 · 38
3.01 38 · 4

19.34 4 · 4 2
22.1042 · 44
2420 44 - 46
laos 46 - 4 8
5.79 48 · 5

Retourcu- high
Sttbillty - hiet>
Com.l'lexity- low

• peclOc.uotl II...... F.:II
0001 · 12
0001 .2 · 14
0001.4 - 16
0001 .6 · 18
000 1.8-2
0042 · 2.2
004 2.2 - 2.4
0042.4 - 2.6
00426 · 2.8
OO!l2.B-3
1793 · 32
20232 · 34

I 29734·36
I 53236 - 38
• 1768 38 · 4

32754 -42
264642·44
103444-46
041 46 - 4 8

- 48-5

Ruourcu- hiet>
St.billty- htgh
CQIII I'Imty - blltl

21011·1.2
252812·14
275414 -16
16771.6 · 1.8
62918-2
2.16 2·22
0.69 2.2 -2.4
0.18 2.4·2.6
0.072.6 · 28
001 2.8 - 3
0003·32
000 12 · 3.4
000 34 · 36
000 3.6·38
000 38 - 4
0.004-42
000 42·44
000 44 -46
0.00 46 -4 8

- 48-5

Ruourcu-Iow
SttbiJity - low
C 01l1P\Ulty - low

Figure 4.7. Actual distributions for specification quality for various scenarios.

Resources Stability Intrinsic complexity Specification quality
(1 to 5 where I is (I to 3 where I is (I to 5 where I is most

I 2 3 4 5
worst 5 is best) worst 3 is best) complex, 5 least)

5 3 1 --A
5 3 5 A
1 1 1 /"-
1 2 3 ~
1 3 5 ~
5 1 1 ~
1 1 5 ~
Table 1. Eliciting the probability table for specification quality.

www.manaraa.com

Software Quality Prediction Using Bayesian Networks 161

4.8. Some comments on the BN
The methods used to construct the model have been illustrated in this

section. The resulting network models the entire development and testing
life-cycle of a typical software module. We believe it contains all the critical
causal factors at an appropriate level of granularity, at least within the
context of software development within Philips for single site, single team
projects.

The node probability tables (NPTs) were built by eliciting probability
distributions based on experience from within Philips. Some of these were
based on historical records, others on subjective judgements. For most of the
non-leaf nodes of the network the NPTs were too large to elicit all of the
relevant probability distributions using expert judgement. Hence we used the
novel techniques, that have been developed recently on the SERENE and
IMPRESS projects, to extrapolate all the distributions based on a small
number of samples. By applying numerous consistency checks we believe
that the resulting NPTs are a fair representation of experience within Philips.

There are two major concerns with the model as it stands. We address
the first to an extent in developing the network into a tool that can be used
for validation studies. However, the second can only be addressed as further
experience is gained with real useage of the tool.

The first concerns the measurement scales on many of the nodes. One or
two of the nodes have objective measurement scales (such as lines of code
for "module size", although even here one needs to be precise about how this
is measured). However, an ordinal scale of I (worst case) to 5 (best case) is
more often used. This leaves scope for subjective judgement of the values of
these nodes in any particular project. We handled this in the user interface
that was developed for the validation studies by providing definitions for
each of the values of a measurement scale. Consider for example, the node
for configuration and traceability management. Here we define the worst
case state as "requirements and design documents are no longer maintained
once coding has started", the best case as "requirements, design and code are
maintained with tool support for establishing and maintaining traceability
links". We do need to study further the validity of these categories and their
respective orderings, and the scope for intra- and inter-subject variability in
the value assignments. So, and this is important, we cannot claim this as a
definitive model. Rather, the success of the validation studies indicate that it
is a good foundation for further evolution.

This leads us on to the second point. The model captures a (limited)
corpus of experience in software engineering. To the extent that we talk
about "causal influences", we are hypothesising a "theory" of software

www.manaraa.com

162 Software Engineering with Computational Intelligence

engineering (in fact, of a limited sub-domain of software engineering). To
that extent, we must be prepared to revise it and extend it as our experience
matures. A key motive for building our model as a Bayesian Network is that
it is revisable, both in terms of its structure and its parameters. Rather then
try to learn a model purely from data in a domain where the number of
potential influences is vast, and the data from controlled evaluations of the
effects of each influence is minimal, we start with a plausible model that is
set up so that it can be revised as further data and experience is gained. This,
for example, is a motivation behind the specific use of beta-distributions in
the NPTs. These are one of a class of conjugate distributions. That is, the
distribution posterior to revision by data has the same form as prior to
revision. In introduction to learning Bayesian Networks can be found in
[Krause, 1998] which has extensive references to the machine learning
techniques that are now open to us.

As it stands, the BN can be used to provide a range of predictions and
"what-if' analyses at any stage during software development and testing. It
can be used both for quality control and process improvement. However, two
further areas of work were needed before the tool could be considered ready
for extended trials. Firstly and most importantly, the network needed to be
validated using real-world data. Secondly a more user-friendly interface
needed to be engineered so that (a) the tool did not require users to have
experience with BNs, and (b) a wider range ofreporting functions could be
provided. The validation exercise will be described in the next section in a
way that illustrates how the probabilistic network was packaged to form the
AID tool (AID for "Assess, Improve, Decide").

5. VALIDATION OF THE AID TOOL

5.1. Method
The Philips Software Centre (PSC), Bangalore, India, made validation

data available. We gratefully acknowledge their support in this way. PSC is a
centre for excellence for software development within Philips, and so data
was available from a wide diversity of projects from the various Business
Divisions within PSC.

Data was collected from 28 projects from three Business Divisions:
Mainstream Consumer Electronics, Philips Medical Systems and Digital
Networks. This gave a spread of different sizes and types of projects. Data
was collected from three sources:
• Pre-release and post-release defect data was collected from the

"Performance Indicators" database.

www.manaraa.com

Software Quality Prediction Using Bayesian Networks 163

• More extensive project data was available from the Project Database.
• Completed questionnaires on selected projects.

In addition, the network was demonstrated in detail on a one to one basis
to three experienced quality/test engineers to obtain their reaction to its
behaviour under a number of hypothetical scenarios.

The data from each project was entered into the BN model. For each
project:
1. The data available for all nodes prior to the Unit Test sub-net was

entered first.
2. Available data for the Unit Test sub-net was then entered, with the

exception of data for defects discovered and fixed.
3. If pre-release defect data was available, the predicted probability

distribution for defects detected and fixed in the unit test phase was
compared with the actual number of pre-release defects. No distinction
was made between major and minor defects - total numbers were used
throughout. The actual value for pre-release defects was then entered.

4. All further data for the test phases was then entered where available,
with the exception of the number of defects found and fixed during
independent testing ("post-release defects"). The predicted probability
distribution for defects found and fixed in independent testing was
compared with the actual value.

5. If available, the actual value for the number of defects found and fixed
during independent testing was then entered. The prediction for the
number of residual defects was then noted.

Unfortunately, data was not available to validate the operational usage
sub-net. This will need data on field call-rates that is not currently available.

Given the size of the BN, this was insufficient data to perform rigorous
statistical tests of validity. However, it was sufficient data to be able to
confirm whether or not the network's predictions were reliable enough to
warrant recommending that a more extensive controlled trial be set up.

5.2. Initial Validation Results
The network was used to make predictions of numbers of defects found

during unit test, integration test and independent testing of the module once it
had been integrated into a product. These predictions were compared against
the actual values obtained. Data from an initial validation run is presented in
Table 2.

www.manaraa.com

164 Software Engineering with Computational Intelligence

With the exception of three predictions, there is good agreement between
the predictions and the actual defect numbers when available. Note, however,
that:
1. The sample size is too small to use any statistical measures of validity;
2. The AID predictions are quite imprecise, deliberately so at this stage in

its evolution, and so is not capable of drawing particularly fine
distinctions between projects. In particular, there was little
discrimination between the quality of the projects once they had been
released to independent test, although this may also be a reflection of the
repeatability of the development processes at PSC.

Unit Test Independent Test
Project ID Predicted Actual Predicted Actual

defects defects defects defects
PI 100-150 122 20-40 31
P2 100-150 141 40-60 NA
P3 40-60 7 20-40 22
P4 60-80 11 20-40 46
P5 100-150 142 20-40 NA
P6 100-150 370 20-40 NA

Table 2. Comparison of predicted versus actual defects for six projects.

Projects P3 and P4 showed significant differences between the predicted
and actual defects discovered, or at least, reported, during unit test. This
reflects a possible difficulty with use of the tool in practice, since many
defects at unit test are fixed without going through a formal reporting
process.

The largest discrepancy was, however, with the project P6. This project
contained a significant User Interface component, and as validation
progresses we continue to see that such projects do consistently produce
more incident reports than are predicted by AID. The explanation for this is
not immediately apparent, and clearly the causes are not currently captured
in the AID tool.

5.3. Emergent behaviour from complex modules
One of the major values of AID is as a tool for exploring the possible

consequences of changes to a software process, or the constraints on a
product's development. The ability of Bayesian networks to handle quite
complex reasoning patterns is one of the reasons why the tool is proving so
successful in this regard. We end with one example, which also illustrated

www.manaraa.com

Software Quality Prediction Using Bayesian Networks 165

how our model does handle the sort of effects that were discussed in Section
2.

Table 3 lists the median values of "Defects found at Unit Test" and
"Defects Delivered" for a variety of values for the intrinsic problem
complexity of the software module under development. Look at the first row;
the predictions for the number of defects found during unit test. For a very
simple module, we get an increase in the number of defects found over the
prior, and a decrease for a very complex module.

Defects found in
Unit Test
Defects

delivered

Intrinsic Complexity of the Software Module
Prior "Very Simple" "Very Complex"

90 125 30

50 30 70

Table 3. Median values for three different scenarios.

At first sight, this seems counter intuitive - we might expect simpler
modules to be more reliable. The explanation is that the more complex
modules are harder to test than the simpler modules. With their greater
ability to "hide" faults, fewer faults will be detected unless there is a
compensating increase in the effectiveness with which the module is tested.
No such compensation has been applied in this case and the low prediction
for defects detected and fixed for the "very complex" case indicates that
typically such modules are relatively poorly tested.

This is borne out when we look at the respective figures for residual
defects delivered, in the second row of the table. Now we see a reversal. The
prediction for the "very complex" module indicates that it will contain more
residual defects than the "very simple" module (a median of70, compared to
a median of 30). So our model naturally produces the qualitative behaviour
of the real world data from our earlier experiment. That is, the better-tested
modules yield more defects during unit test and deliver fewer defects. For the
more poorly tested modules, the converse is the case. (Note that the table
misses out data from the Integration and Independent Test Phases. When this
is included the total number of defects - found plus delivered - is greatest for
the "Very Complex" module).

5.4. An example run of AID
We will use screen shots of the AID Tool to illustrate both the

questionnaire based user interface, and a typical validation run.

www.manaraa.com

166 Software Engineering with Computational Intelligence

One of the concerns with the original network is that many of the nodes
have values on a simple ordinal scale, range from "very good" to "very
poor". This leaves open the possibility that different users will apply
different calibrations to these scales. Hence the reliability of the predictions
may vary, dependent on the specific user of the system. We address this by
providing a questionnaire based front-end for the system. The ordinal values
are then associated with specific question answers. The answers themselves
are phrased as categorical, non-judgemental statements.

The screen in Figure 5.1 shows the entire network. The network is
modularised so that a Windows Explorer style view can be used to navigate
quickly around the network. Check-boxes are provided to indicate which
questions have already been answered for a specific project.

+ ., lint 1"~1"~

+i ~];(9)7~ ',::.n r,S,UfI)

:±' ",p ... ,." ... "I

~ ~ O*(lO'fl:~tj
.;JI 00<,"""

Url-nlrWl"l'l\)1oIf I .:J

Figure 5.1. The entire AID network illustrated using a Windows Explorer style
view.

The questions associated with a specific sub-net can then be displayed. A
question is answered by selecting the alternative from the suggested answers
that best matches the state of current project. Figure 5.2 shows the question
and alternative answers for the Configuration and Traceability Management
node in the Requirements Control sub-network.

For this example project, answers were available for 13 of the 16
questions preceding "defects discovered and fixed during unit test". Once the

www.manaraa.com

Software Quality Prediction Using Bayesian Networks 167

answers to these questions were entered, the predicted probability
distribution for defects discovered and fixed during unit test had a mean of
149 and median of 125 (See Figure 5.3 - in this figure the monitor window
has been displayed in order to show the complete probability distribution for
this prediction. Summary statistics can also be displayed.). The actual value
was 122. Given that the probability distribution is skewed, the median is the
most appropriate summary statistic, so we actually see an apparently very
close agreement between predicted and actual values. This agreement w~s
very surprising as although we were optimistic that the "qualitative
behaviour" of the network to be transferable from organisation to
organisation, we were expecting the scaling of the defect numbers to vary.
Note, however, that the median is an imprecise estimate of the number of
defects - it is the centre value of its associated bin on the histogram. So it
might be more appropriate to quote a median of"100-150" in order to make
the imprecision of the estimate explicit.

-..... . .

.,

I~ '. f r~' ... II.; ... UI.~ ~l~Ii(. rrw.~tl'll.
I .f~ . ~h'IIIII"""'ij ,utl.!tf'PflNllot d .. c~
l~" "t.,qo...,....,"nh .. "4Irna.II 111 kNttt'lll.~ 't".tru •• ~.tI '.1 ' '·
II ",11.4" "1'1' .1"'1" "'''''l"",..-l
1: n.-4 ~'~'.'1411 • .,.. lMie..-r.·'t ~'f fOWl' nlt.III'" i!,llt""'''''' d t~fI14U I,
•• "1IJ(~
('~101 ~"'t, a .t P1alh J w..IIItUF41r..""'IIlI.Mlr'I~'" ,
t *"".: III UtoM, I~" uI« (t ...,n til C'"
~ ~.~~'!'W"f' dt\Ir' • It'" "I"\;o"'IIJ'It1 ·'10 t,,1 ",,',.~ ttl wU'.ut ••

IIIrll\f"'("~' (1t..'

0(" :

Figure 5.2. The question associated with the Configuration and Traceability
Management node.

The actual value for defects discovered and fixed was entered. Answers
for "staff quality" and "resources" were available for the Integration Test and
Independent Test sub-networks. Once these had been entered, the prediction
for defects discovered and fixed during independent test had a mean of 51,

www.manaraa.com

168 Software Engineering with Computational Intelligence

median of 30 and standard deviation of 45 (see figure 5.4). The actual value
was 31.

As was the case with unit test, there was close agreement between the
median of the prediction and the actual value. "Test 3" was developed by
PSC as a module or sub-system for a specific Philips development group.
The latter then integrated "Test 3" into their product, and tested the complete
product. This is the test phase we refer to as Independent Test.

The code size of Test 3 was 144 KLOC. The modules (perhaps sub
system is a better term given the size) used in the validation study ranged in
size from 40-150 KLOC. The probabilistic reliability model incorporates a
relatively weak coupling between module size and numbers of defects. The
results of the validation continue to support the view that other product and
process factors have a more significant impact on numbers of defects.
However, we did make one modification to the specification quality sub-net
as a result of the experience gained during the validation. Instead of
"Intrinsic Complexity" being the sole direct influence on "Module Size", we
have now explicitly factored out "Problem Size" as a joint influence with
"Intrinsic Complexity" on "Module Size".

• .) A ... ~"". an4IlfM'~M"
+l;. RNj "'. c.r.
- ...J(j s..c"e,u.n R t:M'

~ '" 1'II.~1'"
..:::] ,...1 1 ~)

.,:J r IIItIKU

- ~ O" hdCt<ll/\f

~ " ... I~ Kill ~Ut l ..a rt'lfUt«,

- ...» 3TI""'.I. III1: "'l .• tl t'iKlh'f1Io." 1;111 .•

.:;l un4.1 '("4r«.u~Jr'r

..::l 1t'NtH

:.J

Figure 5.3. The prediction for defects discovered and fixed during Unit Test for
project "Test 3".

www.manaraa.com

Software Quality Prediction Using Bayesian Networks

025

020

0.15

010

I 1-
0.05

000

Figure 5.4. The prediction for defects discovered and fixed during Independent
Test for project "Test 3".

5.5. Summary of results of the validation exercise

169

Overall there was a high degree of consistency between the behaviour of
the network and the data that was collected. However, a significant amount
of data is needed in order to make reasonably precise predictions for a
specific project. Extensive data (filled questionnaire,plus project data, plus
defect data) was available for seven of the 28 projects. These seven projects
showed a similar degree of consistency to the project that will be studied in
the next sub-section. The remaining 21 projects show similar effects, but as
the probability distributions are broader (and hence less precise) given the
significant amounts of "missing" information, the results are supportive but
less convincing than the seven studied in detail.

It must be emphasised that all defect data refers to the total of major and
minor defects. Hence, residual defects may not result in a "failure" that is
perceptible to a user. This is particularly the case for user-interface projects.

Note also that the detailed contents of the questionnaires are held in
confidence. Hence we cannot publish an example of data entry for the early
phases in the software life cycle. Defect data is reported here, but we must
keep the details of the project anonymous.

A disadvantage of a reliability model of this complexity is the amount of
data that is needed to support a statistically significant validation study. As
the metrics programme at PSC is relatively young (as is the organisation
itself), this amount of data was not available. As a result, we were only able
to carry out a less formal validation study. Nevertheless, the outcome of this
study was very positive. Feedback was obtained on various aspects of the
functionality provided by the AID interface to the reliability model, yet the

www.manaraa.com

170 Software Engineering with Computational Intelligence

results indicated that only minor changes were needed to the underlying
model itself. We are now preparing for a more extended trial using a wider
range of projects.

There is a limit to what we can realistically expect to achieve in the way
of statistical validation. This is inherent in the nature of software
engineering. Even if a development organisation conforms to well defined
processes, they will not produce homogenous products - each project will
differ to an extent. Neither do we have the large relevant sample sizes
necessary for statistical process control. It is primarily for these reasons that
we augment empirical evidence with expert judgement using the Bayesian
framework described in this paper. As more data becomes available, it is
possible to critique and revise the model so that the probability tables move
from being subjective estimates to being a statement of physical properties of
the world (see, e.g. [Krause, 1998]). However, in the absence of an extensive
and expensive reliability testing phase, this model can be used to provide an
estimate of residual defects that is sufficiently precise for many software
project decisions.

5.6. Future Work
The scale of new software systems is such that it is increasingly

necessary to develop them across distributed environments. Philips, for
example, has teams on three different continents all working on the same
major projects in a number of instances. Such distributed projects raise new
and urgent concerns about how to manage and monitor quality and risks. To
address this important concern Agena, QinetiQ, Philips and the Israel
Aircraft Industry are currently working on a 2.4m Euro project - MODIST
[Elliot 2001] to develop a BN-based tool to support software managers and
engineers improve their software development processes as well their
product quality in distributed environments.

6. SUMMARY
We have described a BN for software defect prediction. This model can

be used for assessing Qngoing projects, but also for exploring the possible
effects of a range of software process improvement activities. If costs can be
associated with process improvements, and benefits assessed for the
predicted improvement in software quality, then the model can be used to
support sound decision making for SPI (Software Process Improvement).

The model performed very well in our preliminary validation
experiments. In addition, Agena developed a user interface for the tool that

www.manaraa.com

Software Quality Prediction Using Bayesian Networks 171

enables it to be easily used in a variety of different modes for product
assessment and SP!.

We must emphasise that this is an initial model. As discussed in Section
4, it should be viewed as a hypothesis representing a "theory" of software
development in a sub-domain of software engineering (single-roof, single
team software development of software modules). The use of a Bayesian
approach provides us with an initial model in a domain that is notoriously
sparse in sound empirical data. As continued experience is gained, the model
can be revised using sound statistical techniques. Indeed, such a model could
provide a valuable basis for the design of experiments in empirical software
engineering (by for example, controlling certain nodes in the network and
predicting outcomes on the result nodes).

Although we anticipate that the model will need additional refinement as
experience is gained during extended trials, we are confident that it will
make a significant contribution to sound and effective decision-making in
software development organisations. Future refinements to the method and
the approach are being done on the CEC ESPRIT funded MODIST project
[Elliot 2001].

ACKNOWLEDGEMENTS
Simon Forey carried out the user interface development for AID; his

contribution to this project was invaluable. We would also like to thank Mr.
S. Nagaraj an, Mr. Thangamani N., Mr. Soumitra Lahiri, Mr. Jitendra
Shreemali and all the others at PSC, Bangalore who helped in the validation
study. The validation study was started with Mainstream CE projects at PSC,
with valuable support from the Software Quality Engineering Team in this
division.

REFERENCES
Adams E. (1984), "Optimizing preventive service of software products", IBM Research
Journal, 28(1), 2-14.

Agena (2002) Agena Ltd, "Bayesian Belief Nets", http://www.agena.co.uk

Basili Y., Briand L. and Melo W.L. (1996), "A validation of object oriented design
metrics as quality indicators", IEEE Trans. Software Eng.

Cartwright M. and Shepperd M. (1997), "Building predictive models from object
oriented metrics," presented at 8th European Software Control and Metrics Conf.,
Berlin.

Elliot J. (2001). ESPRIT Project MODIST: Models of Uncertainty and Risk for
Distributed Software Development. http://www.modist.org.ukl
Fenton N. (1999) SERENE consortium, "SERENE (SafEty and Risk Evaluation using
Bayesian Nets): Method Manual", ESPRIT Project 22187,
http://www.dcs.qrnw.ac.ukl-norman/serene.htm.

www.manaraa.com

172 Software Engineering with Computational Intelligence

Fenton N. and M. Neil (1999) "A Critique of Software Defect Prediction Research",
IEEE Trans. Software Eng., 25, No.5, 675-689.

Fenton N. and N. Ohlsson (2000) "Quantitative analysis offaults and failures in a
complex software system", IEEE Trans. Software Eng., 26, 797-814.

Fenton N.E. and S.L. Pfleeger (1997), Software Metrics: A Rigorous and Practical
Approach, (2nd Edition), PWS Publishing Company.

Hugin (1998). Hugin Expert Brochure, Hugin Expert AlS, P.O. Box 8201 DK-9220
Aalborg, Denmark.

Khoshgoftaar T.M. and Munson lC. (1990), "Predicting software development errors
using complexity metrics". IEEE J of Selected Areas in Communications, Vo1.8, No.2,
pp.253-261, 1990.

Krause PJ. (1998) "Learning Probabilistic Networks", Knowledge Engineering Review,
13,321-351.

Lauritzen S.L. and DJ. Spiegel halter, (1988) "Local computations with probabilities on
graphical structures and their application to expert systems (with discussion)" l Roy.
Stat. Soc. Ser B 50, pp. 157-224.

McCall, P.K. Richards and G.F. Walters (1977), Factors in software quality. Volumes 1,
2 and 3. Springfield Va., NTIS, AD/A-049-014/015/055.

Musa J. (1999). Software Reliability Engineering, McGraw Hill.
Neil M. (1999) IMPRESS (IMproving the software PRocESS using bayesian nets)
EPSRC Project GRlL06683, http://www.csr.city.ac.uk/csr_city/projects/impress.html
Neil M., B. Littlewood and N. Fenton. (!996). "Applying Bayesian Belief Networks to
Systems Dependability Assessment". Proceedings of Safety Critical Systems Club
Symposium, Leeds, Published by Springer-Verlag.

Neil M., N. Fenton and L. Nielson (2000), "Building large-scale Bayesian Networks",
Knowledge Engineering Review, 15(3),257-284.

Pearl J. (1997) Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference Morgan Kauffman.

www.manaraa.com

Towards the Verification and Validation of Online
Learning Adaptive Systems

Ali Mili 1, Bojan Cukic2, Van Liu2 and Rahma Ben Ayed3

J College of Computing Science
New Jersey Inst. of Technology, Newark, NJ 07102
mili@cis.njit.edu

2 Lane CSEE Department
West Virginia University, Morgantown WV 26506-6109
(cukic,yanliu}@csee.wvu.edu

3 School of Engineering
University of Tunis II, Belvedere 1002, Tunisia
rahma _ k@yahoo.com

ABSTRACT
Online Adaptive Systems in general, and learning neural nets in particular
cannot be validated using traditional verification and validation techniques,
because they evolve over time, and past learning data influences their
behavior. In this paper we discuss a framework for reasoning about online
adaptive systems, and see how this framework can be used to perform V\& V
on such systems.

KEYWORDS
Verification and Validation, Formal Methods, Refinement Calculi, On-Line
Learning, Neural Networks, Adaptive Control.

1. INTRODUCTION: POSITION OF THE PROBLEM

1.1. On-Line Learning: An Emerging Paradigm
Adaptive Systems are systems whose function evolves over time, as they

improve their performance through learning. The advantage of adaptive
systems is that they can, through judicious learning, react to situations for
which the designer did not make specific provisions. If learning and
adaptation are allowed to occur after the control system if deployed, the
system is called online adaptive system.

Online adaptive systems are attracting increasing attention in application
domains where autonomy is an important feature, or where it is virtually
impossible to analyze ahead of time all the possible combinations of
environmental conditions that may arise. The controlled processes (as well as
the control law) are often non-linear and subject to noise, disturbances, time
delays and other un-modeled dynamics. Therefore, it is more advantageous
to learn the system's behavior, rather than attempt its precise functional

www.manaraa.com

174 Software Engineering with Computational Intelligence

description. Examples of autonomous control applications are long term
space missions where communication delays to ground stations are
prohibitively long, and we have to depend on the systems' local capabilities
to deal with unforeseen circumstances [15]. Examples of systems dealing
with complex environmental conditions include flight control systems, which
deal with a wide range of parameters, and a wide range of environmental
factors. These systems must maintain flight safety and criticality equivalent
to traditional human piloted systems. Other proposed applications include
collision avoidance systems, multi-vehicle cooperative control, intelligent
scheduling in manufacturing [11], control systems for automobile steering
based on feature recognition in images [10], etc.

In recent years several experiments evaluated adaptive computational
paradigms (neural networks, AI planners) for providing fault tolerance
capabilities in control systems following sensor andlor actuator faults
[28,29]. Experimental success suggests significant potential for future use.
More recently, a family of neural networks, referred to as DCS (Dynamic
Cell Structure) [16], have been used by NASA for on-line learning of
aerodynamic derivatives [37] in a flight control system of an F-15. In the
intelligent flight control system, the online neural learning DCS network
provides the aircraft model's adaptation to the changes that may occur during
the flight. The network is trained to the error in flight, i.e., the difference
between the derivative values computed by a regression-based derivative
estimator, and those provided by the preflight approximation algorithm
(implemented by another neural network, which does not change in flight).
The topology representing properties of the DCS network proved to be
capable of providing the flight controller with the best available estimates of
the aircraft's stability and control derivatives, while yielding a dramatically
more compact way to store them. These advances were made possible by the
fact that a DCS network eventually acquires ("learns") the connectivity
structure, which represents the relation of topological proximity of points
from the flight envelope.

The critical factor limiting wider use of neural networks and other soft
computing paradigms in process control applications, is our (in)ability to
provide a theoretically sound and practical approach to their verification and
validation. In this paper, we present a framework for reasoning about on-line
learning systems, which we envision as a candidate technology for their
verification and validation.

1.2. Verifying On-Line Learning Systems
While they hold great technological promise, on-line learning systems

pose serious problems in terms of verification and validation, especially
when viewed against the background of the tough verification standards that

www.manaraa.com

Towards the Verification and Validation of Adaptive Systems 175

arise in their predominant application domains (flight control, mission
control). Adaptive systems are inherently difficult to verify/ validate,
precisely because they are adaptive. Specifically, consider that methods for
software product verification are generally classified into three families [4]:

• Fault Avoidance methods, which are based on the premise that we can
derive systems that are fault-free by design.

• Fault Removal methods, which concede that fault avoidance is
unrealistic in practice, and are based on the premise that we can remove
faults from systems after their design and implementation are complete.

• Fault Tolerance methods, which concede that neither fault avoidance nor
fault removal are feasible in practice, and are based on the premise that
we can take measures to ensure that residual faults do not cause failure.

Unfortunately, neither of these three methods is applicable as-is to
adaptive systems, for the following reasons:

• Fault Avoidance. Formal design methods [14,20,27] are based on the
premise that we can determine the functional properties of a system by
the way we design it and implement it. While this holds for traditional
systems, it does not hold for adaptive systems, since their design
determines how they learn, but not what they will learn. In other words,
the function computed by an online adaptive system depends not only on
how the system is designed, but also on what data it has learned from.

• Fault Removal: Verification. Formal verification methods [1,25,22,26]
are all based on the premise that we can infer functional properties of a
software product from an analysis of its source text. While this holds for
traditional systems, it does not hold for adaptive systems, whose
behavior is also determined by their learning history.

• Fault Removal: Testing. All testing techniques [12,21,24] are based on
the premise that the systems of interest will duplicate under field usage
the behavior that they have exhibited under test. While this is true for
traditional deterministic systems, it is untrue for adaptive systems, since
the behavior of these systems evolves over time. We have observed in
[2] that adaptive systems fail to meet this requirement (of maintaining or
enhancing their behavior) even when they converge.

• Fault Tolerance. Fault tolerance techniques [3,32,33,36] are based on the
premise that we have clear expectations about the functions of programs
and programs parts, and use these expectations to design error detection
and error recovery capabilities. With adaptive systems, it is not possible
to formulate such expectations because the functions of programs/
program parts are not known at design time.

Because on-line learning systems are most often used in life-critical (e.g.
flight control) and mission-critical (e.g. space) applications, they are subject

www.manaraa.com

176 Software Engineering with Computational Intelligence

to strict certification standards, leaving a wide technological gap between the
requirements of the application domain and the capabilities of available
technologies; our aim in this paper is to attempt to narrow this gap. First, we
survey existing approaches.

1.3. Existing Approaches
Traditional literature typically describes adaptive computational

paradigms with respect to their use, as function approximators or data
classification tools .. In most cases, their correctness is measured in terms of a
misclassification rate on specific data sets, or by their ability to interpolate
and/or extrapolate between known function values. This evaluation
paradigm may work well only for applications where the system learns
on a "training set" and remains unchanged in operational usage. In an attempt
to discuss verification and validation of neural networks, LiM in Fu [17]
interprets verification to refer to correctness and interprets validation to refer
to accuracy and efficiency. He establishes correctness by analyzing the
process of designing the neural network, rather than the functional properties
of the final product. An intuitively similar, but more elaborate approach has
been described by Gerald Peterson [31]. Peterson describes the opportunities
for verification and validation of neural networks in terms of the activities in
their development life-cycle, as shown in Figure 1.

If a problem is judged to be solvable by a neural network (feasibility
phase), training data is gathered. Verification of the training data includes the
analysis of appropriateness and comprehensiveness. This step is not fully
applicable to on-line learning applications since training data are related to
the real-time evolution of the system state, rather than the design choice.
Verification of the training process typically examines the convergence
properties of the learning algorithm in terms of achieving the desired optimal
problem solution. Evaluation of interpolation and extrapolation capabilities
of the network and domain specific verification activities set the stage for the
overall verification and validation. The strong emphasis on domain specific
knowledge, its formal representation and mathematical analysis is suggested
in [19] too. Del Gobbo and Cukic propose the analysis of the neural network
with respect to conditions implying the existence of the solution (for function
approximation) and the reachability of the solution from any possible initial
state. Their third condition can be interpreted as condition for preservation of
the learned information.

While meaningful and well organized, Peterson's approach provides little
guidance on the choice of specific rigorous V & V techniques. Proposed
techniques are mostly based on empirical evaluation through simulation
and/or experimental testing. In an on-going effort, a group of researchers at

www.manaraa.com

Towards the Verification and Validation of Adaptive Systems 177

NASA Ames Research Center are defining life-cycle V & V methods
applicable to systems which have (an) integrated adaptive software
component(s) [7]. In some cases, neural networks are modified to provide
support for testing based (or on-line) validation of results. For example,
Leonard et. al. [23] suggest a new architecture called Validity Index. A
Validity Index network is a derivative of Radial Basis Function (RBF)
network with the additional ability to calculate confidence intervals for its
predictions based on the probability density of the "similar" training data
observed in the past.

In a recent survey of methods for validating on-line learning neural
networks, O. Raz [34] calls this approach on-line monitoring and novelty
detection and attributes to it a significant potential for the future use. The
other promising research direction, according to Raz, is periodic rule
extraction from an on-line neural network and partial (incremental) re
verification of these rules using symbolic model checking. Practical hurdles
associated with this approach include determining the frequency of rule
extraction and impracticality of near real-time model checking of complex
systems. LiMin Fu [17] discuss the verification and validation of neural nets,
where he interprets verification to refer to correctness and interprets
validation to refer to accuracy and efficiency. He establishes correctness by
analyzing the process of designing the neural net, rather than the functional
properties of the final product.

www.manaraa.com

178 Software Engineering with Computational Intelligence

I Statement of Goals and Constraints I
t

I Verify Feasibility of Neural Network I
t

I I
Collect Data I

I I
Verify Data I

t
I Design Network Architecture

I

I
~

I I
Train the Network I

t
I Verify the Training Process

I

I
t

I I
Evaluate the Generalization Capability I

t
I Evaluate Constructed Network I

4
I Specify Network Characteristics I

• I Independent Network Validation I
+

Figure 1. Neural Network Construction Lifecyc1e.

2. TENETS OF A REFINEMENT-BASED APPROACH

2.1. Characterizing Our Approach
Our approach to the verification of on-line learning systems can be

summarized in the following premises:
• We establish the correctness of the system, not by analyzing the process

by which the system has been designed, but rather by analyzing the
functional properties of the final product, and the evolution of these
systems can be controlled to preserve/ enhance selected properties.

• Qualifying the first premise, we capture the functional properties of the
system not by the exact function that the system defines at any stage in

www.manaraa.com

Towards the Verification and Validation of Adaptive Systems 179

its learning process, but rather by a functional envelope, which captures
the range of possible functions of the system for a given learning history.
This concept will be more formally defined in section 3.1.

• In order to make testing meaningful, we need to ensure that the system
evolves in a way that preserves or enhance its behavior under test. We
call this monotonic learning, and we investigate it briefly in section 4.1.
Of course, on-line learning systems are supposed to get better as they
acquire more learning data, but our definition of better is very specific: it
means that the functional envelope of the system grows increasingly
more refined with learning data (in the sense of refinement calculi
[5,8,13,18,39]).

• In order to support some form of correctness verification, we must
recognize that the variability of learning data and the focus on functional
envelope (rather than precise function) weaken considerably the kinds of
functional properties that can be established by correctness verification.
Typically, all we can prove are minimal safety conditions; we refer to
this as safe learning (proving that learning preserves safety conditions),
and we discuss it briefly in section 4.2.

In the sequel, we introduce some mathematical background, which we
use in the remainder of the paper.

2.2. Specification Structures
The verification and validation of systems, whether adaptive or not, can

only be carried out with respect to predefined functional properties, which
we capture in specifications. In this paper, we model specifications by means
of binary relations. A relation R from set X to set Y is a subset of the
Cartesian product X x Y . A homogeneous relation on S is a relation from
S to S. We use relations to represent specifications. Among relational
constants we cite the identity relation, denoted by I, and the universal
relation, denoted by L. Among operations on relations we cite the product,
which we represent by R oR' or by RR' (when no ambiguity arises), the

complement, which we represent by R, the inverse, which we represent by
" R, and the set theoretic operations of union and intersection.

We wish to introduce an ordering between (relational) specifications to
the effect that a specification is greater than another specification if and only
if it captures stronger functional requirements. We refer to this ordering as

the refinement ordering, we denote it by R :l R' and we define it as

RLI R'LI (RYR')=R'.

www.manaraa.com

180 Software Engineering with Computational Intelligence

The following definition and proposition give the reader some intuition
for the meaning of the refinement ordering.

Definition 1

A program P on space S is said to be correct with respect to

specification R on S if and only if [£J.;;;J R where [EJ is the function
defined by program P.

Proposition 1

Specification R refines specification R' if and only if any program
correct with respect to R is correct with respect to R'.

Figure 2 illustrates, in set theoretic terms, the meaning of the refinement
ordering, by showing the graphs of two relations Rand R' on the same sets.
R refines R' because it has a larger domain and has fewer images for each
argument. By contrast, Q does not refine Q' nor does Q' refine Q.

As a complement to studying ordering properties of the refinement
relation, we also investigate lattice properties [9). In [6], we have derived
two propositions pertaining to the lattice properties of the refinement
ordering. We present them here without proof, but with some discussion of
their intuitive meaning.

Proposition 2

Two relations Rand R' have a least upper bound (also called the join)
with respect to the refinement ordering if and only if they satisfy the
condition (called the consistent condition):

RL I R'L = (R I R')L.

When they do satisfy this condition, their join is denoted by (R U R')
and is defined by

(R U R') = R I R'L Y R' I RL Y (R I R').

The consistency condition means that Rand R' can be satisfied
(refined) simultaneously, i.e. that they have an upper bound. As for the
expression of the join, suffice it to say that (R U R') represents the
specification that captures all the functional features of R (upper bound of
R) and all the functional features of R' (upper bound of R') and nothing
more (least upper bound). A crucial property of joins, for our purposes, is

www.manaraa.com

Towards the Verification and Validation of Adaptive Systems 181

that an element A refines R U R' if and only if it refines simultaneously
Rand R , In other words, the join of R and represents the sum of all the
functional features of Rand R' . This sum can be derived only if Rand R'
do not contradict each other (re: the consistency condition). We argue in [6]
that complex specifications can be structured in terms of simpler sub
specifications using the join operator.

In addition to discussing least upper bounds (joins), we also discuss
greatest lower bounds (meets), which are introduced in the following
proposition.

Proposition 3

Any two relations Rand R' have a greatest lower bound (also called
the meet), which is denoted by (R n R') and defined by

(R n R') = RL I R'L I (R Y R').

The meet of two relations Rand R' is a specification that refined by R
(lower bound of R), refined by R' (lower bound of R'), and is maximal
(greatest lower bound): in other words, it captures all the functional features
that are common to Rand R' .

The following lemma, which presents trivial lattice identities, will be
generalized later for our purposes.

Lemma 1

The following identities hold in any lattice:

• (A:J B) v (A :J C) logically implies A :J (B n C)

• (B:J A) v (C :J A) logically implies (B n C):J A

The first clause stems readily from the transitivity of the refinement
ordering, and the lattice identities. The second clause can be proved by
observing that the left hand side provides that is a A lower bound for Band
C, hence it is refined by the greatest lower bound.

www.manaraa.com

182 Software Engineering with Computational Intelligence

R R'
A_ -I

B- -2 B
:::J

c- -3 C

D- e4

Q Q'

A- -I A

B_ -2 B

~
c- -3 C

D- -4 D

Figure 2. Refinement Ordering in Pictures.

3. A COMPUTATIONAL MODEL FOR ON-LINE
LEARNING SYSTEMS

3.1. An Abstract Model
Before we discuss the specifics of the verification methods we propose,

we first introduce an abstract computational model for adaptive systems and
their evolution through learning. Figure 3 depicts the abstract model we have
of an online adaptive system; this model is purposefully generic, to support a
wide range of possible implementations (RBF, DeS, MLP), and to enable us
to focus on relevant computational features (as opposedto being distracted by
implementation specific details). Our model includes the following features:

• Set X represents the set of inputs that may be submitted to the adaptive
system.

• Set Y represents the set of outputs that the adaptive system may return
as output.

www.manaraa.com

Towards the Verification and Validation of Adaptive Systems J 83

• Set H represents the set of learning data histories that are submitted to
the adaptive system for learning; typically, this set is nothing but the set
of sequences of the form (x,y), where x E X and y E Y. We let &

represent the empty sequence (as an element of H).
• Function F is the function which, to each learning history h in H

associates a function Fh from X to Y that captures the behavior of the

adaptive system after receiving learning data h. According to this
definition, the initial behavior of the adaptive system before any learning
history is received is Fc'

• Function R is the function which, to each learning history h in H
associates a relation Rh from X to Y that captures the learned

behavior of data h, and nothing else. Whereas Fh may include behavior

that stems from its initialization, or stems from extrapolations, or stems
from default options, Rh remains undefined or under-defined until
learning data intervenes.

In order to elucidate the meaning of relation Rh , for history h, we

consider the following development scenario for adaptive systems. An
adaptive system is defined by some learning rule, which maps a learning
history h into a function Fh ; the learning algorithm is also defined by

means of implementation-specific parameters, including randomly chosen
parameters. For the sake of abstraction, we denote the vector of
implementation-specific parameters by a variable, say A" and we let A be
the set of possible values for A,. To fix our ideas, we can think of A as
representing a family of possible implementations of the learning algorithm,
and of A, as a specific implementation within the selected family; also, we

denote by FhA the function that captures the behavior of the adaptive system

whose parameters vector is A" upon receiving learning data h. With this
background in mind, we let Rh be defined as follows:

Rh = n AEA FhA

By virtue of the definition of meet, n AEA FhA can be interpreted to

represent the functional information that is common to all possible
implementations of the learning algorithm, for all possible values of A,.
While FhA is dependent on A, Rh is dependent on A.

www.manaraa.com

184 Software Engineering with Computational Intelligence

As a corollary of this definition, consider the initial values of Fh). and

Rh for h = E, i.e. at the beginning of the learning process. Whereas F/
represents the (mostly arbitrary) initialization of the function of the adaptive

system, Rc represents the information that all instances of Fe).' for all

values of A in A have in common. In effect, Rc captures all the functional

information that stems from A, and that is specific to the family of learning
algorithms being used.

The definition of Rh yields the following proposition, which we present

without proof (the proof is a trivial lattice identity).

Proposition 4

For all A E A, we have:

Vh: F/ =:J Rh •

This proposition stems readily from the definition of Rh as the meet of

all Fh , for all h : the meet of many terms is lower than anyone term.

H

F

x Y
-Rh --.

X_ F Y
h --.

Figure 3. Abstract Computational Model.

www.manaraa.com

Towards the Verification and Validation of Adaptive Systems 185

3.2. A Concrete Model: The Back-Propagation Learning
Algorithm

In this section, we consider the back-propagation learning algorithm, and
we analyze it to show that it fits the abstract computational model that we
have presented above. The back-propagation algorithm was first developed
by Werbos in 1974 [38] but attracted little attention initially. It was later
independently rediscovered by Parker [30] in 1982 and by Rumelhart, Hinton
and Williams [35] in 1986. The version we present below, taken from [17], is
due to [35].

• Weight Initialization. Set all weights and node thresholds to small
random numbers. Note that the node threshold is the negative of the
weight from the bias unit (whose activation level is fixed at 1).

• Calculation of Activation.

1. The activation level of an input unit is determined by the instance
presented to the network.

2. The activation level OJ ofa hidden and output unit is determined by

OJ = a(LWjiOi - OJ),

where Wji is the weight from an input 0i' OJ is the node threshold,

and a is the sigmoid function:

• Weight Training.

1
a(a) =--

1 +e-a

1. Start at the output units and work backward to the hidden layers
recursively. Adjust weights by

Wji(t + 1) = Wji(t) + flWji

where Wji(t) is the weight from unit i to unit j at time t and flWji is

the weight adjustment.

3. The weight change is computed by

flWji = 1]l5j Oi ,

where 1] is a trial-independent learning rate 0 < 0 < 1 and l5j is the

error gradient at unit j. Convergence is sometimes faster by adding a
momentum term:

Wji (t + 1) = Wji (t) + 1]l5j Oi + a(Wji (t) - Wji (t -1)),

www.manaraa.com

186 Software Engineering with Computational Intelligence

where 0 < a < 1.

4. The error gradient is given by:

• For the output units:

5. = 0 . (1 - 0 .)(T. - 0 .)
J .I .1.1 J

where Tj is the desired (target) output activation and OJ is the

actual output activation at output unit j .

• For the hidden units:

5 j =O/1-0j)L5k WIg'
k

where 5k is the error gradient at unit k to which a connection

points from hidden unit j .

5. Repeat iterations until convergence in terms of the selected error
criterion. An iteration includes presenting an instance, calculating
activations, and modifying weights.

We interpret this algorithm as defining function Fh (see section 3) by

induction on the complexity (length) of h. If we recognize that Fh is not

entirely determined by h but is also dependent on the arbitrary initial
parameters (and their subsequent manipulations) then we rewrite this

function as FhA, where A is the vector of weights

Also, we recognize that the range of values that weights can take evolves
as the algorithm proceeds, hence the term A in the equations of section 3
should, in fact, be indexed with h; to acknowledge this, we write it as A h •

Consequently, we find:

• A &' the initial set of possible weights, is defined by the Weight
Initialization step in the back-propagation algorithm. The initial values
of the weights are usually chosen rather small, since large weights cause
the activation functions to saturate early, and cause the network to be

www.manaraa.com

Towards the Verification and Validation of Adaptive Systems 187

stuck in a very flat plateau or a local minimum near the starting point.
Typically, the initial values of weights are chosen as random values

. - 0.5 + 0.5 D T f
umformly distributed between and , where r anln 0 a

Fanln Fanln
unit is the number of units which are fed forward into this unit [17].

• Aho(X,y) is obtained from Ah by applying the function detailed in the

Weight Training step of the back-propagation algorithm. Specifically, if
we let WT be the function detailed in this step, which has the form

(

WJi (t + 1)] _ ~j;(I)
... -WT

5.
5. }

} O.
}

then Aho(x,y) can be defined as follows:

In light of this, we rewrite the characterization of Rh as follows:

In particular, if we take h = &, we find that A e is the set of all

admissible initial weights, and Re is the meet of all possible functions F/"
for all admissible initial weights. Under some weak conditions (which are
discussed in the sequel), we find a simple expression for Re :

This formula is intuitively appealing: Re is the set of all input output

pairs (x,y) such that (x,y) is in F/" for some admissible initial weighting

A " Note that while Fe). reflects the arbitrary choice of an initial weighting,

Re does not; it only reflects the learning algorithm and the specific network

architecture. More generally, we intend Rh to reflect the learning algorithm,

www.manaraa.com

188 Software Engineering with Computational Intelligence

the network architecture, and the learning data - but not to reflect any
arbitrary choice o/random weights. Note also, on the expression above, that

while FhA is deterministic, Re is (very) non-deterministic; Rh is obtained

from FhA by abstracting away the arbitrary determinacy of FhA.

In order to assess the variability of the system function with respect to
the choice of initial weights, we have run an experiment on a simple back
propagation neural network with one hidden layer, and have submitted to it
learning data about the exclusive or function. Also, we have selected the

initial weights, and have observed how these affect the function FhA for

various values of h. Specifically, h is a sequence of epochs, where each
epoch is made up of the four sets of inputs (combinations of two Boolean
variables) along with their corresponding outputs by the exclusive or
function. The column labeled "10" in figure 4 represents the learning
sequence h made up of ten epochs. By abuse of notation, we can represent
h by the number of epochs in h . We can make the following observations:

• The initial weights have a large impact on the evolution of FhA.
• This impact lasts well into the future, and does not completely disappear

even after several thousand epochs.

For the purposes of our study, this means that Rh remains distinct from

FhA even for a long learning sequence h. Figure 4 also allows us to

visualize the difference between FhA and Rh: For example FhA maps input

(1,1) into 0.95718, whereas Rh also maps it into, among others,

0.70029,0.50565,0.51080.

www.manaraa.com

Towards the Verification and Validation of Adaptive Systems 189

(I, I) 0.95718 0.88763 0.64715 0.572 J3 0.50737 0.12861 0.04999388

(1,0) 0.88929 0.75727 0.49946 0.48526 0.5 1578 0.88881 0.95669980

(0,1) 0.88985 0.76 J31 0.50934 0.48949 0.5 1579 0.88868 0.95675480
(0,0) 0.74329 0.58170 0.41602 0.45580 0.50102 0.09960 0.03909299

W -0.5 7560*'

(I, I) 0.70029 0.58756 0.53496 0.52377 0.51087 0.14863 0.04999296
(1,0) 0.60074 0.51103 0.48290 0.48596 0.49385 0.87160 0.95670090
(0,1) 0.60987 0.52 J3 7 0.48944 0.48869 0.49424 0.87141 0.95675580
(0,0) 0.55051 0.49504 0.48686 0.49964 0.51760 0.11487 0.03909090

W -0.0 8926**
(I, I) 0.50565 0.50740 0.50880 0.50976 0.51116 0.50880 0.04999402
(I,OL 0.48353 0.48525 0.48714 0.48836 0.48878 0.49985 0.95669870
(0,1) 0.49364 0.49367 0.49203 0.49037 0.48888 0.50006 0.95675415
(0,0) 0.51421 0.51434 0.51342 0.51227 0.51134 0.5 \613 0.03909125

Wo* 8942 **
(1,1) 0.51080 0.51098 0.51101 0.51096 0.51118 0.50909 0.04999226

(I,OL 0.48304 0.484 \6 0.48627 0.48794 0.48876 0.49888 0.95670134
(0,1) 0.49480 0.49397 0.49197 0.49027 0.48885 0.49911 0.95675653
(0,0) 0.51010 0.51027 0.51051 0.51073 0.51137 0.51662 0.03908928

* : Random values range from -0.3 to +0.3.
** : Iteration times when network comes to convergence.

Figure 4. One Hidden Layer MLP NN for XOR Problem Trained by BP
Algorithm with Different Initial Weights.

4. VERIFICATION OF ON-LINE LEARNING SYSTEMS
Given that we have derived the functional envelope of a an on-line

learning system (as relation Rh), we discuss now how we can infer

functional properties of the system. We discuss two methods in tum:
Monotonic Learning and Safe Learning.

4.1. Monotonic Learning
The idea of monotonic learning is to ensure that the adaptive system

learns in a monotonic fashion, so that whatever claims we can make about
the behavior of the system prior to its deployment are upheld while the
system evolves through learning. Of course, we can hardly expect Fh to be

monotonic with respect to h, since there is no way to discriminate between
information of Fh that stems from learning and information that stems from

arbitrary choices. In addition, whenever FhA. is total (which is fairly

common), it is in fact maximal in the refinement ordering, hence cannot be
further refined. We can, however, expect Rh to be monotonic, in the
following sense.

www.manaraa.com

190 Software Engineering with Computational Intelligence

Definition 2

An adaptive system is said to exhibit monotonic learning if and only if
for all h in H, and for all (x,y) in X x Y ,

Rh.(x,y) :::J R
- h

where h· (x,y) is the sequence obtained by concatenating h with (x,y).

Rh.(x,y)

Figure 5. Monotonic Learning Increases Rh , Not Necessarily Fh .

Figure 5 illustrates in what sense monotonicity of R does not
necessarily imply monotonicity of F . The challenge of this approach is to
analyze what kinds of restrictions we must impose on the learning algorithm
in order to ensure the monotonicity of R, or, alternatively, what kinds of
learning algorithms ensure this property. Note that the refinement ordering is
reflexive, hence nothing precludes us from a situation where Rh.(x,y) = Rh .

One possible way to ensure monotonicity is to compare Rh.(X,y) against Rh

for refinement, and to discard (x,y) whenever the former does not strictly
refine the latter. In practice this will work only if discarding learning data is
an exceptional occurrence, rather than a routine occurrence.

The interest of monotonic learning is that whatever properties can be
established by analyzing the adaptive system at any stage of its learning are
sure to be preserved (in the sense of refinement) as the system learns. In
particular, all the properties of Re (before learning starts) are maintained as

the system learns. More significantly, any behavior that is exhibited at the
testing phase is sure to be preserved (i.e. duplicated or refined) in field usage.

www.manaraa.com

Towards the Verification and Validation of Adaptive Systems 191

Traditional certification algorithms observe the behavior of a software
product under test, and make probabilistic/ statistical inferences on the
operational attributes of the product (reliability, availability, etc). The crucial
hypothesis on which these probabilistic/ statistical arguments are based is
that the software product will reproduce under field usage the behavior that it
has exhibited under test. This hypothesis does not hold for adaptive neural
nets, because they evolve their behavior (learn) as they practice their
function. Of course, one may argue that they evolve their behavior for the
better; but better in the sense of a neural net (convergence, stability) is not
necessarily better in the sense of correctness verification (monotonicity with
respect to the refinement ordering). Concretely, a neural net may very well
satisfy the test oracle in the testing phase, and fail to satisfy it in the field
usage phase, even though it converges. See Figure 6.

In principle, to apply monotonic learning we need to derive a closed
form expression of Rh , then we derive the condition provided in definition 2

and prove it. Because it is rather impractical to derive a closed form of Rh ,

this approach is unrealistic. As a substitute, we submit sufficient conditions
for monotonic learning, starting with the following proposition.

Proposition 5

If the following conditions holds,

'it A:3A': FhA(x,y) ~ FA'
h '

then the pair(x,y)provides monotonic learning with respect to learning
history h.

www.manaraa.com

192 Software Engineering with Computational Intelligence

Oracle Range

Rh Range, under test

Behaviour
.... o(~ ___ under test

Rh Range, in field

Behaviour
.... o(E-___ in fie Id

Figure 6. Convergence does Not Ensure Monotonicity.

Proof. We must prove that under the condition cited above,

Rh.(x,y) :::J R
- h

To this effect, we proceed by logical implications, starting from our
hypothesis.

V A:3A': Fh~(X,y) ::J FA'
- h

~ { Definition of meet, transitivity}

V A:3A': FhA(x,y) ;;;;J I A'E M A,

~ {Definition}

V XU': Fh~(X,Y) :::J R
- h

~ {Lattice identity }

V XU': I AFh~(X,Y) ;;;;J Rh

~ {Definition}

Rh.(x,y) ;;;;J R
h'

qed

www.manaraa.com

Towards the Verification and Validation of Adaptive Systems 193

We have found that often, function FhA. is total for all h and all A ; this

gives weight to the following proposition, which gives another (weaker, but
no less general) sufficient condition of monotonic learning.

Proposition 6

If F/ is total for any history h and any initial weights A, and the

following condition holds,

V XU': Fh~(x,y) ::J FA.'
- h'

then the pair(x,y)provides monotonic learning with respect to learning

history h.

Proof. We consider the condition

\I X3.1t': FhA.eX,Y) ~ FA.'
h '

Because both terms of this inequation are function, this condition is
equivalent to

V X:lA': Fh~(x,y) => Ft,

Because both functions are total, this condition can further be simplified
as:

qed

In other words, the learning pair (x,y) produces monotonic learning if

and only if appending to learning history h produces the same outcome as
starting with some other initial weight A' and applying the learning history
h. Presumably, A' would have been a better initial weight than A, since we
get the same function for one less learning pair. This condition is not
suggesting to choose a better A, but rather is giving a sense to our concept
of monotonic learning, which provides that as we learn more and more (i.e.

as h increases in length), the range of possible values for function FhA.

decreases. Note that there is no condition to the effect that every value of
FhA. can be attained (by means of changing .It) for history h· (x, y) ; hence

the condition of corollary 5 is ensuring that the range of possible values for

www.manaraa.com

194 Software Engineering with Computational Intelligence

FhA (which is the range of relation Rh) shrinks as h expands. We will

discuss applications of this proposition in section 5.

4.2. Safe Learning
The main idea of safe learning is to ensure that as the adaptive system

evolves through learning, it maintains some minimal safety property S. In
other words, in addition to maintaining the identity

VhVA,Fh
A ~ Rh ,

which stems from the modeling of the system, we also require that the
system maintains the following property

Vh,Fh ~ S

to ensure the safe operation of the adaptive system as it evolves through
learning. By virtue of the lattice-like structure of the refinement ordering, we
infer that F must satisfy:

VhVA,Fh
A ~ (RhU').

See figure 7.

Figure 7. Safe Learning.

www.manaraa.com

Towards the Verification and Validation of Adaptive Systems 195

This can be satisfied if and only if Rh and S do indeed have a join, i.e.

if and only if they satisfy the consistency condition. The aggregate of
conditions that characterize the safe learning of the adaptive system can be
written as:

Vh,RhLI SL=(RhI S)L

Vh,Fh ~ (Rh U S).

These conditions can be maintained by placing restrictions on the
learning algorithms that can be deployed, or by controlling learning data that
gets fed into the adaptive system, as per the following inductive argument:

2. As the basis of induction, these conditions hold for h = E , since is the
minimal element of the lattice of refinement.

6. Given that they hold for h, we can ensure that they hold for h.(x,y)by
accepting entry (x, y) only if it does not violate these conditions.

4.3. Inductive Alternatives
Most traditional program verification methods tackle the complexity of

the task at hand by doing induction on some dimension of program structure
(control structure, data structure, depth of recursion, etc). Likewise, while the
two methods we present here appear attractive, we have no doubt that they
are complex in practice, because they rely on an explicit formulation of the
functional envelope of the system. Hence we are focusing our attention on
means to use induction in such a way that we can apply these methods
without having to derive Rh • The key to the inductive approach is the ability

to derive inductive relationships between Rh and Rh.(X,y)' In the case of the

neural net we have discussed in section 3.2, we know the relation between
successive weights (as defined by the Weight Training function, WT), the
relation between a set of weights (A) and the corresponding system function

(F/) and we know how the functional envelope Rh is derived from system

functions (by taking the meet for all values of A). We must infer from this

the relation between Rh and Rh.(x,y) . See figure 8.

www.manaraa.com

196 Software Engineering with Computational Intelligence

F n
..1,0' &" • FAn • Rh

e

1
wr*

F n
A, h >- F)., » Rh h

1 wr 1 ?

F n
WT(A), .. WT()") • Rh.(x,y)
h·(x,y) Fh-(x,y)

Figure 8. Inductive Structure.

5. ILLUSTRATION: A SIMPLE MULTI LAYER
PERCEPTRON

We consider a simple Multi Layer Perceptron (MLP) with the simplest
of architectures: one input layer, one hidden layer and one output layer, each
containing a single neuron; see Figure 9. We want to use this example to
discuss the condition of monotonicity; to this effect, we first write the

expression of FhA . We find,

where

• Function (j is defined by

1
(j(t) = _/

l+e

• The vector (::) obtained by backpropagation starting from initial

weights ,{" after the learning sequence h .

www.manaraa.com

Towards the Verification and Validation of Adaptive Systems 197

x--~{)~
Figure 9. Architecture ofa (Very) Simple Multi Layer Perceptron.

In order to articulate how the vector of weights (::) is derived from

the initial weights (l) and from the learning history (h), we write

where function Wh is defined inductively (on h) by

• We (A-) = l.

• W.;<,y) (A) ~ WT(W,(A).(;) ,

where WT is, in tum, defined by

(
W] + 17xa(w]x)(1- a(w]x»a(w2a(w]x»(1- a(w2 a(w] x»)(y - a(w2a(w]X»)W2)

W2 + 17a(w]x)a(w2a(w]x»(1- a(w2a(w]x»)(y - a(w2 a(w] x»)

where 17 is the learning rate.

By inspection of the formula of FhA, we infer that FhA is total (since a

is total), hence we use proposition 6, which provides the following sufficient
condition for monotonicity:

V X3l': FhA(x,y)

We interpret this condition as:

V X3l': (Vt : Fh~x,y) (t) = FhA' (t».

www.manaraa.com

198 Software Engineering with Computational Intelligence

Referring back to the formula of FhA, we find that a sufficient (perhaps

also necessary) condition of monotonicity is:

In the sequel, we characterize cases under which this condition is
satisfied; for each case, we present a brief argument, then discuss the
significance of the case.

• The first learning pair produces monotonicity. If we take h = £, we
find:

V,{:lA': Wh'(X,y) (A) = Wh(A')

<=:> {Because h = £ }

VXU': Wh-(x,y) (A) = A'

<=:> {By definition of Wh }

If .13.1': WT(W,(A).(;) = A'

<=:> {Because h = £ }

If .13.1': WT(A'(:) = A'

<=:> { WT is a total function}
true

Given that monotonicity means in effect that the new learning pair
refines (enhances) prior knowledge, there is no doubt that the first pair
always does (by contrast with subsequent pairs, which may conflict with
prior knowledge).

• Duplication produces monotonicity. If we let h be a sequence of length
1, and let the new learning pair be a copy of the first pair, then we satisfy
the condition of mono tonicity. Formally,

VA::lA': Wh-(x,y) (A) = Wh(A')

<=:> {By definition of Wh }

If .13.1': WT(W, (A), (;) = W, (A')
<=:> {Because h = (x,y) = £. (x,y) }

www.manaraa.com

Towards the Verification and Validation of Adaptive Systems 199

VA3A': WT(Wh(A),(:) = WT(W«..l')t)

<=> {By definition of Wh }

V..l3..l': WT(Wh (..1),(:) = WT(..lt)

<= {A sufficient condition}
\7-13-1': -1'= Wh (-1)

<=> { WT is a total function}
true

Repeating the same learning data does not create contradiction.

• Convergence produces monotonicity. We interpret convergence to be the
situation where the new learning pair does not cause any change to the
vector of weights. Fonnally,

Under this hypothesis, the condition of monotonicity

\7 -13-1': FhA(x,y) _ FA'
- h

holds vacuously for -1'= -1. The idempotence of WT holds in
particular when the learning process has converged (for the submitted
learning data). Also, the fonnula of WT for our sample example
provides that we have idempotence whenever the learning pair (x,y)
satisfies the conditions:

6. CONCLUSION

W
x=O,y=0"(_2).

2

On-line learning systems in general, and their neural net implementations
in particular are gaining increasing acceptance in control applications, which
are often characterized by complexity and criticality. A significant obstacle
to their acceptance and usefulness/ usability is the lack of adequate
verification/certification methods and techniques, as all traditional methods
and techniques are inapplicable. In this paper we are presenting a tentative
computational model for on-line learning systems and we use this model to

www.manaraa.com

200 Software Engineering with Computational Intelligence

sketch verification methods. Among the main contributions of our work, we
cite:

• An abstract computational model that captures the functional properties
of an evolving adaptive system by abstracting away random factors in
the function of the system, to focus exclusively on details that are
relevant to the learning algorithm and the learning data.

• The integration of this computational model into a refinement logic,
which establishes functional properties of adaptive systems using
refinement-based reasoning.

• The introduction of two venues for verifying adaptive systems: one
based on monotonic learning (the adaptive equivalent of testing), and
one based on safe learning (the adaptive equivalent of proving).

• The introduction of a (sketchy, so far) framework for inductive reasoning
on adaptive systems; this framework is based on the proposed
computational model, and aims to support the adaptive equivalent of the
inductive methods of program proving.

• Some preliminary exploration of monotonic learning, whereby we
provide sufficient conditions for monotonic learning, discuss them, and
illustrate them.

While this work is still in its infancy, we feel that it has introduced some
meaningful concepts and has opened original venues for further exploration,
by taking a refinement-based approach.We envisage the following extensions
to this work:

• Experiment, be it on small examples, with the derivation of the
functional envelope (Rh) of the system, and analyze what the conditions

of monotonic learning and safe learning mean in practice. While it is
easy to compute relation Rh extensionally, by listing some of its pairs

(as we have done in figure 4), it is not trivial to derive a closed form
expression of it.

• Investigate means to obviate the need to derive an explicit closed form
expression for Rh , by exploring inductive arguments that allow us to

ensure monotonic learning and safe learning without computing the
functional envelope.

• Fine-tune the proposed computational model and investigate its
applicability to other forms of on-line learning systems (other than the
back-propagation algorithm).

• Derive tighter sufficient conditions for monotonicity, and further analyze
the condition of safe learning.

• Explore inductive proof methods for adaptive systems, along the lines of
the framework proposed in this paper.

www.manaraa.com

Towards the Verification and Validation of Adaptive Systems 201

This research is currently under way. Cutting across all the research
directions is the issue of scaling up; we are interested in exploring how our
proposed solutions can scale up to realistic applications. Whereas traditional
methods of verification of neural nets produce statistical results, our long
term goal, in this work, is to produce logical claims we can make about the
current and future behaviour of the system.

NOTES
* This work is funded by grants from NASA Dryden Flight Research Center,

through the Institute of Software Research (Fairmont, WV), and from NASA
Goddard Space Flight Center, through NASA IV\&V Facility (Fairmont, WV).

REFERENCES
[I] 1.R. Abrial. The B Book: Assigning Programs to Meanings. Cambridge

University Press, 1996.

[2] Ch. Alexander, D. DeiGobbo, V. Cortellessa, A. Mili, and M. Napolitano.
Modeling the fault tolerant capability of a flight control system: An exercise in
SCR specifications. In Proceedings, Langley Formal Methods Conference,
Hampton, V A, June 2000.

[3] H. Ammar, B. Cukic, C. Fuhrman, and Mili. A comparative analysis of
hardware and software fault tolerance: Impact on software reliability
engineering. Annals of Software Engineering, 10,2000.

[4] A. Avizienis. The n-version approach to fault tolerant software. IEEE Trans. on
Software Engineering, 11(12), December 1985.

[5] R.J. Back and 1. von Wright. Refinement Calculus: A Systematic Introduction.
Graduate Texts in Computer Science. Springer Verlag, 1998.

[6] N. Boudriga, F. Elloumi, and A. Mili. The lattice of specifications: Applications
to a specification methodology. Formal Aspects of Computing, 4:544--571,
1992.

[7] M. A. Boyd, 1. Schumann, G. Brat, D. Giannakopoulou, B. Cukic, and A. Mili.
Ifcs project: Validation and verification (v&v) process guide for software and
neural nets. Technical report, NASA Ames Research Center, September 2001.

[8] Ch. Brink, W. Kahl, and G. Schmidt. Relational Methods in Computer Science.
Springer Verlag, New York, NY and Heidelberg, Germany, 1997.

[9] Rodney A. Canfield. Meet and join within the lattice of set partitions. Technical
report, The University of Georgia, Athens, 200 I.

[10] M. Caudill. Driving solo. Al Expert, pages 26--30, September 1991.

[11] C. H. Dagli, S. Lammers, and M. Vellanki. Intelligent scheduling in
manufacturing using neural networks. Journal of Neural Network Computing,
pages 4--10, 1991.

[I 2] J. Dean. Timing the testing of cots software products. In First International
ICSE Workshop on Testing Distributed Component Based Systems, Los
Angeles, CA, May 1999.

[13] Jules Desharnais, Ali Mili, and Thanh Tung Nguyen. Refinement and demonic
semantics. In Brink et al. [8], chapter II, pages 166--183.

[14] E.W. Dijkstra, A Discipline of Programming. Prentice Hall, 1976.

www.manaraa.com

202 Software Engineering with Computational Intelligence

[15] D. Bernard et al. Final report on the remote agent experiment. In NMP DS-J
Technology Validation Symposium, Pasadena, CA, February 2000.

[16] B. Fritzke. Growing self-organizing networks - why. In European Symposium
on Artificial Neural Networks, pages 61--72, Brussels, Belgium, 1996.

[17] LiMin Fu. Neural Networks in Computer Intelligence. McGraw Hill, 1994.

[18] P. Gardiner and C.C. Morgan. Data refinement of predicate transformers.
Theoretical Computer Science, 87: 143--162, 1991.

[19] D. Del Gobbo and B. Cukic. Validating on-line neural networks. Technical
report, Lane Department of Computer Science and Electrical Engineering, West
Virginia University, December 2001.

[20] D. Gries. The Science of programming. Springer Verlag, 1981.

[21] H. Hecht, M. Hecht, and D. Wallace. Toward more effective testing for high
assurance systems. In Proceedings of the 2nd IEEE High Assurance Systems
Engineering Workshop, Washington, D.C., August 1997.

[22] Internet. Program verification system. Technical report, SRI International
Computer Science Laboratory, 1997.

[23] J. A. Leonard, M. A. Kramer, and L. H. Ungar. Using radial basis functions to
approximate a function and its error bounds. IEEE Transactions on Neural
Networks, 3(4):624--627, July 1991.

[24] M. Lowry, M. Boyd, and D. Kulkarni. Towards a theory for integration of
mathematical verification and empirical testing. In Proceedings. 13th IEEE
International Conference on Automated Software Engineering, pages 322--331,
Honolulu, HI, October 1998. IEEE Computer Society.

[25] Z. Manna. A Mathematical Theory of Computation. McGraw Hill, 1974.

[26] H.D. Mills, V.R. Basili, J.D. Gannon, and D.R. Hamlet. Structured
Programming: A Mathematical Approach. Allyn and Bacon, Boston, Ma, 1986.

[27] C.c. Morgan. Programming from Specifications. International Series in
Computer Sciences. Prentice Hall, London, UK, 1998.

[28] M. Napolitano, G. Molinaro, M. Innocenti, and D. Martinelli. A complete
hardware package for a fault tolerant flight control system using on-line learning
neural networks. IEEE Control Systems Technology, January 1998.

[29] M. Napolitano, C. D. Neppach, V. Casdorph, S. Naylor, M. Innocenti, and G
Silvestri. A neural network-based scheme for sensor failure detection,
identification and accomodation. AIAA Journal of Control and Dynamics,
18(6):1280--1286,1995.

[30] D.B. Parker. Learning logic. Technical Report S81-64, Stanford University,
1982.

[31] G. E. Peterson. A foundation for neural network verification and validation.
SPIE Science of Artificial Neural Networks II, 1966: 196--207, 1993.

[32] D. K. Pradhan. Fault Tolerant Computing: Theory and Practice. Prentice-Hall,
Englewood Cliffs, NJ, 1986.

[33] B. Randall. System structure for software fault tolerance. IEEE Transactions on
Software Engineering, SE-1 (2), 1975.

[34] Orna Raz. Validation of online artificial neural networks ---an informal
classification of related approaches. Technical report, NASA Ames Research
Center, Moffet Field, CA, 2000.

www.manaraa.com

Towards the Verification and Validation of Adaptive Systems

[35] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal
representations by error propagation. In Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, Volume I: Foundations. MIT
Press, Cambridge, MA, 1986.

[36] D.P. Siewiorek and R. S. Swarz. The Theory and Practice of Reliable System
Design. Digital Press, Bedford, Mass, 1982.

[37] Boeing Staff. Intelligent flight control: Advanced concept program. Technical
report, The Boeing Company, 1999.

[38] P.J. Werbos. Beyond regression: New tools for prediction and analysis in the
behavioral sciences. Technical report, Harvard University, 1974.

[39] 1. Von Wright. A lattice theoretical basis for program refinement. Technical
report, Dept. of Computer Science, Abo Akademi, Finland, 990.

203

www.manaraa.com

Experimenting with Genetic Algorithms to Devise
Optimal Integration Test Orders

Lionel C. Briand, Jie Feng and Yvan Labiche

Software Quality Engineering Laboratory
Carleton University
Department of Systems and Computer Engineering
1125 Colonel By Drive
Ottawa. ON, KIS 5B6. Canada
{briand. labiche}@Sce.carleton.ca

ABSTRACT
We present here an improved strategy to devise optimal integration test
orders in object-oriented systems in the presence of dependency cycles. Our
goal is to minimize the complexity of stubbing during integration testing as
this has been shown to be a major source of expenditure. Our strategy to do
so is based on the combined use of inter-class coupling measurement and
genetic algorithms. The former is used to assess the complexity of stubs
(each coupling measure capturing a dimension of this complexity) and the
latter is used to minimize cost functions based on coupling measurement.
Using a precisely defined procedure. we investigate this approach in a case
study involving five real systems. Results are very encouraging as the
approach clearly helps obtaining systematic results that are close to be
minimal in terms of stubbing complexity.

1. INTRODUCTION
One important problem when integrating and testing object-oriented

software is to decide the order of class integration [3]. A number of papers
have provided strategies and algorithms to derive an integration and test
order from dependencies among classes in a system [6, 17, 18, 21, 24]. The
objective of all these approaches is to minimize the number of test stubs to
be produced, as this is perceived to be a major cost factor of integration
testing. Stubs are software units that are necessary to run the software under
test (i.e., it depends on them) and that must be developed as part of the test
harness along with drivers and oracles [2]. Such a need stems from the fact
that, in most software development projects, components are developed and
tested concurrently by different developers and integration begins before the
component development and testing phase are complete.

One specific issue is how to deal with dependency cycles, which prevent
any topological ordering of classes. This is important as class diagrams (e.g.,
UML class diagrams defined during Analysis or Design, or reverse
engineered) of most object-oriented software systems contain dependency
cycles. All the solutions proposed in [6, 21, 24] are based on the principle of

www.manaraa.com

Experimenting with Generic Algorithms to Devise Test Orders 205

"breaking" some dependencies to obtain acyclic dependencies between
classes. A broken dependency implies that the target class will have to be
stubbed when integrating and testing the source class. Furthermore, all these
solutions are based on search algorithms in directed graph representations of
class dependencies, and we discuss below what the limitations and
advantages of such an approach are.

A first attempt has been made to use Genetic Algorithms (GA's) to
address the test order issue [20]. GA's are a family of global optimization
techniques based on heuristics and developed by the artificial intelligence
community [8]. In [20], the authors report experiments on six different
systems (4 of which are libraries) that yield overall poorer results with GA's
when compared with their graph-based approach. However, little information
and justification regarding the settings used for the GA (e.g., cross-over and
mutation rate values, population sizes) are provided and, considering that
these algorithms are known to be sensitive to such parameters, it is difficult
to generalize or conclude from these results. Furthermore, the inherent
uncertainty related to GA's (which are based on heuristics) is not
investigated and little insight is given on some ofthe most unexpected results
(e.g., in the Java library, 7 stubs break 8 thousand cycles!). We thus believe
that a rigorous, scientific investigation of the use of GA's is necessary, thus
precisely characterizing their strengths and limitations, and the conditions
under which they are a useful alternative.

In practice, we would like to refine graph-based algorithms in order, for
example, to account for the complexity of dependencies between classes. In
other words, different dependencies that we consider breaking may lead to
stubs of widely varying complexity. Such complexity is driven by the
coupling that exists between the client and server class of a dependency. If
the client uses a lot of features of the server, then breaking the dependency is
expected to lead to an expensive stub. Given our objective, modifying graph
based algorithms to account for stub complexity based on coupling
measurement turns out to be very complex and leads to intractable
algorithms.

In order to address this problem, and for reasons that are described
below, we then turned our attention to Genetic Algorithms (GA's). As
further discussed below, the main motivation for using these algorithms is
their flexibility and practicality in using a large range of optimization
problems. Their popularity in software engineering is growing as many. of
the problems we face can be re-expressed as optimization problems. This is
further illustrated by a recent journal issue dedicated to the applications of
metaheuristics algorithms to software engineering [14]. This paper focuses
on the best ways to use GA' s in order to devise optimal test orders based on
dependency coupling measurement between client and server classes.

www.manaraa.com

206 Software Engineering with Computational Intelligence

Last, there exist other integration strategies that are not based on class
diagram information, as derived from the software design or reverse
engineering. They rather associate a functional description with (a set of)
classes. For instance, in [15], Atomic System Functions (ASF), which
involve system inputs and outputs, and exercise Method/Message paths
between objects, drive the integration test of classes. These ASFs correspond
to a functional decomposition of the system, which is similar to use cases.
The objective of the strategy is not to minimize test stubs but to execute
complete, end-user functionalities, in an incremental manner during
integration. Similar strategies using use cases can be found in [3, 22]. Since
these strategies are not explicitly based of the class diagram, they will not be
detailed and compared in this article. Though this is a topic of future
research, it is very likely that in practice, those two sets of strategies would
have to be combined.

We provide motivations and a methodology in Section 2. Section 3 then
provides the detailed results of five case studies where we demonstrate that
the approach is not only feasible but also yields low stubbing complexity test
orders. Section 4 concludes and outlines future research.

2. APPLYING GENETIC ALGORITHMS TO THE TEST
ORDER PROBLEM

We first provide some motivations that lead us to select Genetic
Algorithms over alternative approaches (Section 2.1). We then go into
presenting an overview of the relevant, fundamental principles we will be
using in the remainder of the paper (Section 2.2). We then go into describing
how we tailored Genetic Algorithms to our specific problem and report a
procedure to use them to devise low stubbing complexity test orders
(Section 2.3).

2.1. Motivations
We first discuss the integration order problem in more depth. We then

discuss why it is difficult to adapt existing graph-based algorithms to
accommodate our needs in determining test orders and then justify why
Genetic Algorithms seem to be a good alternative to investigate.

2.1.1. The Integration Order Problem

Once classes have been developed and tested in isolation, one important
problem is to integrate them into a (sub)system. Due to the usual problems
associated with big-bang integration, classes need to be integrated one at a
time or, in some cases, in small clusters. A practical question is now to
define precisely what an optimal integration order actually is. We need to

www.manaraa.com

Experimenting with Generic Algorithms to Devise Test Orders 207

define evaluation criteria to compare orders and find algorithms that can
identify (near) optimal orders automatically.

A natural evaluation criterion is the stubbing effort required to integrate
classes according to a specific order. If an order integrates classes when
some of the classes they depend on are not yet integrated, the development of
stubs to substitute for those classes is necessary to perform integration
testing. It has been observed that such stubbing is error-prone and
significantly increases the cost of integration testing [2].

Existing algorithms that devise class test orders are typically based on
analyzing dependencies between classes [6, 16, 18, 21, 24]. If there are no
cycles of dependencies among classes, the problem becomes a simple
topological sorting issue, a well-known graph theory problem [11], and it is
then possible to obtain integration orders that do not require the stubbing of
any class. In the case where dependency cycles can be observed, there is not
choice but to integrate some classes when certain classes they depend on are
not yet integrated. This leads to the development of stubs and significantly
increases the cost of integration testing. In such a situation, we need to devise
integration orders that minimize stubbing effort. Since such effort cannot be
directly measured or estimated, we need to resort to indicators.

Another important point to mention is that, though we focus on ordering
class integration in this paper, the method we investigate can be applied at
higher levels of integration. For example, in a very large system, we can
easily imagine two or more levels of integration. A first level is concerned
with integrating classes into subsystems, within each sub-team of the project.
The second level would then address the integration of subsystems into a
complete system. In large, complex systems, the dependencies among
subsystems may be complex and show cycles. Those dependencies are
determined by the public classes within subsystems, which form their public
interface to other subsystems.

2.1.2. Graph-Based Solutions are not Satisfactory

Our previous work considered the number of stubs as an estimator for
the cost associated with the construction of stubs, that is the number of
dependencies to break so as to obtain an acyclic class dependency graph, and
then applying topological sorting to obtain an integration test order. As a
consequence, the problem was a graph-searching problem and was solved
using typical graph algorithms. Basically, the proposed solutions in [6] and
[21] consist in recursively identifying strongly connected components (SeC)
and then, in each see, removing one ~ependency that maximizes the
number of broken cycles. These solutions consider two distinct but simple
cost functions to select the dependency to break at each recursion step, but
they share the commonality of always optimizing their choice of

www.manaraa.com

208 Software Engineering with Computational Intelligence

dependencies to break at a given stage of recursion, without determining the
consequences on the ultimate results (i.e., they are both a greedy algorithm).
We will see next how this becomes a serious limitation in the context we
stated in Section 1.

Let us first recall our needs in terms of devising optimal integration
orders. We already mentioned the coupling associated with client-server
dependencies, for which we can provide several complementary and
alternative measures, e.g., number of calls made by the client class to the
server class, number of distinct methods invoked. If such coupling is
accounted for, we may find ourselves in a situation where, for instance,
breaking two dependencies has a lower cost (i.e., coupling) than breaking
only one dependency that would make the graph acyclic in one step.
Furthermore, we would like to consider constraints, due to organizational or
contractual reasons, which would then result into some classes not being
available (developed and tested) before others during integration. In practice,
such situations constrain the optimal ordering solution we are searching.

Given the above requirements, adapting the previous graph-based,
stepwise strategies seems difficult or even impossible. The cost functions we
are minimizing here (see Section 2.3.2) are highly non-linear and are likely
to present many local minima in which a stepwise algorithm may get stuckI.
Consequently, using coupling information in the cost function would require
the identification, in each SCC, of all the subsets of breakable dependencies
(e.g., pairs, triplets) that would make the graph acyclic and the determination
of their associated cost to select an optimal solution. This is not a viable
solution for any realistic class diagram.

Similarly, when using a stepwise search algorithm, it is difficult to
determine whether breaking a dependency at a given step will not lead to
orders, at subsequent steps, that will transgress some of the constraints which
limit our search.

2.1.3. Moving to Genetic Algorithms

The solution space to our problem is the set of all possible test orders for
a given system. So our solution is represented as an order (or at least a
partial order) of classes and optimization means, in our context, searching
for an order that minimizes a cost function. This cost function will be
described in detail below but, based on our objectives, it is clear that it will
be based on measuring dependencies/coupling between client and server
classes and will consist in minimizing such coupling while breaking
dependencies to remove cycles. In short our problem is a constrained, multi
objective optimization problem as it may involve a number of coupling
measures.

www.manaraa.com

Experimenting with Generic Algorithms to Devise Test Orders 209

Genetic algorithms (GA's) are a specific type of optimization techniques
that are based on a set of heuristics and involve a non-trivial and careful
setting of a number of parameters. The basic principles that are relevant to
our problem will be summarized in the next section. In our context, one of
their interesting characteristics is that they prevent the optimization search
from getting stuck into local minima and this is why they are often referred
to as global optimization techniques. GA's are also known to help solve
complex, non-linear2 problems that often lead to cases where the search
space shows a curvy, noisy "landscape" with numerous local minima [14].
However, as they are based on heuristics there is no guarantee they will find
the absolute, global minimum.

A category of GA's is designed to address so-called routing or
scheduling problems [8], which is very much related to our integration test
order problem. A typical example is the Traveling Salesperson Problem
(TSP) where N towns are distributed around a two dimensional Euclidian
space. The salesperson is assumed to traverse all the N towns, starting with
an initial one and getting back to it in the end. The problem is to minimize
the distance (cost function) covered by the salesperson while achieving this
objective. The representation of the problem is also an order, more precisely
a sequence of towns being traversed. Though there are significant differences
between our problem and the TSP, we can see that it is analogous since it
looks for an optimal order minimizing a cost function. Furthermore, reported
examples of scheduling and routing problems (e.g., [28]) suggest that GA's
provide satisfactory results. The most important differences between our
integration order problem and the TSP problem mainly stems from our cost
function:

• In the TSP, if the order places A before B or vice-versa, the cost is the
same as it is the distance between the two towns. This is not the case in
our context where one solution may entail a stub whereas the other one
does not.

• Similarly, since the distance is the cost in the TSP, the triangle inequality
holds where the distance of ABC is equal or larger than that of AC. Such
inequality has no reason to hold in our context.

Those differences could have significant impact on the ability of the GA
to converge towards an optimal solution and this further justifies the need to
perform case studies to assess the ability of GA' s to solve the integration test
order problem. Another difference with the TSP problem is the fact that we
will need to find an optimal solution under constraints specifying whether
orders are acceptable or not. Section 2.3.3 shows how this can be practically
achieved with GA's. Furthermore, it is interesting to note that, though
deterministic algorithms to compute near-optimal tours in the TSP problem
have been proposed [19], the differences above prevent us from using them.

www.manaraa.com

210 Software Engineering with Computational Intelligence

Another practical motivation to use GA's is that commercial tools have
reached a high level of maturity and provide convenient features for solving
real-scale problems. This is further discussed in Section 3.1.

2.2. Fundamental Principles and Application to Scheduling
Problems

A Genetic Algorithm (GA) is an optimization technique that has the
ability to find a global optimum, and avoid getting stuck in a local optimum.
However, finding the global optimum is not guaranteed as GA's are based on
heuristics. Therefore, for each new problem to be solved, it is necessary to
investigate empirically how GA's perform in representative situations. A GA
allows an initial population composed of many solutions to the problem
stated (called chromosomes) to evolve under specified selection rules to a
state that optimizes (say, minimizes for the rest of this discussion) a cost
function. The parameters involved in the cost function one wants to
minimize are first encoded into a chromosome (e.g., a chromosome can be
seen as an ordered list of parameter values). There are several possible
encoding strategies to specify how a solution is represented and their
adequacy depends on the problem under consideration (e.g., continuous
function optimization or order optimization). In all cases a chromosome is
composed of a number of genes. When the initial population evolves from
one generation to the other, the best chromosomes are preserved whereas the
others are discarded to make room for the new offspring(s). This emulates
natural selection that keeps the best-fitted individuals. New offsprings are
produced using an evolution operator, named crossover, so as to keep the
same number of individuals in the next generation. A crossover produces two
new chromosomes that share part of the genes coming from two of the best
chromosomes in the original population. Another operator, called mutation,
affects the population by mutating some of the genes of the chromosomes.
These operators allow the algorithm to leave the area, in the solution space,
of a minimum that may tum out to be local. Though the overall principles
make sense, a number of questions arise in practice:

• What is an adequate encoding for the problem?
• What are possible crossover and mutation operators, which are adapted

to the selected encoding?
• What is the rationale for the use of specific crossover and mutation

operators?
• What should be the size of the initial population?
• What should be the number of best-fitted chromosomes kept from one

generation to the other?
• How do we consider we have obtained an acceptable solution?

www.manaraa.com

Experimenting with Generic Algorithms to Devise Test Orders 211

Let us now consider our integration test problem and answer these
questions in context. Recall we need to determine an order of class
integration that is optimal in the sense that it minimizes stubbing complexity
(our cost function). The first step is to decide how to encode the solution to
our problem. It seems natural in our case to select a permutation encoding:
Every chromosome is a string of class labels. For a set of classes {A, B, C,
D}, a possible chromosome is the sequence (B C A D): The population from
which new generations are generated is a set of such chromosomes, e.g., {(B
C A D), (B C D A), ... }.

Recall that in the context of GA's, crossover and mutation operators
need to be performed on the original population and subsequent generations
until we believe we have obtained an acceptable (possibly optimal) solution.
Those operators are specific to permutation encoding as they need to ensure
that correct sequences are produced, that is sequences with strictly one
occurrence of each class. Mutation is implemented by selecting two classes
and swapping their positions in the chromosome. For example, highlighting a
randomly selected pair of genes (classes in our test order), (B C D A) is
mutated into (B DCA). Crossover is a more complex operator and several
crossover operators have been proposed in the literature for permutation
encoding [13]. One of them, which is used in our study, is described in [9]
and works as follows: Genes (classes in our context) are randomly selected
from a first parent chromosome (test order), their places are found in the
other parent, and the remaining genes are copied into the first parent in the
same order as they appear in the second parent. This preserves some of the
sub-orderings in the original parents while creating some new sub-orderings.
For example, if we assume the following two parent chromosomes:

Parent 1: (A BCD)

Parent 2: (D C B A)

If we further assume that A and C are selected in the first parent, we
produce a first child chromosome as follows:

• We obtain (A - C -), where A and C have been selected and '-' are gaps;
• We fill in the gaps with Band D in the order they are encountered in

parent 2 and obtain (A D C B).

GA's also require that a number of parameters be set. The first one is the
population size. It has an impact on the speed of the GA convergence
towards an optimal solution and its capability to avoid local optima. Larger
population sizes increase the amount of variation present in the initial
population at the expense of requiring more cost function evaluations and
longer execution times. Typical population sizes in the literature range
between 25 and 100 [1]. However, for longer chromosomes and challenging
optimization problems, larger population sizes are needed to ensure diversity

www.manaraa.com

212 Software Engineering with Computational Intelligence

among the chromosomes and hence allow a more thorough exploration of the
solution space. In the context of integration orders, the population size will
consequently be driven by the number of classes in the class diagram. As a
heuristic, having a population size of two or three times the number of
classes should be sufficient.

Another parameter is the crossover rate, that is the probability that a
chromosome will undergo a crossover. Typical rates in the literature for the
TSP range from 0.5 to 0.6, consistent with De Jong's simulation results [10].
He reported that, on a number of different optimization problems, simulation
results suggested that a crossover rate of roughly 0.6 was a good compromise
between a number of performance measures.

Mutation prevents the GA search to fall into local minima, but they
should not happen too often or the search will converge towards a random
search. The mutation rate is defined as the probability for a chromosome to
undergo a mutation. Typically, for the TSP, the literature reports rates around
0.15. Recent theoretical work provides a rule of thumb of liN, where N is the
number of genes in the chromosomes [1]. [27] argue that for more complex
encoding, such as order encoding, high mutation rates can be both desirable
and necessary.

2.3. Tailoring and Application Procedure
In this section, we present how the Genetic Algorithm was parameterized

based on the specifics of our study and results reported in the literature. We
then define what cost functions will be minimized and how we proceed to a
priori restrain our search space.

2.3.1. Parameter Settings

We selected a mutation rate of 0.15, consistent with the literature on the
TSP. We also tried 0.05 and 0.1, to be more in line with the lIN heuristic
stated above, but it did not make any significant difference. Regarding the
crossover rate, we tried both 0.5 and 0.6, noticing no significant difference
and decided to pursue the experiments with 0.5. Our population is made of
100 chromosomes, this being the largest population size in most case studies
in the literature and far larger than the number of genes in the chromosomes
of our case study (Section 3).

Last, we allow for 500 trials to converge towards an optimal result.
Preliminary experiments using larger numbers showed that this was
sufficient to converge, thus saving us significant computation time. A related
point to mention is that we use steady-state replacement strategy [9]: A large
proportion of the chromosomes in a population should survive to the next
generation. The underlying rational is that we should ensure we preserve the
best-found solutions in the next generation. In our particular case, one

www.manaraa.com

Experimenting with Generic Algorithms to Devise Test Orders 213

chromosome (the worst one) gets replaced at each trial after two parent
chromosomes are selected (the best-fitted chromosomes are more likely to be
selected) and an offspring is generated by performing crossover and mutation
operations on them, as described in Section 2.2. Note that we use the term
best-found to denote the best result obtained with GA's. Since they make use
of search heuristics, there is no guarantee to obtain the optimal order, which
remains unknown. We also sometimes refer to sub-optimal orders to mean
results that are less satisfactory than the best-found order.

2.3.2. Measuring Stubbing Complexity

A number of dependencies can be found between classes in a UML class
diagram. Compositions and inheritance relationships are considered
unbreakable in our strategy as, according to our heuristic, breaking them
would likely lead to complex stubs. Such relationships usually entail tight
dependencies between the client/parent and server/child classes [6]. For
remaining dependencies, that is associations, simple aggregations, and usage
dependencies, we compute a complexity based on the level of coupling they
involve. In this paper, we measure coupling in two simple, intuitive ways:

A (Dependency): The number of attributes locally declared3 in the target
class when references/pointers to instances of the target class
appear in the argument list of some methods in the source class,
as the type of their return value, in the list of attributes (data
members) of the source class, or as local parameters of methods.
This complexity measure counts the (maximum) number of
attributes that would have to be handled in the stub if the
dependency were broken.

M(Dependency): The number of methods (including constructors)
locally declared3 in the target class which are invoked by the
source class methods (including constructors). This complexity
measure counts the number of methods that would have to be
emulated in the stub if the dependency were broken. Note that
this is an approximation as some of the methods can be
overridden.

More measures could be defined in the future [4], but those two
measures are enough to illustrate the benefits of our approach. Based on the
two measures AO and MO, we can then define a cost function to be
minimized by the GA. We define the complexity of a dependency as being
the geometric average of all complexity measures, i.e., AO and MO in the
current example. However, before we compute such an average we need to
make sure the resulting complexity is not sensitive to the measurement units
of each complexity measures. For examples, if the number of methods tend
to be on average higher than the number of attributes, MO will have a larger

www.manaraa.com

214 Software Engineering with Computational Intelligence

weight than AO in the total complexity of a dependency, though this was not
originally intended. To address this issue, we normalize AO and MO so that
their range is between 0 and 1. In mathematical terms, for a measure CpixO,
we compute its corresponding normalized measure CplxO. If we assume

that complexity information is represented as a matrix Cplx(i,j) where rows
and columns are classes and i depends on j, we have to compute Cplxmin =
Min{Cplx (i, j), i, j = 1,2, ... } and Cplxmax = Max{Cplx (i, j), i, j = 1,2,
..... } and then perform the following computation:

Cplx(i,j) = Cplx(i,j)/
/ Cplxmax - Cplxmin

For the two complexity measures we define here, the minimum of
complexity value is 0 and the equation can be simplified:

C I (..) - CPIX(i,;%) p Xl,; - C I
P Xmax

Then, based on AO and MO, the overall stubbing complexity SCplx(i,}),
for a dependency linking a pair of classes (i,}) , can be computed as a
weighted geometric average of the normalized measures:

SCplx(i,j) = (WA . A(i,j)2 + WM .M(i,j)2)1/2

where WA and W M are weights and W A + W M= 1.

For a given test order 0, a set of d dependencies (i.e., denoted above as
pairs of classes) to be broken is identified and an overall complexity can be
computed for the order as:

d

OCplx(o) = ISCplx(k)
k=l

The measure OCplxO is the cost function we try to minimize by using
GA. Fully defining such a cost function requires the determination of
weights for all complexity measures involved, e.g., WA and WM. On the one
hand, those weights allows the user to tailor the cost function to its own
intuitions about the kinds of complexity that have more bearing on stubbing
effort. On the other hand, this is difficult as setting such weights is a
subjective task. This is further discussed in Section 3.4 based on the results
presented in Section 3.3.

2.3.3. Constraints

Recall that, according to our strategy, Inheritance and Composition
dependencies cannot be broken. This means the base/container classes must
precede child/contained classes in any order that is generated by the GA. In
other words, we must optimize the integration order under certain

www.manaraa.com

Experimenting with Generic Algorithms to Devise Test Orders 215

constraints. As we will see, many GA tools such as Evolver [23] allow for
the specification of a precedence table where the conditions for a new
offspring to be acceptable are specified under the form of a partial order. If
after applying crossover and mutation operators to selected parent
chromosomes an offspring does not fulfill the constraints in the precedence
table, the tool backtracks and a new offspring is re-generated until it
conforms with the precedence table. The details of such backtracking
algorithms vary from tool to tool and are usually proprietary.

Another important set of constraints comes from the fact that we only
accept breaking Association and Usage dependencies that are part of at least
one dependency cycle. Integration orders that do not fulfill such constraints
are by definition suboptimal. In our previous work where graph-based
approaches were explored for optimizing test orders [6], we used Tarjan's
algorithm [25] to detect strongly connected components (See's) in the graph
formed by classes and their dependencies. This algorithm can be used again
here to detect see's and only dependencies between classes part of at least
one see should be considered for breaking by the GA. While this type of
constraints is in theory not required by the GA to converge towards optimal
orders we have observed that the speed of convergence significantly
increased by doing so (less generations and execution time). The constraints
turned out to be a very effective way to constrain the search space and
improve the effectiveness of the GA heuristics.

Another interesting source of constraints comes from the use of design
patterns in the class diagram. Let us take as an example the state design
pattern [12], which is typically used to design classes with a state dependent
behavior. The context class, whose state is being modeled, is related through
an aggregation relationship to an abstract class State (see Figure 1). Every
time the context class receives a message, its state is likely to change, thus
requiring a message being sent to an instance of one of the subclasses of
State. In tum, the subclasses instances may invoke action methods (e.g.,
Actionl) in the context class. In this situation, even if the aggregation is a
candidate for breaking when involved in a cycle, it does not seem reasonable
to separate the test of classes Context and State during integration testing.
Though this needs to be further studied, similar conclusion can be drawn
when using other design patterns.

www.manaraa.com

216 Software Engineering with Computational Intelligence

Figure 1. State Design Pattern.

In practice, yet another source of constraints stems from the availability
of personnel or other development resources (e.g., off-the-shelf or
outsourced software). The integration order is going to drive the
development order as classes and subsystems need to be ready and tested
when they are to be integrated. For example, though according to some
optimal integration order some classes need to be developed before others,
no personnel with suitable skills may be available and, therefore, such an
integration order is simply not applicable. So it is important that such
practical considerations be taken into account when finding optimal
integration orders as they may playa key role in determining their feasibility.

All constraints, regardless of their source, may easily be accounted for
when using GA tools through the use of precedence table and backtracking
mechanisms.

3. CASE STUDIES
We describe in the first subsection our five case studies. Due to space

constraints, details on how we reverse-engineered the class dependencies,
and the coupling values, from the corresponding Java source code are not
included in this article. The reader is invited to read the detailed descriptions
provided in [5]. Such detailed information regarding the reverse-engineering
of the ORDs (e.g., how to identify usages) was not provided in [20], thus
preventing us from comparing their results regarding the use of Genetic
Algorithms with ours. Results are then reported in the next subsection. For
the five case studies, class diagrams and corresponding relationship tables,
dependency matrices, precedence tables, coupling matrices, as well as some
sample orders for each cost function on which are based the results below are
not reported here but can be found in [5].

3.1. Design of Case Studies
The first system is an Automated Teller Machine (ATM) simulation (the

classes connected to hardware devices are missing). The class diagram is
made of 21 classes and 67 relationships, and contains 30 cycles4 involving 8

www.manaraa.com

Experimenting with Generic Algorithms to Devise Test Orders 217

of the 21 classes. The second system, named Ant, is part of the Jakarta
project (http://jakarta.apache.org). Ant creates and maintains open source
solutions on the Java platform for distribution to the public at no charge. The
Ant system is a Java based build tool similar to the make tool on Unix
platforms: It maintains, updates, and regenerates related programs and files
according to their dependencies (e.g., compilation units). The class diagram
consists in 25 classes and 83 relationships, and contains 654 cycles involving
12 of the 25 classes. The third example, named SPM (Security Patrol
Monitoring), is a course project implemented by a graduate student at
Carleton University. This system monitors security zones (e.g., authorized
entry/exit) and patrols (e.g., schedules). The class diagram consists in 19
classes and 72 relationships, and contains 1,178 cycles involving 15 out of
the 19 classes. The fourth example, BCEL (Byte Code Engineering Library),
also comes from a subproject of Jakarta Project, and is intended to give users
a convenient tool to analyze, create, and manipulate binary Java class files.
We used the org.apache.bcel.classjile package of version 5.0 as our example
(http://jakarta.apache.orglbcellindex.html). The class diagram is made of 45
classes, and 294 relationships, and contains 416, 091 cycles involving 41 out
of 45 classes. The last application system, named dnsjava or simply DNS in
this article, is an implementation of Domain Naming System in Java: i.e., it
provides network naming services (http://www.xbill.org/dnsjaval). The DNS
class diagram consists in 61 classes and 276 relationships, and contains 16
cycles involving 10 out of 61 classes.

These five application systems5 were chosen because they were deemed
to be of sufficient size and of varying complexity, so as to assess the
effectiveness of the GA-based approach. ATM, Ant, SPM, and BCEL have
class diagrams of reasonable (and comparable) sizes (between 19 and 45),
but with very different numbers of cycles (from 30 for ATM to 416,091 for
BCEL). On the other hand, the DNS system has the most important number
of classes (and almost the same number of relationships as BCEL), but the
smallest number of cycles (fewer number than ATM, Ant, and SPM)! This
shows the topography of class diagrams can vary a great deal across
application systems. Further details about the systems are provided in Table
1.

www.manaraa.com

218 Software Engineering with Computational Intelligence

System Usages
Associations & Compositions Inheritance
Aggregations

ATM 39 9 15 4
Ant 54 16 2 11
SPM 24 34 10 4

BCEL 18 226 4 46
DNS 211 23 12 30

System Classes Cycles #LOC
ATM 21 30 1390
Ant 25 654 4093
SPM 19 1178 1198

BCEL 45 416,091 3033
DNS 61 16 6710

Table 1. Detailed Information for the Five Case Studies.

Figure 2 provides coupling distributions, for both our attribute and
method measures, for the five case studies, under the form of histograms: the
y-axis indicates the number of breakable relationships (i.e., UML
associations, aggregations and use dependencies) that have the (attribute or
method) coupling value indicated on the x-axis. These coupling distributions
are summarized in Table 2 by means of ranges and average values.

Attribute Coupling Method Coupling
Range Average Range Average

ATM [1, 13] 6.15 [0,7] 1.79
Ant [0, 31] 8.36 [0, 14] 2.52

SPM [1, 16] 7.53 [0, 8] 2.33
BCEL [0,20] 1.89 [0, 7] 1.52
DNS [0, 12] 3.36 [0, 1O] 1.46

Table 2. Coupling Summary for the Five Case Studies.

www.manaraa.com

(a) ATM

(b) Ant

(c) PM

Cd) BCEL

(e) DNS

Experimenting with Generic Algorithms to Devise Test Orders

1~'--r"""-----TrI

., 12

:01 ..
-'" .. .,
.E
'It

0121'191l

1/ allnOOtes

o I 2 J 5 6 1 I IS J I

1/ attributcs

2 J ~ I 6 7 II 12 16

1/ anributes

: f--

= - -
: -10 1 -

o 20

attributes

90 -
~g. --
60 -
10

rn
' 0
JO

II 20
10
0

Oil J • S 6 1 I 9 10 12

1/ all ribttes

u
:0
'" -'" os
~

..c

'"

16..-----------.
14+----11-------1 :E 12+"..---1 1------1

.. I
-'"
'" ~
..c
'It

1/ method>
12'..------,...--------.

I 2 J • I 6 7 I I 12 16

1/ attributes

15

10 '-"- I--

Sn I-- I-

" n _
0

/I methods

0 6

1/ rrdhods
I

1001 r-
IO< r-
60

.0

20i ~

MI ~ ~
o I 2 J , 5 6 7 I 9 10

N methods

219

Figure 2. Coupling (Attribute and Method) Distributions for the Five Case Studies.

www.manaraa.com

220 Software Engineering with Computational Intelligence

Though the number of classes involved in the 5 selected systems may
seem modest by comparison with some of the systems that are commonly
developed across the software industry, recall that in large systems the
strategy we describe in this article would be used at different levels of
integration, in a stepwise manner. For example, the GA algorithm would first
be used to integrate classes into lower-level subsystems and then lower-level
subsystems into higher-level subsystems, step by step until the system is
entirely integrated. It is then unlikely that a given subsystem contains more
than a couple hundred classes or more than a few dozens lower-level
subsystems. Note that in the case where lower-level subsystems are
integrated, the GA technique presented here are also required and used in the
same manner, based on a dependency graph which nodes are subsystems and
which dependencies are reflecting the dependencies of the classes they
contain, focusing exclusively on those that cross subsystem boundaries.

3.2. The Application of Genetic Algorithms
The first question we want to investigate is whether GA's, as

parameterized in this paper, work as well as graph algorithms such as the
ones described and experimented with in [6, 7]. More precisely, we want to
compare results produced by GA's with results produced by the graph-based
solution described in [6], which has been shown to be the best graph-based
approach in [7] (by means of analytical and empirical evaluations). So we
define the cost function as the number of dependencies to be broken (D) in a
given test order and run the GA 100 times. Since such an algorithm is a
heuristic, the results may differ from run to run and we therefore check the
percentage of times the algorithm converges towards the orders using the
graph-based search algorithm. This question is important as it is a
preliminary but necessary validation of the approach we describe in this
paper.

The second question we investigate is related to the use of coupling
measurement in the cost function (OCplx), as described in Section 2.3.2. We
want to know whether such measurements make a significant difference in
terms of the test orders that are generated, as compared to the orders we
obtain with the graph-based algorithm. To answer this question, we compare
the orders produced by each of the following cost functions:

• Only the number of broken dependencies is used as a cost function:
SCplx(i,j) E {0,1}, depending on whether i depends on) or not.

• Attribute and Method coupling are used in tum as the cost function:
SCplx(i,j) = A(i,j), and SCplx(i,j)=M(i,j).

• A weighted geometric average of attribute and method coupling (Ocplx)
is used in the definition of SCplx.

www.manaraa.com

Experimenting with Generic Algorithms to Devise Test Orders 221

In other words, these four cost functions are used in tum to produce sets
of orders on which we compute the values of the three other functions. If we
observe significant differences in OCplx (order stubbed complexity) when
only the number of dependencies is used as a cost function and when OCplx
itself is used, then we can conclude that using coupling measurement may
lead to significantly different test orders, involving less coupling and
hopefully leading to lower integration test expenditures. Furthermore, if
using OCplx as a cost function leads to test orders which are a reasonable
compromise between the number of broken dependencies and their
corresponding number of attributes and methods, then we can conclude that
cost functions as defined in OCplx can be useful to achieve practical test
orders in the context where one has multiple optimization objectives, as
captured by the coupling measures. To address the latter question, we must
compare the results obtained with a weighted geometric average and those
obtained when using Attribute and Method coupling alone as cost functions.
Such a comparison tells us whether a normalized, weighted average used as a
cost function can achieve results that are close to the best-found values6 of
broken dependencies, Attribute coupling, and Method coupling.

Furthermore, since GA' s are based on heuristics, it is important we
investigate the reliability and repeatability of the results we obtain. Ideally,
we would also like to know how far the minima we find are from the actual
global minima, which are unknown. This is unfortunately impossible, unless
we use simplistic examples. But in light of the complexity of the systems we
use as case studies, we may be able to assess whether the results we obtain
are plausible and likely to be close to actual global minima.

In order to automate our study, we used a commercial tool: Evolver 4.0
[23]. The choice of tool was made based on a number of criteria. First, we
needed the tool to handle permutation encoding. Second we needed to be
able to handle possibly large numbers of classes and we needed to make sure
the number of genes in the chromosomes could be large enough as many
tools have limitations with this respect. Similar requirements for the
maximum size of populations had to be considered since when the number of
genes grows, one needs to generate larger populations. Other practical
features included the random generation of initial populations (in such a way
that the diversity of chromosomes is ensured) and the graphical display of
the average and minimum cost function value from generation to generation.
The latter allows the user to stop the production of new generations when no
noticeable improvements can be observed over a sequence of generations.
Last, a feature that appeared more and more important over time was the
possibility of specifying constraints defining acceptable orders and
backtracking mechanisms to account for those constraints when generating
new chromosomes.

www.manaraa.com

222 Software Engineering with Computational Intelligence

3.3. Results

3.3.1. The ATM System

We ran the search algorithm 100 times with D as the cost function and
found that, in every case, we obtain the best order found with our graph
based search algorithm [7]: 7 dependencies are broken and stubbed. This
suggests that, under similar conditions, GA's can perform as well as
deterministic algorithms. This result is of course dependent on the way we
tailored and parameterized the algorithms.

Table 3 summarizes the overall results we obtain: Columns represent the
different ways to measure stubbing complexity, in terms of broken
dependencies and stubbed methods and attributes, whereas rows show the
different cost functions that can be minimized using GA's, as described in
Section 2.3. Highlighted cells show the cases where minimal OCplx values
are obtained. In some cases, intervals are shown as, as expected, the results
are not always consistent across the 100 executions of the GA. We also
provide, below the interval, the mean and median values.

From Table 3, we can notice that the best result is consistently obtained
for each cost function (no interval). When D is used as the cost function, the
number of dependencies broken is the best (7), but this is not systematically
the case for the values of A, M, and OCplx which are going up to 67, 19, and
4.18 instead of their best-found values of 39, 13, and 2.68, respectively7.
Therefore, when using the number of dependencies broken as a cost function,
we frequently obtain orders that are significantly suboptimal in terms of
attributes and methods stubbed. As we will see next, this can be fixed by
accounting for both A and M in the cost function, which leads to orders that
are systematically the best. When the cost function is M, we systematically
obtain the best-found value for M (13) and the number of dependencies, but
not for A (and OCplx). When the cost function is A, we systematically obtain
the best-found value for A (39) and the number of dependencies, but not for
M (and OCplx).

When using OCplx, with WM=W A=0.5, as the cost function, we obtain
best-found orders in terms of dependencies, methods, and attributes. Though
we may have been lucky in this example, this result suggests that such cost
functions, where all coupling measures are given an equal weight and a
geometric average is computed, may be a useful, practical means to achieve
a reasonable compromise among multiple objectives, as formalized by the
coupling measures.

www.manaraa.com

....
U')

o

Experimenting with Generic Algorithms to Devise Test Orders 223

Stubbing omplexity Values
0 A M OCplx

D
7 [39-67] [13-19] [2.68-4.18]
- 53,53 19,16.72 3.44, 3.47

(OCplx, W A=l)
7 39 [13-19] [2.68-2.98]
- - 19,17 2.98, 2.88

M (OCplx, WM= I)
7 [46-67] 13 [2 .98-3 .88J

- 61,62.8 - 3.61,3.7
Ocplx, WA= 7 39 13 2.68

WM=O.5 - - - -

Table 3. Summary of Results for the ATM.

3.3.2. The Ant System

We followed the exact same procedure to experiment with the Ant
system, which is more complex. Results are summarized in Table 4. This
table has the same structure as Table 3 but one important difference is that,
due to the increase in complexity, we do not consistently obtain the best
orders for any of the cost functions. Each cell therefore contains the interval
of values we obtain across 100 GA executions. Average and median values
are also provided below the intervals.

Results show that values for D are always close to the best-found value
(10, the minimum determined by the GA and the graph-based algorithm),
regardless of the cost function selected. The results in terms of number of
attributes (A) are obviously very good when A is the cost function but also
when a weighted function of A and M (OCplx with W A==WM==O.S) is used
(this is highlighted in Table 4 with dark gray cells). However these two
functions perform poorly in terms of methods (M) . With respect to M, results
are best when using M or D as cost functions (see light gray cells in Table 4),
and these two functions produce poor results in terms of attributes (A) and
the weighted stubbing complexity function (OCplx).

www.manaraa.com

224

.....
til
o
U

Software Engineering with Computational Intelligence

D

Ocplx, WA=

WM=O.5

D
[10-13]

11,10.98
[12-14]

12,12.27
[10-14]
13, 12.5
[12-14]

12, 12.16

tubbing om lexity Values
A M

[152-274] [19-32]
187,192 26,24.68

[131-137J [29-37]
131 132.7 33,32.7
[163-235] [19-26]
197 204.4 22, 21.67
131-143J [29-35]

136, 136.25 29,29.45

Table 4. Summary of Results for the Ant.

What we can conclude is that the results when using OCp/x as a cost
function seem to be mostly driven by A. Though using OCp/x leads to very
good results in terms of D and A, they are also significantly different from
the best-found value with respect to M. After investigating the reasons in
more depth, we have come to realize that orders that minimize M (in the [19-
26] range) tend to break large numbers of relationships that are associated
with the maximum number of attributes arid therefore dramatically increase
A. Recall from Figure 2 that the attribute coupling distribution for Ant
showed a cluster of 12 extremely large values, far above most of the other
relationships. No such pattern was observed for method coupling or attribute
coupling distributions of the ATM. We can therefore understand that any
order breaking such relationships is unlikely to be optimal when using OCp/x
as a cost function, even though we normalize and account for A and M with
the same weight. In other words, due to the distributions of attribute coupling
in Ant, OCp/x is strongly driven by A, and optimizing M systematically leads
to significantly poorer results with respect to A. Using OCp/x yields good
results with respect to D and A, but leads to a [29-35] range (with a 29
median) for M, instead of the [19-26] range (with a 22 median) we obtain
using M as a cost function. Whether this is an acceptable compromise among
the multiple objectives of our optimization (D, A, M) is a subjective call.
What we can say objectively is that using OCp/x (W A=WM=O.5) is still a
compromise. This is not visible when looking at the intervals but is very
clear when looking at the distributions of M values in Figure 3. Figures (a),
(b) and (c) show the distributions when M, A, and OCp/x are used as a cost
function, respectively. The latter is clearly a compromise between the first
two cases.

www.manaraa.com

a
7
8
5

·/.runs 4
3
2
1

Experimenting with Generic Algorithms to Devise Test Orders 225

,..,
2

1D ~ l-=- ,..,
n d--:-

19 20 22 24 28 29 30 33 34 35 38 37

'methods

(a) (b)

0

a ...
8D

40-

2()'
.... ...

29 30 31 32 33 35

(c)

Figure 3. M Distributions when the cost function is M, A and Ocplx.

Another interesting point is that, because Ant is much more complex
with respect to dependencies and cycles than the A TM system, we do not
systematically obtain the best results across the 100 GA executions.
However, we see that for best-found results (e.g., AE[131-143] where the
cost function is OCplx), intervals are also narrow. This implies that the
variations observed in the outputs of the GA executions do not hamper its
practical use as the orders obtained differ little in terms of stubbing
complexity. Furthermore, we have observed that if the GA is executed a
small number of times (say 10), we are very likely to obtain the minimal
bound of the interval at least once. This is illustrated by Figure 4 where the
distribution of OCplx values is shown for the 100 executions of the GA with
OCplx as a cost function. We see that though the interval is [3.59-3.93], the
minimal bound is very likely to occur.

www.manaraa.com

226 Software Engineering with Computational Intelligence

8()0

7(J.

60-

%runs
5(J.

4(J.

30
20
10 -

3.59 3.7 3.71 3.73 3.74 3.79

OCplx

Figure 4. Distribution ofOCplx across 100 GA executions for the Ant system.

When results significantly differ from the best-found values (e.g.,
AE[163-235] when the cost function is M), intervals tend to be significantly
larger as well, thus creating more uncertainty in the results the GA may
produce.

To conclude, we see that the results for Ant are not as clear-cut as for
ATM. This is to be expected due to the higher complexity of Ant and is also
explained by the specific pattern of dependencies within Ant that makes it
difficult to fully optimize M and A within the same order. Despite those
differences, GA' s still appear to be useful to achieve compromises between
D,A,andM.

3.3.3. The SPM System

Like in the Ant system, we do not consistently obtain best-found orders
for any of the cost functions. As shown in Table 5, each cell therefore
contains the interval of values we obtain across 100 GA executions. Average
and median values are also provided below the intervals.

Results show that test orders with anyone of D, A, M and OCp/x as the
cost function bring all evaluation criteria near the best-found values. This is
just a coincidence as the attribute coupling matrix and the method coupling
matrix are independent of each other.

It may seem strange that test orders with D as the cost function are even
worse than those with A as the cost function when the number of broken
dependencies is evaluated. It may also seem strange that test orders with M
as the cost function are slightly worse than those with OCp/x when the
number of stubbed methods is evaluated (this is highlighted in gray cells in
Table 5). Deriving test orders optimizing A happens to exclude a small
number of test orders which are sub-optimal for D but which are sometimes
produced when using D as the cost function. Likewise, deriving test orders
optimizing OCp/x happens to exclude a small number of test orders which
are SUb-optimal for M.

www.manaraa.com

Experimenting with Generic Algorithms to Devise Test Orders 227

Vl
C
o

'a
u
§
~
Vl
o

U

D

A (OCplx
W A= l)

M (OCplx,
WM= l)

OCplx, WA=
WM=O.5

D
[16-20]

16.76, 16
[16-17]

16.07,16
[16-21]
17,4, 17
[16-18]

16.94,17

tubbing Complexity Values
A M

[146-232] [27-47]
161.88, 149 30.34,28
[146-167] [26-31]

148.32, 149 27.63,28
[146-227] [26-37]

158.36,151 27.72,27
[146-169] [26-30]
150, 151 26.74, 27

Table 5. Summary of Results for the SPM.

3.3.4. The BeEL System

OCplx
[5.82-9.02]
6,42,5.95
[5 .77-6.57]
5.91,5.95
[5.77-8,48)
6.15, 5.9

(5.77-6.52)
5.87,5.9

Once again, with the BCEL system, we do not consistently obtain the
best-found orders for any of the cost functions. Each cell therefore contains
the interval of values we obtain across 100 GA executions. Average and
median values are also provided below the intervals (Table 6).

Results show that GA generated orders are close to the best-found orders
for both D and M when D or M is used as the cost function. However, the
results also show that GA generated orders for both D and Mare
comparatively poor when A is used as the cost function. It seems that orders
that minimize the number of broken dependencies are likely to minimize the
number of stubbed methods and vice versa. However, they yield significantly
more attributes to be stubbed than those using A as the cost function.
Furthermore, orders that minimize the number of stubbed attributes are not
optimal with respect to D and M. This is also the reason why the orders
determined by the A, D and M cost functions cannot minimize OCplx. Unlike
the Ant example, the results when using OCplx as a cost function do not
seem to be driven by any single coupling measure. But even then, using
OCplx leads to reasonably good results in terms of every other coupling
measure. Like in the Ant example, after investigating the attribute coupling
and method coupling distributions (Figure 2), we find that there are more
relationship clusters with high attribute coupling than those with high
method coupling. This is why breaking dependencies with M as the cost
function highly increases the number of stubbed attributes.

www.manaraa.com

228

~ .g
§

>z..
ti o
U

Software Engineering with Computational Intelligence

Stubbing Complexity Values
D A M

D [63-70] [101-143] [70-87]
65.5,65.5 126.7, 127 76.5,76

A (Ocplx, [71-82] [46-55] [76-105]
WA=I) 75.1,75 49.0,49 89.6,89.5

M (Ocplx, [63-72] [49-144] [67-84]
WM=l) 67.8,68 120.8, 127 74.4,75

OCplx, WA= [69-77] [46-96] [70-84]
WM=O.5 72.1,72 56.5,53 78, 77

Table 6. Summary of Results for the BCEL.

OCplx
[8.59-10.28]

9.2,9.1
[8.06-10.99]

9.4, 9.4
[8.08-10.14]

8.9,8.9
[7.56-9.08]

8.3,8.2

The intervals for this example are much wider than those found in the
Ant example for each cost function (e.g., A E [46- 96], OCplx E [7.56-
9.08], and the cost function is OCplx). Once again, the high complexity of
the system (size, the number of dependency cycles), as described in Table 1,
introduces more uncertainty in the GA results.

After investigation of the OCplx distribution when OCplx is used as a
cost function (see Figure 5), we found that there is a 15% chance that OCplx
will lie within 5% of the best-found result: [7.56-7.94]. Unlike in the Ant
system, a larger number of executions (say, 20) is required to achieve a high
likelihood of obtaining orders near best-found values. Since it takes, for the
BeEL system, less than 20 minutes for each execution of the GA tool on a
typical personal computer (500MHz, 128 MB), such a number of executions
is still acceptable. Recall this system is the most complex, both in terms of
size and number of dependency cycles. It is also expected that systems of
such complexity are commonplace in the software industry.

Of.ru1'lS
2+---r-......-.....................

OCpIx

Figure 5. Distribution of OCplx for the BCEL system.

www.manaraa.com

Experimenting with Generic Algorithms to Devise Test Orders 229

3.3.5. The DNS System

There are more classes in the DNS system than in any of the other
systems under study. However, this system has the lowest number of cycles
among our five examples. Consequently, result distributions tend to be
narrow, like in the ATM example. Results are summarized in Table 7. Notice
that the best-found result is consistently obtained for each cost function (no
interval). When D is used as the cost function, the number of dependencies
broken is the best (6). However, cost function D yields an increased number
of stubbed attributes [19-28], while OCplx also increases as it lies within
[1.47-1.99]. The suboptimal results for A may be explained by the fact that
the attribute coupling distribution shows more variance than the method
coupling distribution. Therefore, when using the number of dependencies
broken as a cost function, we frequently obtain orders that are suboptimal in
terms of stubbed attributes. As we see next, this can be addressed by
accounting for both A and M in the cost function, which leads to orders that
are consistently near the best-found value. The results in terms of number of
stubbed methods always remain at the best-found value, regardless of the
selected cost function. By examining the method coupling distribution
(Figure 2), we find that the result is always the best because method coupling
values are similar for most relationships. For instance, there are 113 out of
234 (see Table 1) breakable relationships with method coupling = 1, and 56
out of 234 breakable relationships with method coupling = O. When the cost
function is M, we consistently obtain the best-found result for M (11) as well
as for A and OCplx. When the cost function is A, we consistently obtain the
best-found result for A (39) as well as for M, but not for D and OCplx. When
using OCplx as the cost function, we obtain a result close to that of A. This
suggests, once again, that OCplx may be a useful, practical method to
achieve a reasonable compromise among multiple objectives, as formalized
by the coupling measures.

.....
'" o

U

tu mg Om)Jexlty a ues S bb' C I' V 1
D A M OCplx

D 6 [19-28] 11 [1.47-1.99]
- 23.62,22 - 1.73, 1.64

A (OCplx, W A=l) [6-7] 19 11 1.47
6.88,7 - - -

M (OCp1x, WM=l) [6-7] [19-28] 11 [1.47-1.99]
6.9,7 23.74,22 - 1.74, 1.64

OCp1x, W A= WM=O.5 [6-7] [19-22] 11 1.47
6.89,7 19.03,19 - -

Table 7. Summary of Results for the DNS System.

www.manaraa.com

230 Software Engineering with Computational Intelligence

3.4. Determining Weights in Ocplx
We have seen that a practical issue when using a multiple objectives cost

function is to determine appropriate weights. Equal weights may be adequate
but higher flexibility may be required in some cases. If the number of
coupling measures is small it is always possible to perform an exhaustive
search to determine optimal weights. If the number of coupling measures is
too large to consider such an option, a practical procedure could be as
follows:

1. Run the Genetic Algorithm as parameterized in this paper, using each
coupling measure (objective) independently as a cost function, in order
to identify their minimal value for a set of classes.

2. Assign an equal weight to all coupling measures and use the geometric
average as the cost function.

3. Check whether, for each objective (coupling measure), the value of
OCplx is reasonably close to the minimal value (what is reasonable is of
course subjective).

4. If this is the case, keep the weights as they are. If a particular coupling
measure shows a departure from the minimal value that is deemed too
large, then increase its relative weight and rerun the Genetic Algorithm.

5. Repeating this procedure (from 3) will hopefully converge towards
acceptable values for each coupling measure, thus leading to acceptable
test order.

Another possibility is of course to assign weights based on some other
rationale, that is something that is an estimation (e.g., based on expert
opinion) of the relative cost of each measurement unit of each coupling
measure. But it is difficult to envisage at this point how this could be
achieved. The procedure described above can be automated and helps
achieve a balanced compromise between all coupling measures, each of them
representing an optimization objective.

4. CONCLUSION
We have shown here that, if we want to use more sophisticated criteria to

optimize class integration orders, we cannot keep relying on graph-based
algorithms as described in [6]. As an alternative, we proposed a solution
based on Genetic Algorithms and coupling measurement that seems to
address our needs. Coupling measurement helps us differentiate stubs of
varying complexity and Genetic Algorithms allow us to minimize complex
cost functions based on such complexity measurement.

In this paper, we select a specific type of Genetic Algorithms (with
permutation encoding) so as to fit our application and we assess the results of

www.manaraa.com

Experimenting with Generic Algorithms to Devise Test Orders 231

our strategy on five real application systems of non-trivial size and
complexity. Results are very encouraging as they consistently show that
Genetic Algorithms can be used to obtain optimal results in a reliable and
systematic manner and reach acceptable compromises among multiple
objectives (i.e., coupling measures). They also provide a lot of flexibility in
terms of allowing the user to optimize the integration order under constraints.
This is important in practice as integration orders have an impact on
development and unit testing orders and the latter may be constrained by
available resources shared with other projects.

Results also show that, as dependencies and cycles become more
complex, Genetic Algorithms tend to produce less consistent results from run
to run. This is to be expected as they are based on heuristics and those
heuristics are expected to be sensitive to the complexity of the ordering
problem to solve. However, the good news is that the variation observed is
small and, in practice, if the user runs the algorithm a small number of times,
she is likely to obtain the lower bound at least once and can therefore use it
as an optimal integration order. Since a run does not take more than a few
minutes of execution on a typical personal computer (500 MHz), this does
not pose any practical problem.

Another limitation to consider is the fact that case studies as the one we
present here are performed without knowing the actual global minimum, as
this cannot be derived with problems of such complexity. To alleviate the
problem, we observe the minimum values when using each coupling measure
in isolation as a cost function and look at the optimality and consistency of
the results we obtain when running the Genetic Algorithm a large number of
times with complex, multi-objectives cost functions. In light of the
complexity of the case studies (as measured by dependencies and cycles), the
minima we obtain seem realistic. Furthermore, with respect to the number of
dependencies that are "broken", we are able to compare our results to those
of graph-based algorithms and show we consistently obtain (nearly) identical
results.

It is worth noting that, though Genetic Algorithms perform as well as
graph-based algorithms under similar conditions and facilitate the use of
more complex cost functions (e.g., using coupling measurement), this does
not make graph-based approaches obsolete. The execution of graph-based
approaches takes the order of a second on a typical personal computer and,
as a consequence, may tum out to be very useful if quick results are required
and simple cost functions are used (e.g., D). The adequacy of a technique is
context dependent and should be driven by criteria such as the size and
complexity of the system, the cost function, the time constraints under which
a solution must be obtained, or the need to account for external constraints to
devise a test order.

www.manaraa.com

232 Software Engineering with Computational Intelligence

Future work encompasses performing large-scale simulations in order to
confirm the generality of the results we have obtained here with cases
studies. Other more realistic fitness/evaluation function, as well as other
constraints (e.g., organizational constraints such as availability of personnel
or other development resources), can also be investigated.

ACKNOWLEDGEMENT
This work was partly supported by the NSERC-CSER consortium and

Mitel Networks through a CRD grant. Lionel Briand and Yvan Labiche were
further supported by NSERC operational grants. This work is part of a larger
project on testing object-oriented systems with the UML (TOTEM:
http://www.sce.carleton.calSquall/TotemlTotem.html).

NOTES
Any small change in the order (e.g., swapping two classes) may have a large
impact on the cost function.

2 Linear problems describe cases where the cost function to minimize is linearly
related to input parameters.

3 We do not count inherited attributes (and methods) as this would lead to
counting them several times when measuring the stubbing complexity of an
order, as described in the OCplx formula below.

4 We count here the number of elementary circuits [26], i.e., each class appears
once and only once in each circuit.

5 We made a conscious effort not to use libraries but application systems, in order
to use case studies representative of the type of systems on which the techniques
would typically be used and so as to avoid the peculiar class diagram topologies
encountered in libraries (e.g., in [20],4 ofthe 6 systems used are libraries and,
for example, the Java Library shows 8000 cycles that are broken using 7 stubs).

6 As obtained by the GA, which may not necessarily be the global minimum
values. Unless otherwise specified, in the reminder of the text, we will use the
term minimum with this restriction in mind.

7 These minimum values are also determined from executing the Genetic
Algorithms iOO times with OCplx, A and M as cost functions, respectively.

REFERENCES
[1] T. Back, "The Interaction of Mutation Rate, Selection, and Self-Adaptation

Within a Genetic Algorithm," Proc. Parallel Problem Solvingfrom Nature
(PPSN'92), Brussels (Belgium), pp. 85-94, September 28-30,1992.

[2] B. Beizer, Software Testing Techniques, Van Nostrand Reinhold, New York, 2nd

Ed., 1990.

[3J R. V. Binder, Testing Object-Oriented Systems - Models, Patterns, and Tools,
Addison-Wesley, 1999.

[4] L. Briand, J. Daly and J. Wuest, "A Unified Framework for Coupling
Measurement in Object-Oriented Systems," IEEE Transactions on Software
Engineering, vol. 25 (I), pp. 91-121, 1999.

www.manaraa.com

[5]

[6]

[7]

[8]

[9]

[10]

[II]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Experimenting with Generic Algorithms to Devise Test Orders 233

L. Briand, J. Feng and Y. Labiche, "Experimenting with Genetic Algorithms to
Devise Optimal Integration Test Orders," Carleton University, Technical Report
SCE-02-03, March, 2002, http://www.sce.carleton.ca/Squall/ArticlesITR_SCE-
02-03.pdf, a short version appeared in the proceedings of SEKE 2002.
L. Briand, Y. Labiche and Y. Wang, "Revisiting Strategies for Ordering Class
Integration Testing in the Presence of Dependency Cycles," Proc. 1 i h

International Symposium on Software Reliability Engineering (ISSRE), Hong
Kong, pp. 287-296, November 27-30, 200 I.
L. Briand, Y. Labiche and Y. Wang, "Revisiting Strategies for Ordering Class
Integration Testing in the Presence of Dependency Cycles," Carleton University,
Technical Report SCE-OI-02, September, 2002,
http://www.sce.carleton.ca/Squall/Articles/TR_SCE-01-02.pdf.
L. Chambers, Practical Handbook of Genetic Algorithms, vol. 1, CRC Press,
1995.
L. Davis, Handbook of Genetic Algorithms, Van Nostrand Reinhold, 1991.
K. A. De Jong, Analysis of the Behavior of a Class of Genetic Adaptive Systems,
Ph.D. Dissertation, The University of Michigan, 1975
N. Deo, Graph Theory With Applications to Engineering and Computer Science,
1974.
E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns - Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995.
D. E. Goldberg, Genetic Algorithms in Search, Optimization & Machine
Learning, Addison Wesley, 1989.
B. F. Jones (Ed.), Special Issue on Metaheuristic Algorithms in Software
Engineering, Information and Software Technology, vol. 43 (14),2001.
P. C. Jorgensen and C. Erickson, "Object-Oriented Integration Testing,"
Communications of the ACM, vol. 37 (9), pp. 30-38, 1994.
D. Kung, J. Gao, P. Hsia, J. Lin and Y. Toyoshima, "Class Firewall, test order,
and regression testing of object-oriented programs," Journal of Object-Oriented
Programming, vol. 8 (2), pp. 51-65, 1995.
D. Kung, J. Gao, P. Hsia, Y. Toyoshima and C. Chen, "On Regression Testing of
Object-Oriented Programs," Journal of Systems Software, vol. 32 (1), pp. 21-40,
1996.
Y. Labiche, P. Thevenod-Fosse, H. Waese\ynck and M.-H. Durand, "Testing
Levels for Object-Oriented Software," Proc. 220d IEEE International Conference
on Software Engineering (ICSE), Limerick (Ireland), pp. 136-145, June, 2000.
E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan and D. B. Shmoys, The
Traveling Salesman Problem, Wiley, 1985.
V. Le Hanh, K. Akif, Y. Le Traon and J. M. Jezequel, "Selecting an efficient 00
integration testing strategy: an experimental comparison of actual strategies,"
Proc. 15th European Conference for Object-Oriented Programming (ECOOP),
Budapest (Hungary), pp. 381-40 I, June, 2001.
Y. Le Traon, T. Jeron, J.-M. Jezequel and P. Morel, "Efficient Object-Oriented
Integration and Regression Testing," IEEE Transactions on Reliability, vol. 49
(I), pp. 12-25,2000.
J. D. Me Gregor and D. A. Sykes, A Practical Guide to Testing Object-Oriented
Software, Addison-Wesley, 2001.
Palisade, Evolver, the Genetic Algorithm Super Solver, 1998.

www.manaraa.com

234 Software Engineering with Computational Intelligence

[24] K.-C. Tai and F. J. Daniels, "Interclass Test Order for Object-Oriented
Software," Journal of Object-Oriented Programming, vol. 12 (4), pp. 18-25,35,
1999.

[25] R. Tarjan, "Depth-First Search and Linear Graph Algorithms," SIAM Journal on
Computing, vol. I (2), pp. 146-160, 1972.

[26] R. Tarjan, "Enumeration of the Elementary Circuits of a Directed Graph," SIAM
Journal on Computing, vol. 2 (3), pp. 211-216,1973.

[27] D. M. Tate and A. E. Smith, "Expected Allele Coverage and the Role of
Mutation in Genetic Algorithms," Proc. Fifth International Conference on
Genetic Algorithms, pp. 31-37, 1993.

[28] S. R. Thangiah and K. E. Nygard, "School bus routing using genetic algorithms,"
Proc. Applications of Artificial Intelligence SPIE Conference, pp. 387-398, 1992

www.manaraa.com

Automated Test Reduction Using an Info-Fuzzy
Network

Mark Lase and Abraham Kandel2

I Department of Information Systems Engineering
Ben-Gurion University of the Negev
Beer-Sheva 84105, Israel
mlast@bgumail.bgu.ac.if

2 Department of Computer Science and Engineering
University of South Florida
4202 E. Fowler Avenue, ENB 118
Tampa, FL 33620, USA
kandel@csee.us!edu

ABSTRACT

In today's software industry, design of black-box test cases is a manual
activity, based mostly on human expertise, while automation tools are
dedicated to execution of pre-planned tests only. However, the manual
process of selecting test cases can rarely be considered as satisfactory both
in terms of associated costs and the quality of produced software. This paper
presents an attempt to automate a common task in black-box testing, namely
reducing the number of combinatorial tests. Our approach is based on
automated identification of relationships between inputs and outputs of a
data-driven application. The set of input variables relevant to each output is
extracted from execution data by a novel data mining algorithm called the
info-fuzzy network (IFN). The proposed method does not require the
knowledge of either the tested code, or the system specification, except for
the list of software inputs and outputs. In the paper, we report the results of
applying the proposed approach to a typical business application program.

KEYWORDS
Black-box Testing, Test Reduction, Combinatorial Testing, Input-Output
Analysis, Info-Fuzzy Network.

1. INTRODUCTION

Computer programs are apparently the most complex tools ever built by
humans since the Stone Age. Like any other tool, whether it is a stone knife,
a car, or a microchip, software is not guaranteed to work forever and under
any conditions. Even worse than that, it is not 100% reliable: we never know
when we are going to face the next failure in an executed program. A
programfails when it does not do what it is required to do [1]. The purpose
of testing a program is to discover faults that cause the system to fail. A test

www.manaraa.com

236 Software Engineering with Computational Intelligence

is considered successful if it reveals a problem; tests that do not expose any
faults are useless, since they provide no indication about the program
correctness [2]. The process of fault discovery is usually followed by some
actions, which are aimed at preventing the future occurrence of the detected
faults.

The ultimate goal of software testing is to test a program completely, i.e.
to verify that the program works correctly and there are no undiscovered
errors left. However, this goal is beyond our reach, since the program
correctness can never be demonstrated through software testing [3]. The
reasons for that include such over complex issues like the size of the input
domain, the number of possible paths through the program, and wrong or
incomplete specifications. In practice, the tester has to choose a limited
number of test cases. According to [2], an ideal test case should have a
reasonable probability of catching an error along with being non-redundant,
effective, and of a proper complexity.

If the structure of the tested program itself is used to build a test case,
this is called a white-box (or open-box) approach. White-box testing
techniques include path, branch, and statement testing [2]. However,
identifying every distinct path even in a small program may be a prohibitive
task. Thus, in testing the functionality of a component, a sub-system, or a
complete system, the black-box approach is much more common: the tested
system is fed with inputs as a "black box" and then evaluated by its outputs.
However, generating a set of representative test cases for black-box testing
of software systems is a non-trivial task [2]. A traditional manual technique
of black-box testing is based on identifying equivalence classes for program
inputs and then choosing test cases at the class boundaries (ibid). Other
common strategies include random testing [4] and statistical testing [5],
which is based on the operational profile of a program. Due to explosive
number of possible black-box tests for any non-trivial program, some
techniques for semi-automatic prioritization and reduction of test cases are
being developed. As shown below, existing methods are not suitable for
completely automated testing of large-scale programs and systems, since
they are based on manual analysis of the source code and/or execution data
along with other forms of human intervention in the test selection process.

In this paper, we introduce a novel approach to combinatorial test
reduction, which does not require any manual analysis of the source code.
The proposed approach is based on automated identification of input-output
relationships from execution data of the tested program. It is designed for
testing applications with multiple inputs and outputs, such as APIs, form
based web applets, and decision support systems (DSS). Testability of such
systems is especially low when the number of inputs is much larger than the

www.manaraa.com

Automated Test Reduction Using an Info-Fuzzy Network 237

number of outputs [5]. We use a data mining algorithm called the info-fuzzy
network (IFN) to determine the set of input variables relevant to each output.
The test reduction potential of the info-fuzzy method is demonstrated on a
typical business application program previously used by us in [13] for
evaluating an automated testing "oracle" based upon an artificial neural
network.

Section 2 below discusses existing techniques for automated test case
generation and reduction. The info-fuzzy method of input-output analysis is
briefly described in Section 3. A prototype of an info-fuzzy test reduction
system is presented in Section 4. The method is applied to a credit screening
application in Section 5. Finally, Section 6 presents conclusions and
directions for future research.

2. AUTOMATED TECHNIQUES FOR TEST CASE
SELECTION

Black-box methods test the program response to sets of inputs without
looking at the code. As indicated in [11], the main problem associated with
the black-box approach is the rapid increase in the number of possible tests
for systems with multiple inputs and outputs. When the number of tests
becomes very large, there is a need of input set reduction. One of the most
common test generation strategies, random testing [4], can lead to a limited
number of test cases. However, random testing does not assume any
knowledge of the tested system and its specifications and thus is insufficient
for validating safety-critical or mission-critical software (ibid).

The test generation method of [6] is based on the assumption that the
specifications are known and given as Boolean expressions. This
methodology includes a family of strategies for automated generation of test
cases that are substantially smaller than exhaustive test cases.

Another approach to test reduction is to filter out test cases that are not
likely to expose any faults [9]. The effectiveness of every test case can be
estimated by an artificial neural network, which is trained on a complete set
of classified test cases. An "oracle" (usually, a human tester) classifies errors
exposed by each test case in the training set. This is a promising approach to
test reduction, though the generalization capabilities of a trained network in a
large input space are questionable [9].

An algorithm for simplification of a given test case is presented in [12].
The algorithm is aimed at finding a minimal test case, where removing any
additional input would cause the failure to disappear. Applying the algorithm
of [12] to each test case that failed can improve the efficiency of the

www.manaraa.com

238 Software Engineering with Computational Intelligence

debugging process, but it has nothing to do with the problem of reducing the
exponential number of combinatorial tests.

As shown in [11], input-output analysis can be utilized to reduce the
number of black-box tests in a data-driven system. Such systems include
embedded (real-time) systems, application program interfaces (API), and
form-based web applications. The basic idea of input-output analysis is to
reduce the number of combinatorial tests by focusing on those input
combinations that affect at least one system output. Alternatively, if the total
number of tests is limited, the same approach can lead to an increase in the
fault detection capability of randomized test cases. According to [11], there
are several ways to determine input-output relationships. Thus, a tester can
analyze system specifications, perform structural analysis of the system's
source code (if available), and observe the results of system execution. All
these manual and semi-automatic techniques require a lot of human effort
and, still, do not guarantee detection of all existing relationships [11].

In this paper, we extend the approach of [11] by proposing a new method
for simplification and reduction of combinatorial test cases, which is based
on automated data-driven identification of input-output relationships from
execution results. This task is particularly important whenever input-output
relationships cannot be derived directly from software model, since it is too
complex, outdated, or completely missing as often happens with "legacy"
systems. An information-theoretic data mining algorithm [14] determines the
subset of input variables relevant to each system output and the
corresponding equivalence classes, by automated analysis of execution data.

In comparison with existing methods of input-output analysis covered by
[11], our method automates the manual activity of execution-oriented
analysis. We assume that data mining methods can reveal more input-output
relationships in less time than a human tester, though both approaches do not
guarantee detection of all existing relationships. Like the manual analysis of
execution data, our approach requires no information about the system
specifications, except for the set of input / output variables and their
acceptable values. The proposed automation of input-output analysis is
expected to save a considerable amount of human effort in the test case
design process.

3. INFO-FUZZY METHOD OF INPUT-OUTPUT
ANALYSIS

Our approach to input-output analysis is based on the information-fuzzy
network (IFN) methodology [15]. The info-fuzzy method produces a ranked
list of inputs relevant to a given output as a result of inducing a classification

www.manaraa.com

Automated Test Reduction Using an Info-Fuzzy Network 239

model named info-fuzzy network (IFN) from execution data. This automated
method of input-output analysis does not require the knowledge of either the
tested code, or the system specification, except for a list of program inputs
and outputs along with their respective data types. The underlying
assumption of the proposed methodology is that a stable version of the tested
software is available for training the network. Otherwise, the induced model
may be based on faulty execution data resulting in a sub-optimal set of test
cases. Thus, test reduction with automated input-output analysis is most
appropriate for the black-box form of regression testing, which is one of the
most important and extensive forms of testing [16].

An info-fuzzy network (see Figure 1) has a root node, a changeable
number of hidden layers (one layer for each selected input), and a target
(output) layer representing the possible output values. Each node in the
output layer may be associated with a constant value (e.g., "Florida" or" 1 0"),
a range of values (e.g., [10.2, 11.6]), or an action performed by the program
(e.g., printing a document). There is no limit as to the maximum number of
output nodes in an info-fuzzy network. The network in Figure 1 has three
output nodes denoted by numbers 1, 2, and 3.

Each hidden layer consists of nodes representing equivalence classes of
the corresponding input variable. In case of a continuous variable, the
algorithm determines automatically the equivalence classes as contiguous
sub-ranges of input values. For multi-valued nominal variables, each value is
considered an equivalence class unless specified otherwise by the user. In
Figure 1, we have two hidden layers (No.1 and No.2).

The final (terminal) nodes of the network represent non-redundant test
cases (conjunctions of input values that produce distinct outputs). The five
terminal nodes of Figure 1 include (1,1), (1,2), 2, (3,1), and (3,2). Unlike
decision-tree classification models (see [17] and [18]), the network has
interconnections between terminal and target nodes, which represent
expected program outputs for each test case. For example, the connection
(1,1) - 2 in Figure 1 means that we expect the output value of 2 for a test
case where both input variables are equal to 1. The connectionist nature of
IFN resembles the structure of a multi-layer neural network (see [19]).
Accordingly, we characterize our model as a network and not as a tree.

www.manaraa.com

240

Layer No. 0
(the root node)

Software Engineering with Computational Intelligence

Layer No. 1
(First input
variable)
3 equivalence
classes

1

----~-0
Layer No.2 Connection
(Second input Weights
variable)
2 equivalence
classes

Target Layer
(Output Variable)
3 Values

Figure 1. Info-Fuzzy Network - An Example.

The network is re-constructed completely for every output variable. The
induction procedure starts with a single node representing an empty set of
inputs. A node is split if it provides a statistically significant decrease in the
conditional entropy [20] of the output. In information theory, the decrease in
conditional entropy is called conditional mutual information. The IFN
algorithm calculates the conditional mutual information of a candidate input
attribute Ai and the output attribute T given a terminal node z by the
following formula (based on [20]):

~~I P(v;,' /z)
AJ (A,;T / z) = L L P(C,; Vy ;z) eleg ---""""'---''----'---

'-0 ./_0 P(v;, / z) e P(C, / z)
(1)

where

Mr I Mi - number of distinct values of the output attribute T Icandidate
input attribute i.

P (Viii z) - an estimated conditional (a posteriori) probability of a value}
of the candidate input attribute i given the node z (also called a relative
frequency estimator)

P (etl z) - an estimated conditional (a posteriori) probability of a value t
of the output attribute T given the node z.

P (V/I z) - an estimated conditional (a posteriori) probability of a value}
of the candidate input attribute i and a value t of the output attribute T given
the nodez.

P (et ; V;j; z) - an estimated joint probability of a value t of the output
attribute T, a value) of the candidate input attribute i, and the node z.

www.manaraa.com

Automated Test Reduction Using an Info-Fuzzy Network 241

The statistical significance of the estimated conditional mutual
information between a candidate input attribute Ai and the target attribute T,
is evaluated by using the likelihood-ratio statistic (based on [21]):

G2 (Ai; T / z) = 2.(1n2). E*(z) • MI (Ai; T / z) (2)

where E*(z) is the number of cases associated with the node z.

The Likelihood-Ratio Test [22] is a general-purpose method for testing
the null hypothesis Ho that two random variables are statistically
independent. If Ho holds, then the likelihood-ratio test statistic G2 (Ai; T / z)
is distributed as chi-square with (Nli (z) - 1) -(NT (z) - 1) degrees of freedom,
where NI i (z) is the number of distinct values of a candidate input attribute i
at node z and NT (z) is the number of values of the target (output) attribute T
at node z (see [24]). The default significance level (p-value), used by the IFN
algorithm, is 0.1 %.

A new input attribute is selected to maximize the total significant
decrease in the conditional entropy, as a result of splitting the nodes of the
last layer. The nodes of a new hidden layer are defined for a Cartesian
product of split nodes of the previous hidden layer and values (equivalence
classes) of the new input variable. If there is no candidate input variable
significantly decreasing the conditional entropy of the output variable the
network construction stops. In Figure 1, the first hidden layer has three nodes
related to three possible values of the first input variable, but only nodes 1
and 3 are split, since the conditional mutual information as a result of
splitting node 2 proves to be statistically insignificant. For each split node of
the first layer, the algorithm has created two nodes in the second layer, which
represent the two possible values of the second input variable. None of the
four nodes of the second layer are split, because they do not provide a
significant decrease in the conditional entropy of the output.

OUf approach to automated determination of equivalence classes for
numeric and other ordinal attributes is similar to the recursive discretization
algorithm of [23]. IFN is looking for a partition of the input range that
minimizes the conditional entropy of the output. The process of recursive
partitioning is demonstrated in Figure 2 below: the best threshold is
determined recursively for each sub-range of the input. Thus, the value Tis
chosen to split the entire attribute range into two intervals: below T and
above T. The first interval is subsequently split into two sub-intervals, while
the second interval is not. The stopping criterion used by IFN is different
from [23]. As indicated above, we make use of a standard statistical
likelihood-ratio test rather than searching for a minimum description length.
The search for the best partition of a continuous attribute is dynamic: it is
performed each time a candidate input attribute is considered for selection.

www.manaraa.com

242 Software Engineering with Computational Intelligence

Input range:
T

I II II I \; ~

I II II ~ I I I ..
I

I I
I II • II ~

Figure 2. Recursive Discretization Algorithm.

The main steps of the network construction procedure are summarized in
Table l. Complete details are provided in [14] and [15].

Input: The set of n execution runs; the set C of candidate inputs (discrete and
continuous); the target (output) variable Ai; the minimum significance level

sign for splitting a network node (default: sign = 0.1 %).
Output: A set I of selected inputs, equivalence classes for every input, and an info-

fuzzy network. Each selected input has a corresponding hidden layer in the
network.

Step 1 Initialize the info-fuzzy network (single root node representing all runs, no
hidden layers, and a target layer for the values of the output variable).

Initialize the set I of selected inputs as an empty set: 1=0.
Step 2 While the number oflayers III < ICI (number of candidate inputs) do

Step 2.1 For each candidate input Ai' fAi' E C; Ai,(.!: I do
If Ai' is continuous then

Return the best equivalence classes of Ai"
Return statistically significant conditional mutual information cond _ MIi'

between Ai' and the output Ai'
End Do

Step_2.2 Find the candidate input Ai'* maximizing cond MIi'
Step 2.3 If cond_MIi,. = 0, then

End Do.
Else

Expand the network by a new hidden layer associated with the input Ai', and
add Ai' to the set I of selected inputs I = I n A,.

Step 2.4 End Do
Step 3 Return the set of selected inputs I, the associated equivalence classes, and the

network structure

Table 1. Network Construction Algorithm

www.manaraa.com

Automated Test Reduction Using an In/o-Fuzzy Network 243

In [14], we have demonstrated the consistency and scalability of the IFN
algorithm. Its run time is quadratic-polynomial in the number of inputs and
linear in the number of outputs, which makes it appropriate for testing
complex software systems with a large number of inputs and outputs. Other
advantages of the IFN method include understandability and interpretability
of results [26], stability of obtained models [27], and robustness to noisy and
incomplete data [28]. In [29], the information-theoretic methodology is
extended with a fuzzy-based technique for automated detection of unreliable
output values. Consequently, IFN can be used as an automated "oracle" in
black-box testing, but this application is beyond the scope of the work
presented here.

4. REDUCING THE NUMBER OF TEST CASES

The info-fuzzy methodology of test reduction includes two parts
(phases): the training phase, where we induce input-output relationships
from execution data and the evaluation phase where we generate and run
actual test cases based on the input-output analysis. Both parts are described
in the sub-sections that follow.

4.1. Input-Output Analysis

The training phase of the IFN-based system for automated test case
reduction is shown in Figure 3. Random Tests Generator (RTG) obtains the
list of application inputs and their valid ranges from System Specification.
No information about the expected system functionality is needed, since the
IFN algorithm automatically reveals input-output relationships from
randomly generated test cases. Finding the minimal number of random test
cases required to cover all possible output values and execution paths of a
given program with a sufficiently high probability is a subject of ongoing
research. Systematic, non-random approaches to training set generation may
also be considered.

The IFN algorithm is trained on inputs provided by RTG and outputs
obtained from the tested application by means of the Test Execution module.
As indicated above, a separate IFN model is built for each output variable.
An IFN model includes a set of inputs relevant to the corresponding output,
the associated equivalence classes determined by the algorithm, and the
resulting set of non-redundant test cases.

www.manaraa.com

244 Software Engineering with Computational Intelligence

I pccification I
of

L Application
Inputs J

List of input
variables and
their valid values

~
-

Random
Test

Generator

ested
Application

App, ;"P"IS I lAP" ·"IO"IS

Test
Execution

Test a e
Outputs

Info-Fuzzy

Tc t Case
Inputs

etwork (IFN) ~"'L.It--1I1rn::
Algorithm

IF Models

Figure 3. Test Reduction: Training Phase.

A brief description of each module in the system is provided below:

Specification of Application Inputs and Outputs (SAIO). Basic data
on each input and output variable includes variable name, type (discrete,
continuous, nominal, etc.), and a list or a range of possible values. Such
information is generally available from requirements management and test
management tools (e.g., Rational RequisitePro® or TestDirector®).

Random Tests Generator (RTG). This module generates random
combinations of values in the range of each input variable. Variable ranges
are obtained from the SAIO module (see above). The number oftest cases to
generate is determined by the user. The generated test cases are used by the
Test Execution and the IFN modules.

Test Execution (TE). This module, sometimes called "test harness",
feeds test cases generated by the RTG module to the tested application. The
module obtains the application outputs for each test case and sends them to
the IFN module.

Info-Fuzzy Network Algorithm (IFN). The input to the IFN algorithm
includes the test cases randomly generated by the RTG module and the
outputs produced by the tested application for each test case. IFN also uses
the descriptions of variables stored by the SAIO module. The IFN algorithm
is run repeatedly to find a subset of input variables relevant to each output
and the corresponding set of non-redundant test cases. Actual test cases are
generated from the automatically detected equivalence classes by using an

www.manaraa.com

Automated Test Reduction Using an In/o-Fuzzy Network 245

existing testing policy (e.g., one test for each side of every equivalence
class). A brief overview of the IFN methodology is provided in Section 3
above. Complete details can be found in [15].

4.2. Test Generation and Execution

Our approach is based on an assumption, which is true for many
programs [11], that not all program inputs influence every output. Once the
info-fuzzy algorithm has identified the input-output relationships, testing
consists of generating test cases that represent the union of combinatorial
tests for input variables included in theIFN model of each single output. The
resulting test set is expected to be considerably smaller than the exhaustive
test set. The evaluation phase of the IFN-based system for automated test
reduction is shown in Figure 4. Test cases are generated by the Test Reducer
(TR) module, which creates a union of tests based on all output variables.
Like in the training phase, the Test Execution module feeds the tests cases to
the tested application and reads the resulting outputs. The comparison
between the expected and the actual outputs is performed by an "oracle",
which can be either a human tester, or an automated system like the one
presented by us in [13].

I · Models

1, __ -'\c,JIo;,:,

, lib ets of
inputs

relevant to
each output

• • • •

I Test

l Reducer

Tested
Application

App. ;np"" 1 tpP' o"'P"'"

Test Cas
Inputs

Test
Execution

1 Tcst Casc
Outputs

Oracle _1-+
Deci ion:
output
elToneous or
output correct

Figure 4. Test Reduction: Evaluation Phase.

A brief description of the Test Reducer module is given below:

Test Reducer (TR). This module creates a reduced set of
combinatorial tests as a union of reduced tests for all output

www.manaraa.com

246 Software Engineering with Computational Intelligence

variables. The total number of reduced test cases to generate can be
limited by the user. If the number of reduced combinatorial tests
exceeds a user-specified limit, the module randomizes the values of
individual input variables while restricting their combinations to the
subsets of variables determined by the IFN module as influencing
the application outputs. The generated test cases are submitted to the
Test Execution module.

5. EXPERIMENTAL RESULTS

In this section, we present the results of using the info-fuzzy approach
for automated test reduction in a typical business program. We start the
section with describing the program used as our case study. Then we perform
an automated input-output analysis by training the info-fuzzy algorithm.
Finally, the induced info-fuzzy models are utilized for reducing the number
of combinatorial tests. We evaluate the performance of the proposed method
by the relative reduction in the amount of required combinatorial tests along
with the fault detection potential of the reduced test set.

5.1. Description of Case Study

The program studied is called Credit Approval. Its task is to process a
credit application of a potential credit card customer. The program has two
output variables: Decision (approve / decline an application) and the amount
of Credit Limit granted (greater than zero if an application is approved). We
have previously used a similar program in [l3] for evaluating the
performance of an automated testing "oracle". This program is representative
of a wide range of business applications, where a few critical outputs depend
on a large number of inputs. In such applications, a reasonable assumption is
that not every input is designed to affect every output. Moreover, due to
continuous changes in user requirements, some inputs may become obsolete
though they are still read and stored by the program.

The inputs of the studied application include eight attributes of the
applicant such as age, income, citizenship, etc. Table 2 shows the complete
list of variables used as input to the program, including their data type and
range of possible values. Though this is a very small program (implemented
with less than 300 lines of C code), it has as many as 52 distinct flow paths
and the number of possible combinatorial tests exceeds 11 million (!). The
core business logic of the program is shown as C code in Table 3.

www.manaraa.com

No.

2

3
4

5

6
7
8

Automated Test Reduction Using an In/o-Fuzzy Network 247

Name ofInput Variable Data Type Total Details
Number of

Values
Citizenship Nominal 2 0: US

1: Other
State of Residence Nominal 2 0: Florida

1: Other
Age Continuous 100 1-100

Sex Nominal 2 0: Female
1: Male

Region Nominal 7 0-6 for different
regions in the US

Annual Income Continuous 200 $Ok - $I99k
Number of dependents Continuous 5 0-4

Marital status Nominal 2 0: Single

1
2
3
4
5
6
7
8
9
10
11
12
13
14
2.0) ;
15
16
17
1. 5) ;

18
19
20
21
22
23

1: Married

Table 2. Descriptions ofInput Variables.

if (region == 5 I I region 6)
credlimi t = 0;

else
if (age < 18)

credlimit = 0;
else

if (citizenship == 0)
{

credlimit = 5000 + 15*income;
if (state == 0)
{

if (region == 3 I I region ==4)
{

credlimit (int) (credlimit *

else
credlimit (int) (credlimit *

else
credlimit = (int) (credlimit * 1.1);

if (marital_status == 0)
{

24
200*num_dep;
25

if (num_dep > 0)
credlimit

else
credlimit

credlimit +

26 credlimit + 500;
27
28 else

www.manaraa.com

248 Software Engineering with Computational Intelligence

29
30
31
32
33
34
35
36
37
38
39
40
41
100*num_dep;
42
43
44
45
46
47
48
49
50
51
52
53
54
S5

credlimit
if (sex == 0)

credlimit
else

credlimit

credlimit + 1000;

credlimit + 500;

credlimit + 1000;

else
{

}
if

credlimit = 1000 + 12*income;
if (marital status 0)
{

if (num_dep > 2)
credlimit = credlimit +

else
credlimit credlimit + 100;

else
credlimit credlimit + 300;

if (sex -- 0)
credlimit credlimit + 100;

else
credlimit credlimit + 200;

(credlimit -- 0)
decision 1;

else
decision 0;

Table 3. Core Business Logic.

5.2. Inducing Input-Output Relationships

To prepare a training set for the IFN algorithm (see Section 3 above), we
have randomly generated 5,000 test cases in the input space of the Credit
Approval program. As shown by the results below, this number was
sufficient to identify all major execution paths in this program and to cover
the corresponding output values. Determining the minimal number of
random test cases required to perform input-output analysis of a given
program is a part of our ongoing research. The info-fuzzy algorithm was run
two times to find the inputs relevant to the two outputs of the program:
Decision (Approve / Decline) and Credit Limit. Since IFN requires the
output to be a discrete variable, we have discretized the continuous range of
Credit Limit to 10 equally spaced sub-ranges of $2,000 width each ($1 -
$2,000, $2,001 - $4,000, etc.). The large number of sub-ranges we have
chosen is expected to be sufficient for detecting all inputs that have a
significant impact on this particular output. As indicated above, IFN results

www.manaraa.com

Automated Test Reduction Using an Info-Fuzzy Network 249

are based solely on execution data and not on the actual code of the program
shown in Table 3.

Only two inputs (Region and Age) were found to influence the first
output (Decision). Region is a nominal attribute and, thus, the algorithm has
referred to its each distinct value as an equivalence class. On the other hand,
the range of Age, which can take 100 continuous values, has been partitioned
into two equivalence classes only: customers below 18 years old vs.
customers aged 18 years and older.

The info-fuzzy network built for the Decision output is shown in Figure
5. The 18 hidden nodes of the network include the root node (Node 0), nodes
1 -7 representing seven equivalence classes of the Region input, and nodes 8
- 17 standing for 10 combinations of five region classes with two
equivalence classes of the Age input (0 - 17 vs. 18+). The algorithm has not
split nodes 6 and 7, because in the two corresponding regions, the output
does not depend on the applicant age. The network has 12 final (terminal)
nodes numbered 6 - 17, which represent the 12 non-redundant test cases
required for testing the correctness of Decision output. The minimal set of 12
non-redundant test cases is shown in Table 5 (see Appendix). The number of
actual tests may be at least 22, since for each continuous equivalence class
both boundary values should be tested [2]. The latter requirement implies
that Nodes 8, 10, 12, 14, 16 are tested with Age = 0 and Age =17, while
Nodes 9,11,13,15,17 are tested with Age = 18 and the oldest age possible
(e.g., 100).

The target layer has two nodes: 0 (approve) and 1 (decline). Thin lines
connecting final nodes to the target nodes show the expected program output
for each corresponding test case. There is only one line exiting each final
node, which means that the induced info-fuzzy network is a perfect predictor
for the Credit Approval program with respect to the Decision output: the
network output is always identical to the program output. This result is not
true in a general case: for many applications, IFN may be unable to predict
some of program outputs with 100% accuracy.

www.manaraa.com

250 Software Engineering with Computational Intelligence

Layer 1
(Region)

Layer 2

(Age)
Target layer

(Decision)

Decline

Approve

Figure 5. Info-Fuzzy Network (Output: Decision).

In the case of the second output (Credit Limit), the number of relevant
inputs was found to be six out of eight candidates. Based on IFN results, the
inputs affecting Credit Limit are: Citizenship, Region, Age, Income, State,
and Sex. The algorithm has partitioned the ranges of two continuous
variables (Age and Income) into two and ten equivalence classes
respectively.

The info-fuzzy network induced for the Credit Limit output has six
layers (associated with six selected inputs) and 239 hidden nodes, which
include 165 final nodes. Due to its size, we cannot display the complete
network here. The resulting set of 165 non-redundant test cases is shown in
Table 6 (see Appendix). The testers may wish to increase the actual number
of tests by testing each boundary value of every continuous equivalence
class.

5.3. Reducing the Number of Test Cases

The final set of combinatorial tests is a union of tests for the two output
variables (Decision and Credit Limit). As indicated in [11], the problem of
finding the truly minimal test set is NP-hard. In our case study, one can
easily verify that every test for Decision output (see Table 5) is included in

www.manaraa.com

Automated Test Reduction Using an Info-Fuzzy Network 251

the test set for Credit Limit (see Table 6). For example, tests 1 and 2 in Table
5 are covered by tests 1 and 2 in Table 6, test 12 in Table 5 is covered by test
60 in Table 6, etc. Thus, we can conclude that Table 6, with its 165 test
cases, represents the union of the test sets in both tables. The resulting test
set constitutes a reduction of 99.999% vs. the original number of 11 million
combinatorial tests for this program!

We have evaluated the fault detection potential of the reduced test set by
generating ten faulty versions of the original program. The list of faults
injected in each version and the corresponding error rates (percentage of test
cases in the test suite that have detected a fault) are shown in Table 4. The
first line of Table 4 shows the error rate of the IFN model when applied to
the outputs of the correct version. As mentioned above, the model is a perfect
predictor of the first output (Decision). However, the second IFN output
(Credit Limit) is wrong in 18.2% of test cases. This problem can be fixed
manually by correcting the faulty expected values in the test suite before it is
used for regression testing.

An injected fault is successfully detected by regression testing if the
error rate of the test suite over the mutated version of the program is greater
than the error rate over the original (correct) version. In practical terms, this
means that there is at least one test case in the test suite that indicates the
presence of a fault in the tested version. Since not every output is affected by
a change in any line of code, the correctness of all program outputs should be
evaluated in every test case. The results of Table 4 demonstrate that all
injected faults have changed the value of the Credit Limit output in at least
one test case, though the Decision output has been corrupted by the first four
faults only. Thus in our experiments, we have gained a substantial reduction
in the testing effort without dropping the fault detection capability of the full
test set.

www.manaraa.com

252 Software Engineering with Computational Intelligence

Fault Line Original Line Injected Fault Fault Type Error Rate (%)

Output 1 Output
(Decision) 2

(Credit
Limit)

No faults 0 0.182

I I If «Region ;; 5) II if(Region ;; 5) Operator 0.059 0.186
(Region;; 6» Change &

Argument
Change

2 I if «Region ;; 4) II (Region Argument 0.118 0.349
;; 5» Change

3 4 If (Age < 18) if(Age> 18) Operator 0.588 0.624
Change

4 4 if(Age < 25) Argument 0.294 0.552
Change

5 7 If (Citizenship = 0) if(Citizenship ;; I) Argument 0 0.962
Change

6 10 If (State ;; 0) if (State ;; 1) Argument 0 0.619
Change

7 12 If «Region ;; 3) II if (Region ;; 3) Argument 0 0.233
(Region ;; 4) Change

8 12 if «Region ;; I) II (Region Arguments 0 0.387
;; 2» Change

9 28 credlimit; credlimit + credlimit; credlimit + Argument 0 Q.401
500 5000 Change

10 34 credlimit; 1000 + credlimit; 1000 + Argument 0 0.377
12*income 2*income Change

Table 4. Summary of Experiments with Injected Faults.

6. CONCLUSIONS

In this paper, we have presented a novel approach to automated
reduction of combinatorial black-box tests, based on automated identification
of input-output relationships from execution data of the tested program. This
approach is especially useful for regression testing of data-driven software
systems with incomplete or missing specifications. We use a data mining
algorithm called the info-fuzzy network (IFN) to determine the set of input
variables relevant to each output. Additional benefits of the IFN algorithm
include automated determination of continuous equivalence classes and
selection of non-redundant test cases. The test reduction potential of the info
fuzzy method has been demonstrated on a typical business application
program aimed at screening credit applicants.

In our future work, we plan to develop an automated test design system
supporting the methodology presented in this paper. We also intend to

www.manaraa.com

Automated Test Reduction Using an Info-Fuzzy Network 253

enhance the info-fuzzy input-output analysis by automated determination of
equivalence classes for nominal attributes. In addition, we plan to perform a
set of extensive experiments with large software systems to study the impact
of the proposed approach on the effectiveness and the productivity of the
software testing process. Other research directions include reducing the size
of the test set required for training the IFN algorithm and performing
automated input-output analysis with other data mining techniques (e.g.,
artificial neural networks).

ACKNOWLEDGEMENT

This work was partially supported by the National Institute for Systems
Test and Productivity at University of South Florida under the USA Space
and Naval Warfare Systems Command Grant No. N00039-01-1-2248.

REFERENCES
[I] S. L. Ptleeger, "Software Engineering: Theory and Practice", 2nd Ed., Prentice

Hall, 2001
[2] c. Kaner, J. Falk, H.Q. Nguyen, "Testing Computer Software", Wiley, 1999.

[3] R.A DeMilio and AJ. Oftlut, "Constraint-Based Automatic Test Data
Generation", IEEE Transactions on Software Engineering, Vol. 17, No.9, pp.
900-910,1991.

[4] E. Dustin, 1. Rashka, 1. Paul, "Automated Software Testing: Introduction,
Management, and Performance", Addison-Wesley, 1999.

[5] M. A Friedman, J. M. Voas, "Software Assessment: Reliability, Safety,
Testability", Wiley, 1995.

[6] E. Weyuker, T. Goradia, and A. Singh, "Automatically Generating Test Data
from a Boolean Specification", IEEE Transactions on Software Engineering,
Vol. 20, No.5, pp. 353-363, 1994.

[7] J. M. Voas and G. McGraw, "Software Fault Injection: Inoculating Programs
against Errors", Wiley, 1998.

[8] S. Elbaum, A. G.Malishevsky, G. Rothermel, "Prioritizing Test Cases for
Regression Testing", Proc. ofISSTA '00, pp. 102-112,2000.

[9] A von Mayrhauser, C. W. Anderson, T. Chen, R. Mraz, C.A Gideon, "On the
Promise of Neural Networks to Support Software Testing", In W. Pedrycz and
J.F. Peters, editors, Computational Intelligence in Software Engineering, pp. 3-
32, World Scientific, 1998.

[10] D. Hamlet, "What Can We Learn by Testing a Program?", Proc. ofISSTA 98,
pp. 50-52, 1998.

[I I] P. J. Schroeder and B. Korel, "Black-Box Test Reduction Using Input-Output
Analysis", Proc. ofISSTA '00, pp. 173-177, 2000.

[12] R. Hildebrandt, A. Zel1er, "SimplifYing Failure-Inducing Input", Proc. ofISSTA
'00, pp. 135-145,2000.

[13] M. Vanmali, M. Last, A. Kandel, "Using a Neural Network in the Software
Testing Process", International Journal ofIntelligent Systems, Vol. 17, No. I,
pp. 45-62, 2002.

www.manaraa.com

254 Software Engineering with Computational Intelligence

[14] M. Last, A. Kandel, O. Maimon, "Information-Theoretic Algorithm for Feature
Selection", Pattern Recognition Letters, 22 (6-7), pp. 799-811, 2001.

[15] O. Maimon and M. Last, "Knowledge Discovery and Data Mining - The Info
Fuzzy Network (IFN) Methodology", Kluwer Academic Publishers, Massive
Computing, Boston, December 2000.

[16] National Institute of Standards & Technology, "The Economic Impacts of
Inadequate Infrastructure for Software Testing", Planning Report 02-3, May
2002.

[17] 1.R. Quinlan, "Induction of Decision Trees", Machine Learning, vol. 1, no. 1,
pp. 81-106, 1986.

[18] 1. R. Quinlan, "C4.5: Programs for Machine Learning", Morgan Kaufmann, San
Mateo, CA, 1993.

[19] T.M. Mitchell, "Machine Learning", McGraw-Hill, New York, 1997.

[20] T. M. Cover, "Elements of Information Theory", Wiley, New York, 1991.

[21] F. Attneave, "Applications ofinformation Theory to Psychology", Holt,
Rinehart and Winston, 1959.

[22] C.R. Rao and H. Toutenburg, "Linear Models: Least Squares and Alternatives",
Springer-Verlag, 1995.

[23] U. Fayyad and K. Irani, "Multi-Interval Discretization of Continuous-Valued
Attributes for Classification Learning", Proc. of the 13th International Joint
Conference on Artificial Intelligence, pp. 1022-1027, Morgan Kaufmann, 1993.

[24] W. Mendenhall, R.J. Beaver, B.M. Beaver, "Introduction to Probability and
Statistics", Duxbury Press, 1999.

[25] M. Last and A. Kandel, "Fuzzification and Reduction ofinformation-Theoretic
Rule Sets", in Data Mining and Computational Intelligence, A. Kandel, H.
Bunke, and M. Last (Eds), Physica-Verlag, Studies in Fuzziness and Soft
Computing, Vol. 68, pp. 63-93, 2001.

[26] M. Last, Y. Klein, A. Kandel, "Knowledge Discovery in Time Series
Databases", IEEE Transactions on Systems, Man, and Cybernetics, Volume 31:
Part B, No. I, pp. 160-169, Feb. 2001.

[27] M. Last, O. Maimon, E. Minkov, "Improving Stability of Decision Trees",
International Journal of Pattern Recognition and Artificial Intelligence, Vol. 16,
No.2, pp. 145-159,2002.

[28] M. Last and A. Kandel, "Data Mining for Process and Quality Control in the
Semiconductor Industry", In Data Mining for Design and Manufacturing:
Methods and Applications, D. Braha (ed.), Kluwer Academic Publishers, pp.
207-234,2001.

[29] M. Last and A. Kandel, "Automated Quality Assurance of Continuous Data", to
appear in NATO Science Series book "Systematic Organization ofinformation
in Fuzzy Systems".

www.manaraa.com

Automated Test Reduction Using an In/a-Fuzzy Network 255

APPENDIX
Case ID Region Age Final Node Expected Output

1 5 Any 6 1

2 6 Any 7 1

3 0 0 8 1

4 0 18 9 0

5 1 0 10 1

6 1 18 11 0

7 2 0 12 1

8 2 18 13 0

9 3 0 14 1

10 3 18 15 0
11 4 0 16 1

12 4 18 17 0

Table 5. Non-redundant test cases for Decision Output.

Case ID Citizenship Region Age Income State Sex Final Node Expected Output I

I 0 5 Any Any Any Any 8 0
2 0 6 Any Any Any Any 9 0
3 I 5 Any Any Any Any 15 0
4 I 6 Any Any Any Any 16 0
5 0 0 0 Any Any Any 17 0
6 0 I 0 Any Any Any 19 0
7 0 2 0 Any Any Any 21 0
8 0 3 0 Any Any Any 23 0
9 0 4 0 Any Any Any 25 0
IO I 0 0 Any Any Any 27 0
II I I 0 Any Any Any 29 0
12 I 2 0 Any Any Any 31 0
13 I 3 0 Any Any Any 33 0
14 I 4 0 Any Any Any 35 0
15 0 0 18 59 Any Any 40 10001
16 0 0 18 147 Any Any 44 8001
17 0 I 18 31 Any Any 48 8001
18 0 I 18 147 Any Any 54 8001
19 0 4 18 31 Any Any 78 12001
20 I 0 18 0 Any Any 87 I
21 I 0 18 31 Any Any 88 I
22 I 0 18 42 Any Any 89 2001
23 I 0 18 59 Any Any 90 2001
24 I 0 18 67 Any Any 91 2001

1 Lower boundary of the corresponding interval

www.manaraa.com

256 Software Engineering with Computational Intelligence

Case ID Citizenship Region Age Income State Sex Final Node Expected Output l

25 1 0 18 84 Any Any 92 2001
26 I 0 18 121 Any Any 93 2001
27 I 0 18 147 Any Any 94 2001
28 1 0 18 154 Any Any 95 2001
29 1 0 18 183 Any Any 96 2001
30 1 1 18 0 Any Any 97 1
31 1 1 18 31 Any Any 98 1
32 1 1 18 42 Any Any 99 1
33 1 1 18 59 Any Any 100 2001
34 1 1 18 67 Any Any 101 2001
35 1 1 18 84 Any Any 102 2001
36 1 1 18 121 Any Any 103 2001
37 1 1 18 147 Any Any 104 2001
38 1 1 18 154 Any Any 105 2001
39 1 1 18 183 Any Any 106 2001
40 1 2 18 0 Any Any 107 1
41 1 2 18 31 Any Any 108 1
42 1 2 18 42 Any Any 109 I
43 I 2 18 59 Any Any 110 2001
44 1 2 18 67 Any Any 111 2001
45 I 2 18 84 Any Any 112 2001
46 1 2 18 121 Any Any 113 2001
47 I 2 18 147 Any Any 114 2001
48 1 2 18 154 Any Any 115 2001
49 1 2 18 183 Any Any 116 2001
50 1 3 18 0 Any Any 117 I
51 1 3 18 31 Any Any 118 1
52 1 3 18 42 Any Any 119 1
53 1 3 18 59 Any Any 120 2001
54 1 3 18 67 Any Any 121 2001
55 I 3 18 84 Any Any 122 2001
56 I 3 18 121 Any Any 123 2001
57 1 3 18 147 Any Any 124 2001
58 1 3 18 154 Any Any 125 2001
59 I 3 18 183 Any Any 126 2001
60 1 4 18 0 Any Any 127 1
61 I 4 18 31 Any Any 128 1
62 1 4 18 42 Any Any 129 2001
63 I 4 18 59 Any Any 130 2001
64 1 4 18 67 Any Any 131 2001
65 I 4 18 84 Any Any 132 2001
66 1 4 18 121 Any Any 133 2001
67 I 4 18 147 Any Any 134 2001
68 I 4 18 154 Any Any 135 2001
69 1 4 18 183 Any Any 136 2001
70 0 0 18 0 0 Any 137 8001
71 0 0 18 0 1 Any 138 6001
72 0 0 18 31 0 Any 139 8001
73 0 0 18 31 1 Any 140 6001

www.manaraa.com

Automated Test Reduction Using an In/o-Fuzzy Network 257

CaseID Citizenship Region Age Income State Sex Final Node Expected Output l

74 0 0 18 42 0 Any 141 10001
75 0 0 18 42 1 Any 142 6001
76 0 0 18 67 0 Any 143 10001
77 0 0 18 67 1 Any 144 8001
78 0 0 18 84 0 Any 145 10001
79 0 0 18 84 1 Any 146 8001
80 0 0 18 121 0 Any 147 10001
81 0 0 18 121 I Any 148 8001
82 0 0 18 154 0 Any 149 12001
83 0 0 18 183 0 Any 151 12001
84 0 0 18 183 I Any 152 10001
85 0 1 18 0 0 Any 153 8001
86 0 I 18 0 I Any 154 6001
87 0 I 18 42 0 Any 155 10001
88 0 I 18 42 1 Any 156 6001
89 0 1 18 59 0 Any 157 10001
90 0 I 18 59 1 Any 158 6001
91 0 I 18 67 0 Any 159 10001
92 0 1 18 67 1 Any 160 8001
93 0 1 18 84 0 Any 161 10001
94 0 I 18 84 1 Any 162 8001
95 0 I 18 121 0 Any 163 12001
96 0 1 18 121 I Any 164 8001
97 0 I 18 154 0 Any 165 12001
98 0 1 18 154 1 Any 166 8001
99 0 I 18 183 0 Any 167 12001
100 0 I 18 183 I Any 168 10001
101 0 2 18 0 0 Any 169 8001
102 0 2 18 0 I Any 170 6001
103 0 2 18 31 0 Any 171 8001
104 0 2 18 31 I Any 172 6001
105 0 2 18 42 I Any 174 6001
106 0 2 18 59 0 Any 175 10001
107 0 2 18 59 I Any 176 6001
108 0 2 18 67 0 Any 177 10001
109 0 2 18 67 I Any 178 8001
110 0 2 18 84 0 Any 179 10001
111 0 2 18 84 I Any 180 8001
112 0 2 18 121 0 Any 181 12001
113 0 2 18 121 I Any 182 8001
114 0 2 18 147 0 Any 183 12001
115 0 2 18 147 I Any 184 8001
116 0 2 18 154 0 Any 185 12001
117 0 2 18 183 0 Any 187 12001
118 0 2 18 183 1 Any 188 10001
119 0 3 18 0 0 Any 189 10001
120 0 3 18 0 1 Any 190 6001
121 0 3 18 31 0 Any 191 12001
122 0 3 18 31 I Any 192 6001

www.manaraa.com

258 Software Engineering with Computational Intelligence

Case ID Citizenship Region Age Income State Sex Final Node Expected Output l

123 0 3 18 42 0 Any 193 12001
124 0 3 18 42 1 Any 194 6001
125 0 3 18 59 0 Any 195 12001
126 0 3 18 59 1 Any 196 8001
127 0 3 18 67 0 Any 197 12001
128 0 3 18 67 1 Any 198 8001
129 0 3 18 84 0 Any 199 14001
130 0 3 18 84 1 Any 200 8001
131 0 3 18 121 0 Any 201 14001
132 0 3 18 121 1 Any 202 8001
133 0 3 18 147 1 Any 204 8001
134 0 3 18 154 0 Any 205 16001
135 0 3 18 183 0 Any 207 16001
136 0 3 18 183 1 Any 208 10001
137 0 4 18 0 0 Any 209 10001
138 0 4 18 0 1 Any 210 6001
139 0 4 18 42 0 Any 211 12001
140 0 4 18 42 1 Any 212 6001
141 0 4 18 59 0 Any 213 12001
142 0 4 18 59 1 Any 214 6001
143 0 4 18 67 0 Any 215 12001
144 0 4 18 67 1 Any 216 8001
145 0 4 18 84 0 Any 217 14001
146 0 4 18 84 1 Any 218 8001
147 0 4 18 121 0 Any 219 14001
148 0 4 18 121 1 Any 220 8001
149 0 4 18 147 0 Any 221 14001
150 0 4 18 147 1 Any 222 8001
151 0 4 18 154 0 Any 223 16001
152 0 4 18 183 0 Any 225 16001
153 0 4 18 183 1 Any 226 10001
154 0 0 18 154 1 0 227 8001
155 0 0 18 154 1 1 228 10001
156 0 2 18 42 0 0 229 8001
157 0 2 18 42 0 1 230 10001
158 0 2 18 154 1 0 231 8001
159 0 2 18 154 1 1 232 10001
160 0 3 18 147 0 0 233 14001
161 0 3 18 147 0 1 234 16001
162 0 3 18 154 1 0 235 8001
163 0 3 18 154 1 1 236 10001
164 0 4 18 154 1 0 237 8001
165 0 4 18 154 1 1 238 10001

Table 6. Non-redundant test cases for Credit Limit Output.

www.manaraa.com

AGenetic Algorithm Approach to Focused
Software Usage Testing

Robert M. Patton, Annie S. Wu, and Gwendolyn H. Walton

University of Central Florida
School of Electrical Engineering and Computer Science
Orlando, FL, U.S.A
rmpatton@yahoo.com

ABSTRACT
Because software system testing typically consists of only a very small
sample from the set of possible scenarios of system use, it can be difficult or
impossible to generalize the test results from a limited amount of testing
based on high-level usage models. It can also be very difficult to determine
the nature and location of the errors that caused any failures experienced
during system testing (and therefore very difficult for the developers to find
and fix these errors). To address these issues, this paper presents a Genetic
Algorithm (GA) approach to focused software usage testing. Based on the
results of macro-level software system testing, a GA is used to select
additional test cases to focus on the behavior around the initial test cases to
assist in identifying and characterizing the types of test cases that induce
system failures (if any) and the types of test cases that do not induce system
failures. Whether or not any failures are experienced, this GA approach
supports increased test automation and provides increased evidence to
support reasoning about the overall quality of the software. When failures
are experienced, the approach can improve the efficiency of debugging
activities by providing information about similar, but different, test cases
that reveal faults in the software and about the input values that triggered
the faults to induce failures.

KEYWORDS:
Genetic algorithms, software usage testing, simulation testing, debugging,
system testing, black box testing

1. OVERVIEW
This work focuses on system level, model-based usage testing. The

software to be tested is viewed from the perspective of the user as a black
box system that operates in a specific environment, receives input, and
provides output. One or more state-based models of software use are
developed, using domain-specific knowledge to characterize the population
of uses of the software (or usage scenarios) and to describe test management
objectives and constraints. The usage models are used to assist with test

www.manaraa.com

260 Software Engineering with Computational Intelligence

planning, to generate a sample of test cases that represent usage scenarios,
and to support reasoning about test results.

System-level usage testing approaches have proven to be successful for
supporting test case selection and reasoning about test results in a variety of
software projects. However, the system testing typically consists of only a
very small sample from the set of possible scenarios of system use. Thus, it
can be difficult or impossible to generalize the test results from a limited
amount of testing based on high-level usage models. It can also be very
difficult to determine the nature and location of the errors that caused any
failures experienced during system testing (and therefore very difficult for
the developers to find and fix these errors).

This paper presents a Genetic Algorithm (GA) approach to addresses
these issues. As illustrated in Figure I and described in detail in section 5,
the GA accepts input from two sources: (a) domain data generated by the
usage model to define a usage scenarios and (b) the results (pass/fail) of
system test. The initial population is defined as a set of test cases generated
from a usage model. Each individual in the population represents a single test
case. The individual is sent to the Tester to be processed and supplied to the
Software Under Test. The Software Under Test processes this input and
provides output that is analyzed for correctness by the Test Oracle. The Test
Oracle will determine if the output is correct or flawed or if the software
under test crashed. The Test Oracle informs the GA of the result: output is
correct, output is flawed, or Software Under Test crashed. The GA uses this
result along with the likelihood that it would occur as defined by the usage
model to help determine the overall fitness of the individual. The GA outputs
individual test cases that caused high intensity failures within the high usage
areas of the software, thus driving dynamic testing and system analyses in a
focused manner based on test objectives (as described by the usage model)
and previous test results.

Input
Domain
Data

Individual
r---------------
1

Genetic
Algorithm

Failed Test Cases

Result

Output

Software
Under Test

~----~ ~--------~

Failure Intensity Evaluation

Figure 1. GA Approach to Focused Software Usage Testing.

www.manaraa.com

A Genetic Algorithm Approach to Focused Software Usage Testing 261

The remainder of this paper is organized as follows. Section 2 provides a
high-level introduction to Genetic Algorithms and pointers to related work.
Section 3 provides some background information about system testing and
debugging activities and challenges that motivate the GA approach presented
in this paper. Section 4 introduces the GA approach to focused usage testing,
and section 5 provides information about the internal details of the GA.
Section 6 provides an example to illustrate application of this approach to
drive focused testing of a military simulation system. Conclusions are
presented in section 7.

2. INTRODUCTION TO GENETIC ALGORITHMS
A genetic algorithm (GA) is a search algorithm based on principles from

natural selection and genetic reproduction [Holland 1975; Goldberg 1989].
GAs have been successfully applied to a wide range of applications, [Haupt
1998; Karr 1999; Chambers 2000] including optimization, scheduling, and
design problems. Key features that distinguish GAs from other search
methods include:
• A population of individuals where each individual represents a potential

solution to the problem to be solved.
• A fitness function which evaluates the utility of each individual as a

solution.
• A selection function which selects individuals for reproduction based on

their fitness.
• Idealized genetic operators which alter selected individuals to create

new individuals for further testing. These operators, e.g. crossover and
mutation, attempt to explore the search space without completely losing
information (partial solutions) that is already found.

Figure 2 provides the basic steps of a GA. First the population is
initialized, either randomly or with user-defined individuals. The GA then
iterates thru an evaluate-select-reproduce cycle until either a user defined
stopping condition is satisfied or the maximum number of allowed
generations is exceeded.

www.manaraa.com

262 Software Engineering with Computational Intelligence

procedure GA
{
initialize population;
while termination condition not satisfied do
{

evaluate current population;
select parents;
apply genetic operators to parents to create

children;
set current population equal to be the new child

population;
}

}

Figure 2. Basic steps of a typical genetic algorithm.

The use of a population allows the GA to perform parallel searches into
multiple regions of the solution space. Operators such as crossover [Holland
1975; Goldberg 1989; Mitchell 1996] allow the GA to combine discovered
partial solutions into more complete solutions. As a result, the GA is
expected to search for small building blocks in parallel, and then iteratively
recombine small building blocks to form larger and larger building blocks. In
the process, the GA attempts to maintain a balance between exploration for
new information and exploitation of existing information. Over time, the GA
is able to evolve populations containing more fit individuals or better
solutions. For more information about GAs, the reader is referred to [Holland
1975; Goldberg 1989; Mitchell 1996; Coley 2001].

While, the GA approach presented in this paper is unlike other published
approaches to the application of GA to support software testing or software
quality assessment, the "failure-pursuit sampling" work of [Dickinson et al.
200 I] and the "adaptive testing" work of [Schultz et al. 1992] are particularly
noteworthy with respect to their motivation for the work of this paper.

While [Dickinson et al. 2001] does not explicitly make use of a GA, their
concept of failure-pursuit sampling helped to provide a foundation for the
approach presented in this paper. In failure-pursuit sampling, some initial
sample of test cases is selected; the sample is evaluated and failures
recorded; and additional samples are then selected that are in the vicinity of
failures that occurred in the previous sample.

[Schultz et aI. 1992] demonstrated the use of adaptive testing to test
intelligent controllers for autonomous vehicles by creating individuals in the
population that represented fault scenarios to be supplied to simulators of the
autonomous vehicles. A benefit of such testing was to provide more
information to the developers. According to [Schultz et al. 1992],

"In more of a qualitative affirmation of the method, the original
designer of the AUTOACE intelligent controller was shown some

www.manaraa.com

A Genetic Algorithm Approach to Focused Software Usage Testing

of the interesting scenarios generated by the GA, and
acknowledges that they gave insight into areas of the intelligent
controller that could be improved. In particular, the scenarios as a
group tend to indicate classes of weaknesses, as opposed to only
highlighting single weaknesses. This allows the controller
designers to improve the robustness of the controller over a class as
opposed to only patching very specific instances of problems."

3. TESTING AND DEBUGGING CHALLENGES

263

Reasoning about the overall quality of a system can be difficult. For
example, suppose a system accepts some data value X, and that the user
profile for this system specifies that user is likely to use values in the range
30 < X < 70. A usage model may generate two test cases that specify X as 40
and 60. Ifboth of these test cases pass, it is not necessarily true that test cases
will pass for all values ofX. Similarly, if both of these test cases fail, it is not
necessarily true that test cases will fail for all values of X. Additional
focused testing (using similar, but different, test cases to identify more
precisely the usage scenarios that induce failures and the scenarios that do
not induce failures) may be necessary to support reasoning about the overall
quality of the software.

In addition, in the situation when failures are observed during system
testing, more testing can be required in order to precisely determine nature
and location of the error(s) that caused the failures so the developers can find
and fix the error. This find-and-fix process is referred to as "debugging".
According to [Myers 1979], "of all the software-development activities,
[debugging] is the most mentally taxing activity." This statement is often
true today and can be the source of software quality problems. Test cases that
reveal failures are often dissimilar to each other, the test results often provide
little information concerning the cause of the failure and whether a similar
scenario would fail in a similar manner. Without additional information, and
with limited development resources, developers may be tempted to apply a
small patch to the software to work around the failure rather than perform the
analyses necessary to support complete understanding and correction of the
problems that caused the failures.

A competitive mentality of "developers versus testers" often exists
during testing. Because debugging requires additional information
concerning the usage of the system and performing additional testing, once
failures occur and the system must be corrected, this mentality should
transition to "developers and testers versus the system" to facilitate the
debugging effort. Developers often need the support of the testers during
debugging because the developers may not have the necessary testing

www.manaraa.com

264 Software Engineering with Computational Intelligence

resources to do additional system level testing, or additional information
concerning the usage of the system. As described by [Zeller 2001],

"Testing is another way to gather knowledge about a program
because it helps weed out the circumstances that aren't relevant to
a particular failure. If testing reveals that only three of 25 user
actions are relevant, for example, you can focus your search for the
failure's root cause on the program parts associated with these
three actions. If you can automate the search process, so much the
better."

This description is consistent with the often-used induction approach to
debugging described by [Myers 1979]. The induction approach begins by
locating all relevant evidence concerning correct and incorrect system
performance. As noted by [Myers 1979], "valuable clues are provided by
similar, but different, test cases that do not cause the symptoms to appear. It
is also useful to identify similar, but different, test case that do cause the
symptoms to appear.

Similar to the notion of taking several "snapshots" of the evidence from
different angles and with different magnification to look for clues from
different perspectives, the debugging team needs to follow up on any failures
identified during testing by more finely partitioning the input domain
according to test results. This yields new evidence to be compared and
organized in an attempt to identify an~ characterize patterns in the system's
behavior. The next step is to develop a hypothesis about the cause of an
observed failure by using the relationships among the observed evidence and
patterns. Analyses can then be performed to prove that the hypothesis
completely explains the observed evidence and patterns.

In practice, debugging can be very time-consuming, tedious, and error
prone when system-level testing reveals failures. Success of the debugging
activity depends critically upon the first step in the process: the collection of
evidence concerning correct and incorrect system performance. Assuming
the total' amount of evidence is manageable, an increase in useful evidence
about correct and incorrect system performance can make it easier to identify
patterns and develop and prove hypotheses. Thus, a mechanism is needed to
drive testing and system analyses in a focused manner based on previous test
results.

4. USING A GA FOR FOCUSED SOFTWARE USAGE
TESTING

The genetic algorithm (GA) approach described in this paper drives
dynamic generation of test cases by focusing the testing on high usage
(frequency) and fault-prone (severity) areas of the software. This GA

www.manaraa.com

A Genetic Algorithm Approach to Focused Software Usage Testing 265

approach can be described as analogous to the application of a microscope.
The microscope user first quickly examines an artifact at a macro-level to
locate any potential problems. Then the user increases the magnification to
isolate and characterize these problems.

Using the GA approach to focused software usage testing, the macro
level examination of the software system is performed using the
organization's traditional model-based usage testing methods. Based on the
results of this macro-level examination, a genetic algorithm is used to select
additional test cases to focus on the behavior around the initial test cases to
assist in identifying and characterizing the types of test cases that induce
system failures (if any) and the types of test cases that do not induce system
failures. If failures are identified, the genetic algorithm increases the
magnification by selecting certain test cases for further analysis of failures.
This supports isolation and characterization of any failure clusters that may
exist.

Whether or not any failures are experienced, this genetic algorithm
approach provides increased evidence for the testing team and managers to
support reasoning about the overall quality of the software. In the situation
where failures are experienced, the genetic algorithm approach yields
information about similar, but different, test cases that reveal faults in the
software and about the input values that triggered the faults to induce
failures. This information can assist the developer in identifying patterns in
the system's behavior and in devising and proving a hypothesis concerning
the faults that caused the failures.

Because different software failures vary in severity to the user and in
frequency of occurrence under certain usage profiles, certain failures can be
more important than others. Factors such as the development team's
uncertainty about particular requirements, complexity of particular sections
of the code, and varying skills of the software development team can result
in clusters of failure in certain partitions of the set of possible use of the
software. As discussed in section 5.4 and section 5.5.1, the genetic
algorithm's fitness function and selection function can address this issue, and
help support the generation of test cases to identify failure clusters.

In the case of usage testing, highly fit individuals in the population are
those that maximize two objectives. The first objective is likelihood of
occurrence. Maximizing this objective means that the test case individual
represents a scenario that closely resembles what the user will do with the
system. The second objective is failure intensity (defined as a combination of
failure density and failure severity). Maximizing this objective means that
the test case individual has revealed spectacular failures in the system.
Highly fit individuals with respect to the rest of the population are those that

www.manaraa.com

266 Software Engineering with Computational Intelligence

maximize both objectives as much as possible. To address this issue, a multi
objective GA technique [Fonseca 1995; Deb 1999; Coello Coello et al. 2002]
is needed. As described in section 5 A, this application makes use of a
nonlinear aggregating fitness combination [Coello Coello et al. 2002] to
handle multiple objectives.

Furthermore, the purpose of the GA in this application is not to find a
single dominant individual. This does not make sense from a testing
perspective. Instead, the purpose is to locate and maintain a group of
individuals that are highly fit. To do so, the GA for this application uses
niching [Holland 1975; Hom 1994; Mahfoud 1995]. A niche represents some
subpopulation of individuals who are similar, but different. As the GA runs,
the most dominant niches (not the most dominant individual) survive.
Niching used for this application is described in section 5A.3.

The GA approach is applicable to testing many types of software. For
example, in section 6 illustrative examples are presented of the application of
a GA to support high-level usage testing of a military simulation system. For
this case study, the test cases for a military simulation system consists of a
variety of scenarios involving entities such as tanks, aircraft, armored
personnel carries, and soldiers. Each entity can perform a variety of tasks. At
a basic level, these scenarios involve some primary actor performing a task
that mayor may not involve a secondary actor, depending on the task. Each
scenario is performed on a specific terrain map. For example, a scenario may
consist of using a terrain map of Fort Knox with an MIA1 tank performing
an Assault on a T-80 tank. In this example, the M1Al tank is the primary
actor since it performs the task (Assault), and it is the focus of the scenario.
The T -80 tank is the secondary actor.

5. GA APPROACH DETAILS
To implement the GA for this case study example, a number of issues

had to resolved, including the encoding of real world data, population
initialization, fitness evaluation, and the use and operation of genetic
operators. The following subsections discuss these issues and describe the
internal details of the genetic algorithm.

5.1. Input Domain Data
As illustrated in Figure 3, there are three sources for the Input Domain

Data that serves as input to the GA application shown in Figure 1. First, there
is data that represents the bounds of the input domain for the software under
test. This boundary data set does not necessarily specify all possible data
values; rather it could merely specify the extreme values. For example,
suppose the system accepts some data value X Then the input boundary data

www.manaraa.com

A Genetic Algorithm Approach to Focused Software Usage Testing 267

might specify 0 < X < 10. Second, there is data that represents the user's
profile. This data defines what input data the user is likely to use and,
implicitly, what data the user is not likely to use. For the previous example of
the data value X, the user profile may specify 3 < X < 7. The third source of
input domain data is the set of test cases generated according to the user
profile. For example, there may be two test cases that specify X as 4 and 6.
The test cases and user profile data sets must be subsets of the input
boundary data set.

Input Boundary

User Profile

Figure 3. Input Domain Data.

Each of these three sources of input domain data is used for a specific
purpose. The test cases are used to initialize the population. The user profile
data set is used to help evaluate the fitness of individuals, specifically used to
determine likelihood of occurrence. This causes the GA to focus its search to
a particular area of the input domain. The input boundary data set is used to
validate that new individuals are consistent with what the software under test
allows the user to do. If an individual is created that lies outside of the
defined input boundary data set, then that individual will be discarded by the
GA.

5.2. Encoding
The test cases generated by the usage model are converted to an

encoding based on real numbers for use in the GA population. This type of
encoding was used so that there is a one to one correspondence between the
gene and the variable it represents. In addition, it eliminates the problem of
Hamming cliffs [Goldberg 1990]. Table 1, Table 2, add Table 3 illustrate a
sample of the assigned identification numbers (IDs) for use in the GA.

www.manaraa.com

268 Software Engineering with Computational Intelligence

Terrain ID Number
1
2
3
4

TerrainMa
NTC
Knox

Hunter
Itsec

Table 1. Terrain Identification Numbers.

Enti ID Number
2
6
9
17
27

Simulation Enti
MIAI
T-80

M3A3
SA-9

UH-60

Table 2. Entity Identification Numbers.

Task ID Number
1
3
7
11
15

Task
Move

Assault
Attack
Hover

Suppressive Fire

Table 3. Task Identification Numbers.

The individuals in the population of the GA consist of variations of these
IDs. There are ten genes in each individual. The genotype is shown in Table
4.

Gene
1
2
3
4
5
6
7
8
9
10

Meanin
Terrain

Primary Actor
Task

Secondary Actor
XI
YI

ZI
X2

Y2

Z2

Valid Value Ran e
Values 1- 4

Values 1- 37
Values 1-17
Values 0 - 37

Values greater than or equal to 0
Values greater than or equal to 0
Values greater than or equal to 0
Values greater than or equal to 0
Values greater than or equal to 0
Values greater than or equal to 0

Table 4. Genotype for individuals in the genetic algorithm.

Each gene represents an input value that a user could supply to the
software being tested. The collection of ten genes represents a specific

www.manaraa.com

A Genetic Algorithm Approach to Focused Software Usage Testing 269

simulation scenario that may be run by the user on the Software Under Test.
For example, Gene 1 represents the terrain map selected by the user. Gene 2
represents the primary actor selected by the user, such as a tank (i.e., MIAl,
T-80), plane, helicopter, etc. Gene 3 represents the task assigned by the user
to the primary actor, such as Move, Attack, Transport, etc. If the selected
task requires a secondary actor, the user selects another actor, such as an
enemy tank, enemy plane, friendly soldier, etc. Gene 4 represents the
selected secondary actor. If the selected task does not require a secondary
actor, Gene 4 is assigned a zero value. Genes 5 -7 specify the location of the
primary actor on the terrain map. If there is a secondary actor involved, then
Genes 8 - 10 specify the location of the secondary actor on the terrain map.
If there is no secondary actor, then Genes 8 - 10 represent some destination
location that the primary actor must reach. An example of an individual is
shown in Figure 4. This individual represents a scenario with an MIAI tank
assaulting a T-80 tank on the Fort Knox terrain map. The values shown in the
first 4 genes of the individual are taken from Table 1, Table 2 and Table 3.
The values for genes 5 - 10 are taken from the location values specified by
the test case.

Test Case
Terrain: Fort Knox
Primary Actor: MIA 1 @ location: [400, 34, 0]
Task: Assault

~econdary Actor: T-80 @ location: [100, 60, 0] ~

y
Value 2 2 3 6 400 I 34 0 100 60 0

Gene 2 3 4 5 6 7 8 9 10

Figure 4. Representation of test cases within the genetic algorithm.

Invalid individuals are discarded. For example, because a tank cannot
attack an aircraft, an individual that represents this scenario would be
discarded. Other invalid scenarios are those that specify locations (Genes 5-
10) that lie outside the bounds of the terrain map. In addition, land vehicles
cannot be assigned Z coordinate values greater than o.

5.3. Population Initialization
To provide the GA with a semi-ideal starting position, individuals in the

GA are initialized according to the test cases generated by the usage model.
If the individuals in the GA were initialized randomly, the GA would 'waste'
generation cycles looking for individuals located within the user profile.
Furthermore, with random initialization, it is possible that the GA may not

www.manaraa.com

270 Software Engineering with Computational Intelligence

find the individuals located in the user profile, and the results will be of little
value. Because some of the individuals located in the user profile are already
known, initializing the population with these known individuals can reduce
the number of GA iterations.

5.4. Fitness Evaluation
The fitness of individuals is based primarily on maxImIzmg two

objectives, as graphically depicted in Figure 5. Optimal individuals are those
that have a high likelihood of occurring and that result in failures with high
failure intensity. Optimal individuals occur in zone 1. Inferior individuals are
those with a low likelihood of occurring and would be located in zone 6.

While the GA system strives to find optimal individuals, there are two
reasons that this is not always achievable. First, the software under test may
be of such high quality that optimal individuals simply do not exist. Second,
optimal individuals may exist outside of the defined user profile, but not
within it. If the GA finds such individuals, they will be in zone 6 if they lie
outside of the high usage areas of the software as defined by the usage
model. Note that the boundary between the optimal, sub-optimal, and inferior
zones is not necessarily a hard, distinct boundary. Since the user profile is
simply an approximation for what the user may do, inferior individuals near
the boundaries of the optimal and sub-optimal zones may also be of interest.

Likelihood of
Occurrence

Sub-optimal Optimal

5 4 3 2 I

~--~--~--~--~--~

}
User Profile
Uncertainty

6 Inferior

Failure Intensity

Figure 5. Fitness oflndividuals.

The height of the optimal and sub-optimal zones is determined by the
uncertainty in the accuracy of the user profile. If the user profile is based on
historical evidence, or if the profile represents expert users, then the
uncertainty in the accuracy of the user profile will be lower, resulting in a
shorter height of the zones. However, if the user profile is based on
guesswork, or if it represents novice users, then the uncertainty in the user
profile accuracy will be higher, resulting in a taller height of the zones. The

www.manaraa.com

A Genetic Algorithm Approach to Focused Software Usage Testing 271

width and number of the optimal and sub-optimal zones is chosen according
to the level of importance given to the GA concerning various levels of
failure intensity. For example, if each failure were of equal importance, there
would be only one optimal zone, no sub-optimal zones, and a width ranging
from the lowest intensity level to the highest.

The overall fitness of an individual is based on likelihood of occurrence,
the failures intensity, and the similarity to other individuals in the population.
Each of these criteria is discussed in the following sections.

5.4.1. Likelihood of Occurrence

Individuals are first evaluated in terms of the likelihood they will be used
by the user. Individuals containing input data that is very likely to be used by
the user are very highly fit individuals for this particular objective.
Individuals that contain input data that is not likely to be used by the user are
very poorly fit individuals. This evaluation is based on the supplied user
profile data set. The likelihood of the input data is calculated by mUltiplying
the probability of occurrence of each input value that is used in the test case.
For example, suppose the probability distribution for the input data is as
shown in Table 5. The likelihood that the user would select Input Values 1
and 2 is 0.15. The likelihood that the user would select Input Values 1 and 3
is 0.0375. Consequently, a test case involving Input Values I and 2 would be
rated as being more highly fit than one involving Input Values 1 and 3. The
case study described in this paper only considers the first 4 genes in
determining the likelihood of occurrence. This is because genes I - 4 provide
the basics of the test scenarios while genes 5 - 10 provide the details.
Likelihood of occurrence is based on the basics, not the details, of the
scenano.

Input Value 1 0.75

Input Value 2 0.20

Input Value 3 0.05

Table 5. Input Data Probability Distribution

5.4.2. Failure Intensity

In addition to likelihood of use, the test team is also interested in test
case individuals that find failures. Consequently, the second objective to be
maximized is Failure Intensity, defined as a combination of failure density
and failure severity. For example, suppose some individual causes a single
failure that results in the crash of the software being tested. The Failure

www.manaraa.com

272 Software Engineering with Computational Intelligence

Intensity consists of a low failure density (there is only 1 failure) and a high
failure severity (the system crashes). In contrast, suppose another individual
causes multiple failures that give erroneous output but do not crash the
software being tested. In this situation, the Failure Intensity consists of a high
failure density (there were multiple failures) and a low failure severity (the
system does not crash, but gives erroneous output). Both of these individuals
would be of interest, even though the composition of their Failure Intensity is
different.

Consider the situation where a test manager differentiates failure severity
according to five levels, with level 1 the lowest severity and level 5 the
highest. For an individual test case that causes two level 3 failures, the failure
intensity could be computed to equal 6, the sum of the failure severities. An
individual that causes one level 5 failure would have failure intensity equal
to 5. However, this approach to calculating failure intensity may not be
satisfactory to the test manager. A single level 5 severity failure may be more
important than a test case that produces multiple failures of lower severity.
To handle this situation, a non-linear scoring method such as that shown in
Table 6 is recommended.

Severi Level Score
5 18
4 12
3 3
2 2
1 1

Table 6. Example Scoring Technique for Different Severity Levels.

If this scoring technique were applied, an individual that caused two
level 3 failures would receive a failure intensity score of 6, and an individual
that caused a single level 5 failure would receive an intensity score of 18.
Similarly, an individual that caused three level 2 failures and two level 3
failures would receive an intensity score of 12. This yields a more useful
result to the test manager than a linear scoring method. Obviously, the choice
of scoring algorithm depends on the characteristics of the software being
tested and the test management objectives.

5.4.3. Niching

As a genetic algorithm runs, the population of individuals will eventually
converge to a single solution that dominates the population, and the diversity
of the population is ultimately lowered. When a GA is applied to software
usage testing, each individual represents a single test case. Consequently, the
genetic algorithm would eventually converge to some test case that is both

www.manaraa.com

A Genetic Algorithm Approach to Focused Software Usage Testing 273

likely to occur and reveals failures of high intensity. To avoid having a single
individual dominate the population, a niching technique [Holland 1975;
Mahfoud 1995; Hom 1997] is used.

A niche represents some subpopulation of individuals who share some
commonality. To apply this technique to software usage testing, a niche is
formed for each unique combination of likelihood, failure intensity, and
genetic values for the genes 1 through 4. That is, individuals that share the
same likelihood, failure intensity, and genes 1 through 4 will occupy the
same niche, or subpopulation. For example, a niche would be represented by
a likelihood value of .07, a failure intensity value of 12, and genes values {2
2 3 6} for genes 1 through 4. In a population of 500, there may be 20
individuals who have these same values and would, consequently share this
same niche. Another niche would be represented by a likelihood value of .05,
a failure intensity of 10, and gene values {I 3 3 5} for genes 1 through 4.
This type of niching is based on both the phenotype and partial genotype of
the individuals. By implementing niches in the GA, the population will
converge not to a single dominant individual, but to mUltiple dominant
niches.

Specifically, niching is performed based on fitness sharing [Holland
1975]. Fitness sharing reduces the fitness values of individuals that are
similar to other individuals in some way (i.e., the various niches in the
population). This type of niching was used because of its success in prior
work [Mahfoud 1995]. For this application, an individual's fitness value is
reduced by dividing its fitness by the number of individuals that share its
same niche.

5.4.4. Determining Overall Fitness

Highly fit individuals in the population are those maXImIze the
objectives of likelihood of occurrence and failure intensity. A nonlinear
aggregating fitness combination [Coello Coello et al. 2002] is used to
identify individuals based on these two objectives. Determining failure
intensity is already time consuming, therefore, this type of fitness
combination was selected for its simplicity and speed. In addition, it directly
addressed the needs of this particular case study.

Each individual i is given a combined fitness value that is based on the
likelihood of occurrence of individual i, the failure intensity revealed by
individual i, and the total number of individuals in the population p that also
occupy the same niche as individual i. The fitness function to calculate the
overall fitness value for an individual i is given as follows:

www.manaraa.com

274 Software Engineering with Computational Intelligence

F . (.) (Likelihood(i) X Intensity(i))Y ltness l = -'--------''-'---,----::-'---'--'-"---
Niche Size(p, i)

(1)

The variable y represents a nonlinear scaling factor that can be adjusted
by the test team. This scaling factor is independent of the individuals in the
population. Using the microscope analogy, the y value is analogous to the
magnification level of the microscope. A higher y value represents a higher
magnification, and vice versa. The higher the value of y used in the GA, the
faster the population will converge to the most dominant niches, and the less
diversity there will be in the population. The lower the value ofy, the slower
the population will converge and the more diversity there will be in the
population (assuming that there is no one individual that is exceptionally fit) ..

If the scaling factor is not high enough, optimal individuals may not be
found, or would be lost in the process. This may occur in large populations
when weaker individuals may dramatically outnumber more optimal
individuals. A higher scaling factor will help optimal individuals survive in a
large mass of weaker individuals.

5.5. Genetic Operators
To create children from a given population, genetic operators such as

selection, crossover, and mutation operators are applied to the individuals.
Selection is first used to select parents from the population according to the
overall fitness value, as discussed in section 5.4. Strongly fit individuals
(higher fitness values) are more likely to be selected for reproduction than
weaker individuals (lower fitness values). Consequently, the average
population fitness should improve with each generation. Once parents are
selected, crossover and mutation operators are applied to the parents to create
children. The crossover and mutation operators provide the GA with the
ability to explore the search space for new individuals and to create diversity
in the population. The final result is a new population representing the next
generation.

5.5.1. Selection

The GA selection process used for this application is the Fitness
Proportional Selection [Holland 1975]. With this process, an individual's
probability of being selected for reproduction is proportional to the
individual's fitness with respect to the entire popUlation. Each individual's
fitness value is divided by the sum of the fitness values for all the individuals
in the population. The resulting fitness value is then used to select parents,
who then have the opportunity to pass on their genetic material (encoded
information) to the next generation. Highly fit individuals are therefore more

www.manaraa.com

A Genetic Algorithm Approach to Focused Software Usage Testing 275

likely to reproduce. This helps to improve the quality of the population. An
example of fitness proportional values is shown in Table 7. As can be seen,
individual 4 is the most likely to be selected, and individual 2 is the least
likely to be selected. Since this process depends on an individual's fitness
proportional to the population, the tester can easily influence the selection
process by altering the scaling factor of the fitness function, as discussed in
section 5.4.4.

Individual Original Fitness Value New Fitness Value
1 2 2/21 = .0952
2 1 1/21=.0476
3 4 4/21 = .1904
4 9 9/21 = .4285
5 5 5/21=.2381

Sum 21 .9998

Table 7. Example of fitness proportional values.

5.5.2. Crossover

To create children, the GA for this application uses a single-point
crossover operator that takes two parent individuals as input and outputs two
children that are similar, but different, from the parents. This operator
randomly selects a point in the genetic code of two parents and then swaps
all genes between the parents that lie after the crossover point. When
crossover is allowed between parents from different niches, diversity is
encouraged. For this case study, every individual in each generation is
processed by the crossover operator, and, if a child represents an invalid
scenario, it is discarded from the population and replaced by its
corresponding parent. For example, if Child 1 were invalid, it would be
removed and replaced by Parent 1. The basic operation of crossover is shown
in Figure 6.

www.manaraa.com

276 Software Engineering with Computational Intelligence

Parent I

Parent 2

Parent I Genes Parent 2 Genes

A

Ii] Child I f 2 2 3 f5 I 10 94 300 94 o I
Child 2 4 3 400 34 100 60 o 1 l [6 I ~I

Y _------7

Parent 2 Genes Parent I Genes

Figure 6. One-point crossover.

5.5.3. Mutation

In addition to the crossover operator, the GA for this application uses a
single-point mutation operator that takes one individual as input, makes a
small, random change to the genetic code of this individual, and outputs one
mutant that is similar, but different, to the original individual. This operator
randomly selects a gene in the genetic code of an individual and mutates that
gene by randomly selecting some new value. For this case study, every
individual in each generation is processed by the mutation operator, and, if
the mutant represents an invalid scenario, it is discarded from the population
and replaced by the original individual. The basic operation is shown in
Figure 7.

Individual
¥ Randomly Selected Mutation Point

2 I 2 3 6 400 34 o 100 60 o

Mutant

2 2 8 6 400 34 o 100 60 o

......... Randomly Selected Genetic Value

Figure 7. One-point mutation.

www.manaraa.com

A Genetic Algorithm Approach to Focused Software Usage Testing 277

6. EXAMPLE
The application of the GA to software usage testing was based on a

military simulation system. The population of interest for the examples
included four terrain maps, thirty-seven primary and secondary actors, and
seventeen tasks that are available for use with OTB.

To focus on observing and understanding the behavior of the GA for use
in software testing, the Failure Intensity Evaluation portion of Figure 1 was
simulated. Test cases were not actually performed on the military simulation
system. A set of simulated failures was developed for use in all the examples.
Simulated failures included problems with terrain maps, problems with a
specific entity or task regardless of terrain, actor, etc. These simulated
failures were representative of the types of problems seen in the real system.
Failure intensities greater than 12 represented system crashes. Failure
intensities less than 12 represented non-terminating failures. The scoring
system used is shown in Table 8. This is the same scoring technique
proposed in Table 6. Multiple failures per test case were also simulated. As a
result, a test case may reveal a failure intensity of 5, meaning that there were
two failures of with a score of 3 and 2, respectively.

Score Meanin
18 Repeatable, tenninating failure
12 Irregular, tenninating failure
3 Repeatable, non-tenninating failure
2 Irregular, non-tenninating failure
1 No failures

Table 8. Failure intensity scoring system.

Two similar, but slightly different, user profiles were developed to
examine the behavior of the GA when slight changes in a user profile occur.
Sample test cases were generated for each user profile. The GA was
initialized using each set of sample test cases, the corresponding user profile,
and the input boundary (as described in section 5.1). For all the GA runs, the
population size was 100 and the number of generations was 30.The results
for three examples of the GA are shown in Figure 8, Figure 9, Figure 10,
Figure 11, Figure 12 and Figure 13. Each point on the graphs represents a
niche in the population, not a single individual. The data supporting these
figures is shown in Table 9, Table 10, Table 11, Table 12, Table 13, and
Table 14, respectively. These tables also show how many individuals occupy
each niche.

In the first example, Figure 8 shows the niches that were formed after the
fitness evaluation of the first generation formed from test cases generated

www.manaraa.com

278 Software Engineering with Computational Intelligence

according to User Profile 1. Figure 9 shows the niches that were formed after
the fitness evaluation of the thirtieth generation. Notice that after 30
generations, the GA has converged to a few dominant niches. A comparison
of Figure 8 and Figure 9 indicates that the GA has found four more niches
that are very likely to occur and contain high failure intensities. Weaker
niches did not survive.

In the second example, Figure 10 shows the niches that were formed
after the fitness evaluation of the first generation formed from test cases that
were generated according to User Profile 2. Figure 11 shows the niches that
were formed after the fitness evaluation of the thirtieth generation. Notice
that after 30 generations, the population of the GA has not converged
sufficiently, but rather grew more divergent. This suggests that the fitness
function and selection process are not sufficiently countering the effects of
the crossover and mutation operators.

In the third example, the GA was reapplied using the same input data as
in the second example. However, the scaling factor of the fitness function
was increased from a value 1 to 2. This was done to increase the convergence
of the population, so that the final population does not grow more divergent
as in the second example. The initial niches for this example of the GA,
shown in Figure 12, were the same as for the second example (i.e., Figure 12
is identical to Figure 10). However, as shown in Figure 13, the results were
much different from that of Figure 11. These results are very similar to those
shown in Figure 9. The GA has found four new niches that are very likely to
occur and contain high failure intensities. The weaker niches did not survive.

The third example demonstrates a key aspect of the fitness function of
the GA. The scaling factor of the fitness function plays a critical and delicate
role in the finding and maintaining of optimal solutions. As illustrated in the
second example, if scaling factor is too low, optimal solutions may not be
found because the level of exploitation is diminished. However, if the scaling
factor is too high, diversity and exploration will be diminished.

In the last two examples, the GA was able to overcome a less than
optimal initial population. Notice in Table 11 and Table 13 that the initial
populations were heavily biased towards the niche with the highest
likelihood and low failure intensity. Table 12 and Table 14 show that the
final populations are more balanced (in comparison to Table 11 and Table
13, respectively), and resulted in niches that are more interesting in terms of
high failure intensity, while also being very likely to occur.

Finally, in each example, the final populations consist of niches that are:

1. Very likely to occur and resulted in a high failure intensity

2. Similar, but different. As described in [Myers 1979], similar, but
different, test cases help to identify the failure's root cause.

www.manaraa.com

A Genetic Algorithm Approach to Focused Software Usage Testing 279

Initial Test Case Niches

0.080

• .. 0.070 ...
= 0.060 •
= 0.050
0 ... 0.040 = • • "CI = 0.030 = t--- I--~ I---~

..c .. 0.020
~

~ 0.010 • •
• 4

• • •
0.000

o 2 4 6 8 10 12 14 16 18 20 22 24

Failure Intensity

Figure 8. Test case niches for User Profile 1 after Generation 1.

Final Test Case Niches

0.080

• • .. 0.070 ...
= 0.060 •-....
= 0.050
0
..... 0.040 = • • "CI = 0.030 = ..c .. 0.020
~

~ 0.010

0.000

o 2 4 6 8 10 12 14 16 18 20 22 24

Failure Intensity

Figure 9. Test case niches for User Profile 1 after Generation 30.

www.manaraa.com

280 Software Engineering with Computational Intelligence

Likelihood
Failure

Terrain
Primary

Task
Secondary Niche

Intensity Actor Actor Size
0.0005 1 Itsec M16A2 Suppressive AK47 6

Fire
0.0005 3 Itsec M16A2 Suppressive AK47 1

Fire
0.0040 20 Hunter AH-64 Recon SA-9 1
0.0040 20 Hunter AH-64 Recon SA-IS 7
0.0043 9 Itsec M16A2 Location AK47 5

Fire
0.0043 12 Itsec M16A2 Location AK47 1

Fire
0.0067 15 NTC MIAI Assault BMP-2 7
0.0072 10 Itsec AH-64 Attack T-72 3
0.0072 13 Itsec AH-64 Attack T-72 3

0.0080 18 Itsec M3 Transport
SAW

5
Gunner

0.0080 21 Itsec M3 Transport
SAW 1

Gunner
0.0083 3 Knox MIAI Assault SA-9 7
0.0111 1 Knox AC-130 Attack SA-IS 6
0.0185 14 Knox AH-64 Recon BMP-2 6
0.0223 18 NTC M3 Transport DI-M224 7
0.0370 15 Knox AC-130 Ingress SA-IS 7
0.0370 15 Knox AC-130 Ingress SA-9 7
0.0370 21 Knox AC-130 Ingress T-80 7
0.0603 11 NTC MIAI Assault T-72 7
0.0750 9 Knox MIAI Assault T-80 6

Table 9. Number of individuals for test case niches shown in Figure 8.

www.manaraa.com

A Genetic Algorithm Approach to Focused Software Usage Testing 281

Likelihood
Failure

Terrain
Primary

Task
Secondary Niche

Intensity Actor Actor Size

0.0223 18 NTC M3 Transport
SAW

5
Gunner

0.0223 18 NTC M3 Transport DI-M224 7
0.0370 IS Knox AC-130 Ingress SA-IS 3
0.0370 IS Knox AC-130 Ingress SA-9 8
0.0370 21 Knox AC-130 Ingress T-80 8
0.0603 9 NTC MIAI Assault T-80 6
0.0603 11 NTC MIAI Assault T-72 5
0.0603 21 NTC MIAI Assault T-80 19
0.0603 23 NTC MIAI Assault T-72 13
0.0750 9 Knox MIAI Assault T-80 II
0.0750 II Knox MIAI Assault T-72 IS

Table 10. Number of individuals for test case niches shown in Figure 9.

Initial Test Case Niches

0.160

.. ... 0.140
c .. 0.120 I..
I..

= ... 0.100 ...
0 ... 0.080 Q •
'0
Q 0.060 Q

•
..c: .. 0.040
.lOi •
:l 0.020

0.000
o 2 4 6 8 10 12 14 16 18 20 22 24

Fail ure Intensity

Figure 10. Test Case Niches for User Profile 2 after Generation 1.

www.manaraa.com

282 Software Engineering with Computational Intelligence

Final Test Case Niches

0.160
4

0.140
<IJ

'" c 0.120 <IJ
= 0.100 '" '" 0 0.080 0 • •

"!;I
0 0.060 0

• • • •
.c - 0.040 <IJ
.:.i

::l
0.020

• • •

0.000

o 2 4 6 8 10 12 14 16 18 20 22 24

Failure Intensity

Figure 11. Test Case Niches for User Profile 2 after Generation 30.

Likelihood
Failure

Terrain
Primary

Task
Secondary Niche

Intensitv Actor Actor Size
0.0185 2 Knox AH-64 Recon SA-9 8

0.0223 18 NTC M3 Transport
SAW

8
Gunner

0.0370 15 Knox AC-130 Ingress SA-15 7
0.0669 9 NTC MIAI Assault T-80 8
0.0833 11 Knox MIAI Assault T-72 8
0.0999 1 Knox AC-130 Attack SA-9 8
0.1499 2 Knox AH-64 Attack SA-9 53

Table 11. Number of individuals for test case niches shown in Figure 10.

www.manaraa.com

A Genetic Algorithm Approach to Focused Software Usage Testing 283

Likelihood Failure Terrain Primary Task Secondary Niche
Intensity Actor Actor Size

0.0223 12 NTC M3 Transport DI-M224 4
0.0223 18 NTC M3 Transport DI-M224 2
0.0321 20 Hunter AH-64 Attack SA-9 7
0.0370 15 Knox AC-130 Ingress SA-15 10
0.0370 15 Knox AC-130 Ingress SA-9 5
0.0370 21 Knox AC-130 Ingress T-80 4
0.0669 9 NTC M1A1 Assault T-80 9
0.0669 11 NTC M1A1 Assault T-72 8
0.0669 21 NTC MIAI Assault T-80 18
0.0669 23 NTC MIAI Assault T-72 13
0.0833 9 Knox MIAI Assault T-80 5
0.0833 11 Knox MIAI Assault T-72 9
0.1499 2 Knox AH-64 Attack SA-9 6

Table 12. Number of individuals for test case niches shown in Figure 11.

Initial Test Case Niches

0.160

.. 0.140 ...
= .. 0.120
= ... 0.100 ...
0 0.080 Q • f----

."
Q 0.060 Q

•
.c: .. 0.040
.:;: •
::l 0.020 I------

0.000

o 2 4 6 8 10 12 14 16 18 20 22 24

Failure Intensity

Figure 12. Test Case Niches for User Profile 2 after Generation 1 with scaling factor
of2.

www.manaraa.com

284

..
0.090

0.080

~ 0.070
~
:; 0.060
Col
Col o 0.050
~ 0.040
Q
Q

:: 0.030

~ 0.020
:l

0.010

0.000
o

Software Engineering with Computational Intelligence

Final Test Case Niches

• •
• • • •

• •

2 4 6 8 10 12 14 16 18 20 22 24

Failure Intensity

Figure 13. Test Case Niches for User Profile 2 after Generation 30 with scaling factor
of2.

Likelihood
Failure

Terrain
Primary

Task
Secondary Niche

Intensity Actor Actor Size
0.0185 2 Knox AH-64 Recon SA-9 8

0.0223 18 NTC M3 Transport
SAW

8
Gunner

0.0370 15 Knox AC-130 Ingress SA-15 7
0.0669 9 NTC MIAI Assault T-80 8
0.0833 11 Knox MIAI Assault T-72 8
0.0999 I Knox AC-130 Attack SA-9 8
0.1499 2 Knox AH-64 Attack SA-9 53

Table 13. Number of individuals for test case niches shown in Figure 12.

Likelihood
Failure

Terrain
Primary

Task
Secondary Niche

Intensity Actor Actor Size
0.0370 15 Knox AC-130 Ingress SA-15 5
0.0370 21 Knox AC-130 Ingress T-80 7
0.0669 9 NTC MIAI Assault T-80 2
0.0669 11 NTC MIAI Assault T-72 9
0.0669 21 NTC MIA I Assault T-80 30
0.0669 23 NTC MIAI Assault T-72 31
0.0833 9 Knox MIAI Assault T-80 6
0.0833 11 Knox MIAI Assault T-72 10

Table 14. Number of individuals for test case niches shown in Figure 13.

www.manaraa.com

A Genetic Algorithm Approach to Focused Software Usage Testing 285

7. CONCLUSIONS
This paper introduces a genetic algorithm approach to software usage

testing that is used to explore the space of input data and identify and focus
on regions that cause failures. Analysis of the examples in this paper
demonstrates that genetic algorithms can be used as a tool to help a software
tester search, locate, and isolate failures in a software system. The use of
genetic algorithms supports automated testing and helps to identify those
failures that are most severe and likely to occur for the user.

The strategy presented in this paper relies on a technique that not only
helps the tester to isolate failure clusters, but also provides the developer
with more information concerning the faults in the software and the input
values that triggered them. The developer can then use this information to
search, locate, and isolate the faults that caused the failures. The result can
improve efficiency of both the testing and the development teams and can
support subsequent improvements in the software development process.

The examples discussed in this paper raise a number of new ideas and
issues for future consideration, such as the use of a global parallel genetic
algorithm, different representation scheme, restrictive mating, and genetic
algorithm parameter sensitivity to different user profiles. For example,
current testing practice involves several testers working on different test
cases at the same time. For the example application discussed in this paper,
the fitness evaluation lends itself readily to parallelism. A global parallel
genetic algorithm could take advantage of this parallelism. Such an approach
could provide automated support to the current testing practice of distributed
work effort. While each of these areas for future consideration could be
further investigated with respect to applicability for software testing, as
demonstrated by the examples of this paper, the simple genetic algorithm
approach presented in this paper provides in itself a useful contribution to the
selection of test cases and a focused examination of test results. Thus,
application of this approach can support reasoning about test results to
support quality system assessment and/or debugging activities.

ACKNOWLEDGEMENT
This work was funded in part by NAWC-TSD Contract N61339-01-D-

002.

REFERENCES
Chambers, L., Ed. (2000), The Practical Handbook of Genetic Algorithms: Applications,
Second Edition, Chapman & Hall I CRe.
Coello Coello, C.A., D.A.V. Veldhuizen, G.B. Lamont (2002), Evolutionary Algorithms
for Solving Multi-Objective Problems, Kluwer Academic Publishers, New York, NY.

www.manaraa.com

286 Software Engineering with Computational Intelligence

Coley, D. A. (2001), An Introduction to Genetic Algorithmsfor Scientists and
Engineers, World Scientific, River Edge, NJ.

Deb, K. (1999), "Multi-objective genetic algorithms: Problem difficulties and
construction of test problems", Evolutionary Computation Journal, 7,3, 205-230.

Dickinson, W., D. Leon, and A. Podgurski (2001), "Pursuing Failure: The Distribution
of Program Failures in a Profile Space." In Proceedings of the rjh ACM SIGSOFT
Symposium on Foundations of Software Engineering, pp. 246 - 255.

Drake, T (2000), "Testing Software Based Systems: The Final Frontier." Software Tech
News, Vol. 3, No.3.

Fonseca, C. M. and P. J. Fleming (1995), "An overview of evolutionary algorithms in
multiobjective optimization", Evolutionary Computation Journal, 3,1, 1-16.

Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley.

Goldberg, D.E. (1990), "Real-coded Genetic Algorithms, Virtual Alphabets, and
Blocking," Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana
Champaign, Urbana, Illinois, Tech. Rep.90001.

Haupt, R. L., and S. E. Haupt (1998), Practical Genetic Algorithms John Wiley & Sons,
Inc. New York, NY.

Holland, J. H. (1975), Adaptation in Natural and ArtifiCial Systems. University of
Michigan Press.

Horn, J. (1997), "The Nature of Niching: Genetic Algorithms and the Evolution of
Optimal, Cooperative Populations", PhD Thesis, Department of Computer Science,
University of Illinois at Urbana-Champaign, Urbana, Illinois.

IEEE Std. 829-1998, IEEE Standard for Software Test Documentation.

Karr, C. L., and L. M. Freeman, Ed. (1999), Industrial Applications of Genetic
Algorithms, CRC Press, New York, NY.

Mahfoud, S. W. (1995), "Niching Methods for Genetic Algorithms." PhD Thesis,
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana,
Illinois.

Mitchell, M. (1996), An Introduction to Genetic Algorithms, MIT Press.

Myers, GJ. (1976), Software Reliability, John Wiley & Sons, Inc., New York.

Myers, G.J. (1979), The Art of Software Testing, John Wiley & Sons, Inc., New York.

Schultz, A. c., 1. J. Grefenstette, and K. A. De Jong (1992), "Adaptive testing of
controllers for autonomous vehicles." In Proceedings of the 1992 Symposium on
Autonomous Underwater Vehicle Technology, pp. 158 -164.

Zeller, A. (2001), "Automated Debugging: Are We Close?" IEEE Complfter, 34, 11,26-
31.

www.manaraa.com

An Expert System for Suggesting Design
Patterns - A Methodology and a Prototype

David C. Kung, Hitesh Bhambhani, Riken Shah and Gaurav Pancholi

Department of Computer Science and Engineering
The University of Texas at Arlington
P. 0. Box 19015, Arlington, TX 76019-0015
Tel: (817) 272-3627, Fax: (817) 272-3784
kung@cse.uta.edu

ABSTRACT

Software design patterns describe simple and elegant solutions to specific
design problems. Design patterns capture design knowledge that have been
discovered, evolved over time and proven to be effective in solving design
problems. Application of design patterns improves software productivity and
quality. Therefore the use of design patterns is rapidly increasing. However,
it is not an easy task to choose an appropriate pattern to be applied from
among the plethora of patterns. This is partly due to the learning curve
involved to understand what each pattern can do for the designer. In this
paper we present a methodology for constructing expert systems which can
suggest design patterns to solve a designer's design problems. The
methodology details the knowledge acquisition, knowledge representation
and expert systems implementation activities. It is illustrated through the
prototyping of the Expert System for Suggesting Design Patterns (ESSDP).
Evaluation of the ESSDP by subjects other than the original developers
indicates that the system indeed could suggest the needed design patterns
effectively.

KEYWORDS
Design Patterns, Expert Systems, Object Oriented Design, Software
Engineering.

1. INTRODUCTION

To cope with evolving requirements, software systems need to be
flexible and easily updateable to incorporate the changes. This flexibility can
be achieved by the use of appropriate design patterns. Design patterns
provide a proven structure and characteristics for building highly
maintainable and extendible software. According to [tich02a], the purpose of
design patterns is to capture software design know-how and make it reusable.
Design patterns can improve the structure of software, facilitate maintenance,
and help avoid architectural drift. Design patterns also improve

www.manaraa.com

288 Software Engineering with Computational Intelligence

communication among software developers and empower less experienced
personnel to produce high-quality designs. Design patterns make design
more reusable besides capturing the know-how of design [tich98a].
Successful reuse of well-designed and well-tested software components
improves software productivity, software quality and software reliability.
Our experience in Internet software development also indicates that the use
of design patterns significantly enhances the development team's ability to
tackle complex design problems.

As per [alex77a], "each pattern describes a problem which occurs over
and over again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this solution a
million times over, without ever doing it the same way twice". Patterns have
roots in many disciplines, including plays, novels and most notably in
Alexander's work on urban planning and building architecture.

The concept of design patterns is very much applicable to object oriented
software. Software design patterns describe simple and elegant solutions to
specific problems in object-oriented software design [gamm95a]. Design
patterns capture solutions that have been discovered, developed and evolved
over time. Each design pattern essentially has a pattern name, problem
context, a general solution and related consequences. The pattern name is a
noun phrase which summarizes the problem and solution and is easy to
remember and communicate. For example, the singleton pattern provides an
elegant solution to the problem of needing at most one globally accessible
instance of an object like a database manager. Software developers then can
refer to the name "singleton pattern" to communicate design ideas instead of
having to repeat the problem and solution again and again.

Gamma et al classifies the twenty-three design patterns presented in their
book [gamm95a] as:

• Creational Patterns, which comprise of Abstract Factory, Builder,
Factory Method, Prototype and Singleton. These patterns provide various
solutions for creating objects to serve different purposes.

• Structural Patterns, which comprise of Adapter, Bridge, Composite,
Decorator, Facade, Flyweight and Proxy. These patterns provide
solutions for composing or constructing larger structures that exhibit
some desired properties. And

• Behavioral Patterns, which comprise of Chain of Responsibility,
Command, Interpreter, Iterator, Mediator, Memento, Observer, State,
Strategy, Template Method and Visitor. These patterns deal with the
algorithmic or behavioral issues of software design.

Use of software design patterns is rapidly increasing, propelled by the
eagerness of the object-oriented community to enable efficient software

www.manaraa.com

An Expert System for Suggesting Design Patterns 289

reuse. It is of interest to note that the software industry agrees with the
benefits of design patterns explained earlier [beck96a]. All six companies
(FCS, AT&T, Motorola, BNR, Siemens and ffiM) studied in [beck96a]
agreed that design patterns are extracted from working models, capture
design essentials and provide a good medium of communication. All but one
company had the opinion that they enabled sharing of best practices.
However, the roses have thorns and some companies had serious concerns
regarding the challenges faced with design patterns. Some companies found
that patterns are difficult and time consuming to write. Three of those
industrial houses suggested that patterns should be introduced through
mentoring. While a couple of companies felt that patterns require practice to
write.

While the effective usage of design patterns is indispensable, finding out
the most suitable one is a problem. One approach is to manually go through
each one of them, or classes of patterns and narrowing down on a particular
pattern. While this can be a chore for the novice in design patterns, experts
can easily propose a design pattern suitable for the situation. The dearth of
experts and the prohibitive costs to employ an expert designer pose a serious
challenge to enterprises. The research by [schm96a] identifies a number of
factors including organizational, economic, political and psychological
factors that have been an impediment to wide spread use of design patterns.
In addition to the above reasons, we feel that a salient impediment to their
use is lack of flair for abstraction on the part of the developer. The situation
worsens due to the exhaustive study that needs to be undertaken by the
developer to conclude on the design patterns to be used in development.

To mitigate this problem one could hire an expert on design patterns or
resort to an expert system which could suggest an appropriate software
design pattern (SDP) to the developer. Expert systems are systems capable of
offering solutions to specific problems in a way and level comparable to
experts. According to [rile02a], "programs, which emulate human expertise
in well-defined problem domains, are called expert systems". Expert systems
have been applied to solve problems in various domains.

In this paper we present a methodology to design and prototype an expert
system for suggesting design patterns (ESSDP). The ESSDP selects a design
pattern through dialog with the software designer to narrow down the
choices. The dialog between the user and the system is a question and answer
session, with the system posing questions and the user answering them.
Classification and heuristics have been utilized to improve effectiveness.

Development of such an expert system involves initial knowledge
acquisition, prototype development, prototype evaluation and continuous
knowledge base refinement and enhancement [birm86a]. We have completed

www.manaraa.com

290 Software Engineering with Computational Intelligence

the initial knowledge acquisition, prototype development and prototype
evaluation. Continuous refinement and enhancement is an ongoing activity.
In our approach, the knowledge acquisition process represents acquired
knowledge as trees where each node in the tree represents a circumstance
under which a pattern could be applied. The proposed methodology details
the process of formulating questions from these circumstances. To improve
navigation efficiency, the questions are classified into various levels, each
level contains questions with similar purposes. The methodology also
enunciates a scheme to assign weights to the answers of the pattern-related
questions. A pattern is selected once the weights of the answers for that
pattern crosses the selection threshold value of that pattern. The proposed
system was proto typed using CLIPS [rile02a]. The question and answer
session was coded as rules. The rule-base had rules that were fired depending
on the facts asserted by the user's answers. The system was validated
successfully and found to be selecting appropriate patterns effectively.

This paper is organized as follows. The next section presents related
work. Section 3 describes our five step methodology and section 4 the
prototyping of ESSDP. A preliminary evaluation of the ESSDP system is
given in section 5 which contains and explains the experimental results
obtained from a small group of subjects who had used the system. The
concluding remarks and future work are discussed in section 6.

2. RELATED WORK

By the time of writing, we have not found publications that report on
expert systems for suggesting design patterns. Therefore, this section mainly
reviews some work related to research and applications of design patterns.

Gamma et aI's book [gamm95a] is a classic book on design patterns. It
contains a comprehensive treatment of twenty-three commonly used patterns,
classified into creational patterns, structural patterns and behavioral patterns.
Nobel [nobI98a] discusses relationships between design patterns, that is, a
pattern uses another pattern, a pattern refines another pattern or a pattern
conflicts with another pattern. Also mentioned are relationships stating that a
pattern is similar to another pattern or one pattern is combed with another
pattern. The mapping of the latter to the former is demonstrated in the paper.

Tichy [tich98a] provides a catalogue for over 100 general-purpose
design patterns. Tichy categorizes all design patterns into nine broad
categories, which are termed as "top level categories". These nine categories
are decoupling, variant management, state handling, control, virtual machine,
convenience patterns, compound patterns, concurrency and distribution. It is
suggested in the paper that categories should be mutually exclusive

www.manaraa.com

An Expert System for Suggesting Design Patterns 291

(exceptions may be allowed in some cases), and subcategories are strict
subsets of the parent categories and should be mutually exclusive as far as
possible.

Many developers have considered design patterns for development of
software, and focused on understanding design patterns. Monroe [monr97a]
explored the capabilities and roles of design patterns, architectural styles and
objects and their strengths and limitations. Riehle [Rieh96] discussed the
crucial aspects of the pattern concept, relate patterns to the different models
and pattern forms to help developers understand and apply patterns. Tan
[tanh99a] proposed to apply patterns to solve problems that occur in database
applications such as reuse of transaction specifications and external error
handling. The patterns proposed can be applied during database design and
design verification. Herrmann [herr99] described the application of 00
software design within the CHAMP project. "Abstract Factory" and
"Fa~ade" patterns were applied. Enhancement of flexibility and the
limitations were discussed with implementation examples. In [schm96a], the
author described how design patterns were applied on a number of large
scale commercial distributed systems as well as ways to avoid common traps
and pitfalls of applying design patterns.

Re-engineering of existing software using design patterns to improve
reusability, maintainability and understandability is discussed by Keller
[ke1l99a]. An environment for re-engineering of design components based on
the structural descriptions of design patterns were described using three case
studies. Like Keller, William Chu [chuw99a] has used the parallel program
generation environment (PPGE) as a case study to the re-engineering of a
traditional software system into a pattern based software system. The result
achieved is that it is better to re-engineer legacy systems rather than re
designing them as re-engineering is more cost effective and less risky.
Masuda [guomOOa] has described the application of software design patterns
for redesigning existing software. The evaluation of the resulting software
and the existing software is accomplished using C&K metrics [chid94a].
This paper shows that the application of design patterns to software greatly
enhances its flexibility and makes it more easy to extend.

3. THE METHODOLOGY

In this section, we describe our approach for developing expert syst~ms
that can suggest design patterns. In particular, we will describe the
methodology that we used to develop the Expert System for Suggesting
Design Patterns (ESSDP). ESSDP is a tool that selects a design pattern based
on the user's requirements. ESSDP engages the user in a question-answer
session that helps narrow down the selection process. At the end of the

www.manaraa.com

292 Software Engineering with Computational Intelligence

process a suitable design pattern is suggested with a certainty. The ESSDP is
a selection type of expert system and hence we choose to use a rule-base as
the knowledge base of choice to develop ESSDP. Besides, a rule-based
expert system has been proven to be useful due to its ease of development,
extension and enhancement. The rules that form the rule-base are if-then
conditionals that capture the expert knowledge [pede89a].

ESSDP is aimed to help a beginner to find/decide on which pattern to
use for a particular design situation. It can also be used to validate a
designer's choice of a particular design pattern. Use of ESSDP can be
integrated well with standard software processes.

Software development process generally iterates through the stages of
specification, analysis and design, implementation, testing and evolution. A
widely accepted incremental and iterative process is the Unified Process
(UP) [jacob99a]. The UP is architecture centric, use case driven and
acknowledges the risks involved. It spreads the software development
activity among requirements, analysis, design, implementation and testing
workflow. For each increment (a portion of the system with a sub-set of the
functionality) one iterates the process involving the above five workflows.
Usually each workflow includes a few iterations before satisfactory outputs
are produced for the next workflow. In particular, during the design
workflow the system analyst or designer produces a first cut of the classes
and refines it until the requirements for that increment are fulfilled by the
classes. We recommend that the system analyst/designer consider use of the
ESSDP after the first cut (iteration). After the first iteration a designer is
more aware of the design problemslissues and is in a better position to
answer the questions posed by ESSDP, thus enhancing the benefits from this
tool. An interesting observation made by Hunt [huntOOa] is that during the
initial iterations of system design majority of the problems are related to
architectural/structural issues while the later iterations deal with problems
that are more behavioral. ESSDP can provide suggestions for architectural,
structural and behavioral design problems. Hence it is useful throughout the
design workflow over various increments.

The methodology for developing an expert system like ESSDP consists
of five iterative steps, summarized as follows:

• Step 1. Identify circumstances in which a pattern can be applied.
• Step 2. Refine the circumstances with sub conditions.
• Step 3. Formulate questions to ask the user.
" Step 4. Classify the questions according to their levels of significance.
• Step 5. Assign thresholds to patterns and weights to questions.

www.manaraa.com

An Expert System for Suggesting Design Patterns 293

After step 5, the results are implemented using an expert system shell.
This will be described in the next section'(Prototyping). Here we describe the
five steps in greater detail in the following subsections:

3.1. Stepl. Identify Circumstances In Which A Pattern Can
Be Applied

Prior to constructing the rule-base we perform knowledge acquisition.
Knowledge acquisition refers to the task of gathering the required knowledge
and verifying it. During this phase literature on object-oriented software
design patterns was reviewed and analyzed. For prototyping ESSDP, we
limit our knowledge acquisition to literature survey because we feel that the
literature on design patterns has contained rich knowledge that is adequate
for our initial effort. The expert system designer may interview human
experts to obtain knowledge on design patterns. The authors serve as
knowledge engineers as well as experts in the field of design patterns. The
expertise among the authors is at varied levels with one of the authors
possessing academic and industrial experience of patterns. The other three
authors, which include two masters and one doctoral student, have practiced
patterns in an industry sponsored project and have reviewed literature on
patterns.

For the prototype we select the design patterns in Gamma's book
[gamm95a]. Each design pattern is analyzed and its characteristics are
identified. For every design pattern, we formulate a set of circumstances in
which the pattern can be used. From the set of circumstances, at least one
circumstance has to occur for that design pattern to be applied. Some patterns
may require more than one circumstance to be present. These circumstances
are conditions for the applicability of that design pattern. Henceforth we will
refer to these circumstances as conditions and vice versa.

An example of knowledge acquisition by the above method can be
explained using the adapter pattern. The adapter pattern, by its name, makes
the interface of one component or object conform to the other by delegating
the request from the client to the real subject. Figure 1 illustrates the adapter
pattern in the Unified Modeling Language (UML). It lets classes with
incompatible interfaces work together [gamm95a].

www.manaraa.com

294 Software Engineering with Computational Intelligence

« interface »

Target Adaptee

reguest() specificReguestO

~ If ,
Adapter

reguestO 0-
- --

spe cific
uestO Reg

(a) Class Adapter

« interface»

Target

reguestO

4\

Adaptee

specificReguestO

f
Adapter

reguestO 0

adaptee

ad aptee.
cRequestO -- - specifi

(b) Object Adapter

Figure 1. Class adapter and object adapter in UML.

Figure 1 shows two adapter patterns, one class adapter and the other
object adapter. The class adapter implements an interface which the client
wants to see. The adapter also subclass to the Adaptee class and hence
inherits the superclass' behaviors. A request from the client is fulfilled by
calling the appropriate method (specificRequestO in the figure) that is
inherited from the superclass. Thus, the class adapter adapts the interface of
the Adaptee class to the interface that the client wants. Similarly, the object
adapter does the same except that it adapts the interface of a particular
instance of an object class rather than the interface of a class. In this case the
object adapter delegates the request from the client to an instance of the
Adaptee class.

From the description of the adapter pattern [gamm95 a] , we can derive
the following list of conditions:

AI: Want to use an existing implementation.
A2: Desired interface is different from the existing

interface.

www.manaraa.com

An Expert System/or Suggesting Design Patterns 295

This set of conditions can be depicted graphically as a tree shown in
Figure 2. Note that Al alone is not sufficient for suggesting the adapter
pattern but Al and A2 would be.

3.2. Step 2. Refine The Circumstances With Subconditions

As a result of Step 1 we obtain various trees similar to Figure 2 for each
pattern. In step 2 we refine each condition into possible subconditions. This
is done for each tree from Step 1. A sub-condition is depicted as a child of a
condition in the tree. This is illustrated in the Figure 3. In the Figure we see
that A 1 has three children All, A 12 and A 13, while A2 has A 13 and A21 as
its children. Further, All has AlII as its child.

Figure 2. An initial circumstance tree from the Adapter pattern.

Adapter

Figure 3. The circumstance tree for the Adapter pattern.

From Step I we had Al to A2 as the conditions needed for the adapter
pattern to be applied. The child conditions for these three conditions are the
subconditions. Each child condition describes the possible circumstances for
the occurrence of its parent condition. This can be explained by looking at

www.manaraa.com

296 Software Engineering with Computational Intelligence

the refinements of condition Al (Want to use an existing implementation)
which are:

All: Want to save time and effort.
A12: Re-implementation of an existing class is costly.
A13: Need to use third party software.

Each child condition of Al is a condition for Al to occur. It can be
interpreted as: "wanting to use an existing implementation" could be due to
"needing to use third party software", another reason could be that the
existing class is costly to re-implement, etc. Similar refinement is carried out
for each node in the tree, unto a considerable level.

Notice that A13 is a subcondition for Al (Want to use an existing
implementation) as well as A2 (Desired interface is different from the
existing interface). This implies that A13 is also a subcondition for A2. In
other words one of the reasons for A2 is the presence of third party software,
which is denoted by A 13.

Similarly each pattern tree is refined to add subconditional nodes.

3.3. Step 3. Formulate Questions To Ask The User

As a result of Step I and Step 2 we obtain the tree representation I of
knowledge about design patterns. That is, a set of trees with various levels of
conditions represented as nodes. These trees are the means that help us
derive the questions that are asked of the user. The answers to these
questions get asserted as facts in the knowledge base. These facts in tum may
fire some rules. The rules either suggest a pattern or ask more questions,
when enough information is not yet-available.

In this step, we convert each node from the tree to a question, preferably,
answerable by either yes or no. For example, the node Al (Want to use an
existing implementation) from Figure 3 can be framed as the following
question "Do you want to use an existing implementation?". Similarly, node
A13 (Third party software) becomes "Is a part/class of your system a third
party software?"

The result of this step is a set of questions formulated for each tree
generated from Step 2.

3.4. Step 4. Classify The Questions According To Their
Levels Of Significance

During this phase we partition the various questions into different levels.
Each level then consists of a few questions. The questions in each level are

www.manaraa.com

An Expert System/or Suggesting Design Patterns 297

directed towards reducing the search space to select a design pattern. The
questions are divided among the following five levels:

• Level 0: pattern category selection questions
• Level 0.5: pattern subcategory selection questions
• Levell: intent questions
• Level 2: pattern specific questions
• Level 3: auxiliary questions

Each of these levels is explained In greater detail In the following
subsections.

3.4.1. Level 0: Pattern Category Selection Qnestions

This level contains questions that narrow down the search space to a
particular classification of patterns. In accordance to [gamm95a], the twenty
three design patterns are classified into creational patterns, structural patterns
and behavioral patterns. Creational patterns deal with creation or
instantiation of objects. Structural patterns describe structural compositions
of classes and objects. Behavioral patterns provide ways to assign
responsibilities to objects and designing the communications between
various objects and their interconnections [gamm95a].

The user's response to a Level 0 question guides the system to focus on
questions relating to the patterns in the group selected by the user. As an
example, for the ESSDP to distinguish between creational, structural and
behavioral patterns we present the user with the following questions:

LOQl: Is your design problem concerned with:
creating complex objects -or
architectural structures of classes -or
behavioral aspect of objects -or-
don't know?

Selection of an option from LOQ 1, asserts a corresponding fact in the
system. This fact determines which other questions to be asked of the user.
The first option asserts a fact that steers the system towards questioning
related to creational patterns. While the second option shifts focus to
questions related to structural patterns and the third option towards
behavioral patterns. Finally, the last option indicates that the user cannot
choose. In this case, the system will ask Level 0.5 questions (see section
3.4.2) from all categories, resulting in more questions need to be asked. The
strategy we have used to develop the ESSDP is to ask a couple of questions
from each of the Level 0.5 categories and narrow down the search space
according to the users answers to these questions. A positive answer
enhances the likelihood to pursue that category and a negative answer
reduces the likelihood.

www.manaraa.com

298 Software Engineering with Computational Intelligence

3.4.2. Level 0.5: Pattern Subcategory Selection Questions

The questions at this level are an auxiliary to the purpose of level 0
questions. That is, the questions at level 0.5 also help narrow down the
search space to a classification of patterns. This is done through
classification of patterns within each category of level 0 patterns, that is, the
categories of creational patterns, structural patterns and behavioral patterns.
Consider for example the seven structural patterns from [gamm95a]: adapter,
bridge, composite, decorator, facade, flyweight and proxy. As discussed
earlier the adapter provides a uniform abstraction of various interfaces by
making one interface conform to the other. The bridge pattern lets one
change the implementation without having to change the abstract interface.
The composite pattern describes formation or compositions of objects in
part-whole hierarchies; thus, it allows clients to treat each object uniformly.
The decorator pattern allows a program to dynamically add or remove
functionality to objects. This is achieved by describing an alternative to
subclassing to extend the object's functionality. The facade pattern helps
create a simple, unified interface to a subsystem or a group of subsystems.
The flyweight pattern describes how to share large number of objects
efficiently. The proxy pattern is used to provide a surrogate for controlled
access to an object [gamm95a].

To partition the seven structural patterns the expert system designer must
analyze the patterns to find partition criteria. Various partition criteria can be
defined, depending on the set of patterns at hand. For the seven structural
patterns, we found that some of them dealt with interface issues while the
others dealt with complex structures to enhance functionality, security and/or
efficiency. Thus, we partition the seven structural patterns into two groups,
the first group having four patterns and the second group three. The first
group named interface consists of adapter, bridge, facade and proxy patterns.
These patterns are grouped together since each one of them deals with issues
relating to the interface of classes or objects. The second group named
complex consists of composite, decorator and flyweight patterns. The
patterns in this group deal with complex architectures of not just a couple of
objects but various objects.

The question that is formulated then is:

LO.SQ1: Is your design problem concerned with
component interfacing -or-
constructing a complex component through
composition?

Figure 4 depicts the hierarchy of patterns resulting from above steps.

www.manaraa.com

An Expert System for Suggesting Design Patterns 299

Creational

Complex

Figure 4. A classification of design patterns.

As is evident from figure 4, the patterns are grouped as creational,
structural and behavioral patterns. The questions at level 0 guide the search
of patterns towards one group out of the three. In structural pattern hierarchy
there is another subgrouping of interface and complex model patterns. The
questions at level 0.5 reduce the focus of search to even fewer patterns
present in the subgroup. The answers from the questions that constitute level
1, 2 and 3 finally guide the expert system to suggest a design pattern. These
levels are explained in detail below.

3.4.3. Levell: Intent Questions

The questions of level 1 are derived from the intent or main idea of each
pattern. The intent of each pattern is used to formulate one question for each
pattern. Care is taken that the question represents the gist of the pattern,
nothing more and nothing less.

This step derives most of its questions from the set of questions that
resulted from step 3. Below are some example questions that qualify as level
I:

www.manaraa.com

300 Software Engineering with Computational Intelligence

LIQ1: Is your design problem concerned with adapting one
interface to another?

LIQ2: Is your design problem concerned with notifying
other objects when an object changes?

LIQ3: Is your design problem concerned with state
dependent behavior?

LIQ4: Is your design problem concerned with selecting
algorithms according to needs?

The question L I Q I summarizes the adapter pattern, L I Q2 the observer
pattern, L 1 Q3 the state pattern and L 1 Q4 the strategy pattern. The adapter
pattern has already been explained earlier (recall in section 3.1 that "AI:
Want to use an existing implementation" alone is not sufficient to suggesting
the adapter pattern but Al and "A2: Desired interface is different from the
existing interface." would be sufficient.). The observer pattern defines a
many-to-one relation between objects, allowing observer objects to be
notified if the state of a "publisher" is changed. A commonly used example
is a collection of data to be displayed as a pie chart, bar chart and a table. The
collection of data is the publisher while the charts and table are the
observers. The state pattern allows the object to modify its behavior
depending on its internal state. A typical application of the state pattern is
implementation of a state machine. The strategy pattern allows a client to
select one algorithm from a family of algorithms. For example, the strategy
pattern may be used to select different sorting algorithms to satisfy different
sorting needs.

3.4.4. Level 2: Pattern Specific Questions

The questions in level 2 are pattern specific questions and are derived
from the conditions for applying each pattern. Every question created in step
3 for each pattern is reviewed to determine whether it is level 2 or not. There
are some necessary conditions that need to be present for a pattern to be
selected for use. Generally, level 2 questions are the ones that result from
these conditions. Such conditions can be traced back to the tree structure for
a pattern (Figure 3), where these conditions are the children of the root. Since
these conditions are specific for the pattern to be of use, we call these
questions pattern specific questions.

From our analysis of the adapter pattern, the following questions qualify
as level 2:

Adapter-L2Ql: Do you have classes that have incompatible
interfaces?

Adapter-L2Q2: Do you want to adapt an implementation to
a desired interface?

www.manaraa.com

An Expert System for Suggesting Design Patterns 301

3.4.5. Level 3: Auxiliary Questions

The questions in level 3 are pattern specific but less important questions
and are derived from the subconditions for each pattern. We call this set of
questions the auxiliary questions to help confirm the suggestion of a
particular pattern. Every question created in step 3 for each pattern is
reviewed to determine which level it should be put in. Of those, the questions
that qualify as level 3 are mostly the less important ones. Usually the
questions that are in level 3 are the ones that remain after the selection of
level 2 questions. These questions are formulated from the subconditions that
were added to pattern trees in step 2. These questions are less important than
the ones in level 2 and act more as auxiliary information.

For the adapter pattern, the following questions are level 3:

Adapter-L3Ql: Do you want to use an existing
implementation?

Adapter-L3Q2: Is re-implementation of existing classes
costly?

Adapter-L3Q3: Is a part/class of your system third-party
software?

Adapter-L3Q4: Do you want to avoid re-implementation of
classes?

It is quite possible for ESSDP to conclude on a pattern depending on the
answers of the pattern specific questions from level 2. To accommodate
novice and advanced users, we provide an option whereby ESSDP can
present an early conclusion or it can continue till questions are exhausted.
The auxiliary or level 3 questions tend to be simpler or more intuitive,
making them easier for the novice user to understand.

The pool of questions generated after step 3 may contain questions that
are common for two or more patterns. During the creation of the rule-base
care is taken to ensure that the common questions are asked only once.

3.5. Step 5. Assign Thresholds To Patterns And Weights To
Questions

Once all the questions are determined and categorized in levels 0, 0.5, I,
2 and 3, we assign a selection threshold and a rejection threshold to each
pattern. A selection threshold for a pattern is a positive integer and is defined
as the minimum number of points required for a pattern to be selected as the
answer. The selection threshold is reached by the accretion of weights
assigned to answers for level 2 and level 3 questions. The rejection threshold
is a negative integer and is defined as the maximum number of points
required to still pursue the pattern. When the tally of points drops below the

www.manaraa.com

302 Software Engineering with Computational Intelligence

rejection pattern, the ESSDP abandons that pattern and stops asking
questions related to that pattern.

Prior to deciding the thresholds for each pattern, weights are assigned to
the questions. The weight of a question is a positive integer and signifies the
importance of that question towards selection of that pattern. Hence the level
2 questions have more weight as compared to the level 3 questions. The sum
total of the weights for all the questions of a pattern is 100. A positive
answer to a question adds the weight of that question to a positive-response
counter. A negative-response-counter is reduced by the weight of the
question when the user enters a negative reply. Questions related to the
pattern are exhausted when the difference between the positive-response
counter and the negative-response-counter is 100. At this point the selection
threshold criterion is evaluated to decide whether the pattern satisfies the
user requirements. During the evaluation of the answer of each question,
ESSDP compares the negative-response-counter and the rejection-threshold.
In the case that the counter has dropped below the threshold, the pattern is
removed and further questioning related to that pattern stops.

The selection-threshold and rejection-threshold values have to be
determined after consultation with a group of experts or from extensive
review of literature. For prototyping ESSDP the authors served as the group
of experts and reached consensus on the assignments of the weights and
thresholds based on their experiences with design patterns.

A structured method, such as the Delphi process [lins7Sa], involving a
group of estimators, could be applied to determine the weights and the
thresholds. The Delphi process works as follows. First, each estimator
independently suggests his weightings and thresholds. The estimates are then
compiled and each estimator explains herlhis reasoning behind herlhis
estimate. This is done only for estimates that are significantly different. The
estimators then re-estimate and the process is repeated until they reach a
consensus.

As shown in the next section and in Table 1, the ESSDP system can
suggest a design pattern whenever the positive-response-counter is greater
than the selection-threshold. The user then is given the option to continue the
dialog to increase the certainty value of the suggestion or accept the
suggestion and terminate the process. This early conclusion feature can be
toggled on or off according to the user's preference.

To illustrate this procedure, we present a high level overview of the
interaction between the system and the user along with the rule-base action.
This is presented in a tabular manner below (see Table 1).

www.manaraa.com

An Expert System/or Suggesting Design Patterns 303

Pattem-
System Response seeker ESSDP action

action
Is your design problem concerned with

creating complex objects (create)
-or-

I. architectural structure of classes (struct)
struct

Structural pattern
- or- selected.

behavioral aspect of objects (behav)
- or-

don't know(dontknow) :
Is your design problem concerned with

component interfacing (iface) Interface patterns
2. - or- iface

selected
constructing a complex object through composition

(complx)?

3. Is your design problem concerned with adapting one
yes

Adapter pattern
interface to another? (yes/no) intended

Is your design problem concerned with keeping
4. implementation and interface independent of each no No action

other? (yes/no)
Is your design problem concerned with providing a

5. simple and easy to use interface for a subsystem? no No action
{yes/no)

6.
Is your design problem concerned with controlling

no No action
access to an object? (yes/no)

Do you have classes that have incompatible
Positive-response-

7. yes counter = 0 + 26 =
interfaces? (yes/no)

26

Do you want to adapt an implementation to a desired
Positive-response-

8. yes counter = 26 + 26 =
interface? (yes/no) 52

Do you want to use an existing implementation?
Posi tive-response-

9. yes counter = 52 + 12 =
(yes/no) 64

Is re-implementation of existing classes costly?
Positive-response-

10. yes counter = 64 + 12 =
(yes/no)

76
Suggesting Adapter Pattern with 0.76 certainty.

II. Would you like to continue with more questions? yes Continue
(yes/no)

Is a part/class of your system third-party software?
Negative-response-

12. no counter = 0 - 12 = -
(yes/no)

12

Do you want to avoid re-implementation of class?
Positive-response-

13. yes counter = 76 + 12 =
(yes/no)

88
14. Suggesting Adapter Pattern with 0.88 certainty.

Table 1. User-ESSDP interaction to suggest the Adapter pattern.

As is shown in the table, the system starts with a level 0 question. A fact
is inserted in the rule-base depending on the answer. In the example shown
above, the fact asserted is Structural-patterns-selected. Similarly user action
in row 2 results in Interface-patterns-selected being asserted as a fact. From
row 3 the user affirms the intent question related to adapter pattern, hence a

www.manaraa.com

304 Software Engineering with Computational Intelligence

corresponding fact is asserted in the rule-base. This steers the system towards
asking the user level 2 and level 3 questions related to the adapter pattern.
The questions in row 7 and row 8 are the level 2 questions while the
questions in rows 9 to 13 are from level 3.

Let us say that level 2 questions have been assigned a weight of 26
points while level 3 questions have 12 point weight each. With a total of 2
questions in level 2 and 4 questions in level 3, we have the required total of
100 points. For the example let us put the selection-threshold to be 70 points
and the rejection-threshold to be 30.

As shown in rows 7 and 8, a positive answer to the level 2 question
increases the positive-response-counter by 26 points. Hence by the end of
level 2 round of questions, the positive-response-counter is 52 points. A yes
answer to any of the level 3 questions results in the positive-response-counter
being incremented by 12 points. In row 10, the positive-response-counter has
reached 76 which is greater than the selection-threshold 70. Therefore, the
system suggests the adapter pattern with 0.76 certainty in row 11 and let the
user choose if to continue with more questions. In row 12 the negative
response-counter is decreased by 12 points because the user gives a negative
answer to the question.

The last question related to adapter is the one in row 13. The rule-base
finds that no more patterns are intended to be pursued and the positive
response-counter is more than the selection threshold of 70 points. This
eventuates in a fact being asserted indicating that a pattern has been
concluded. The fact further clarifies that it is adapter pattern.

4. PROTOTYPING

In this section we describe the implementation of ESSDP resulting from
the methodology described earlier. We choose to use CLIPS, version 6.10, as
the expert system language. CLIPS, an acronym for C Language Integrated
Production System [rile02a], is a multi paradigm programming language.
That is, CLIPS supports rule-based, object oriented and procedural
programming [giar94a]. We describe below the architecture of the software
system for ESSDP and the CLIPS rule-base.

4.1. Software Architecture

The ESSDP has four major components, as shown in Figure 5. The
components are the rule-base, the inference engine, the fact list and a user
interface. The rule-base is a collection of rules that are needed by the expert
system to deduce facts and finally suggest a design pattern. The ESSDP rule
base for the prototype was generated using the five-step methodology

www.manaraa.com

An Expert System for Suggesting Design Patterns 305

described above. The rule-base was programmed into CLIPS using the
de/rule construct provided by the language. This will be discussed in detail in
the next section.

User Interface

JL

..Questions & Results , AnswerS

ESSDP
... ---. Inference Engine Fact List

Rule-Base-....
'-

Figure 5. ESSDP Software architecture.

The fact list contains the data on which inferences are derived. It is a part
of the CLIPS environment and is maintained by the inference engine. It
consists of the current facts in the system.

An inference engine is that part of the expert system that is already
programmed and ready for use. It interprets the knowledge bases, which in
our case is a rule-base, and controls the overall execution. CLIPS consists of
a forward chaining inference engine. A forward chaining inference engine is
an algorithm that derives new facts from the ones already present in the
system, ultimately reaching a conclusion. The CLIPS inference engine
maintains a fact-list and uses this list to match patterns against the current
state of the fact-list. The matching of patterns determines which rules are
ready for execution. It also resolves conflicts when several rules are
applicable at the same time. The inference engine interacts with the user
through the user interface to ask questions and receive answers.

The user interface to ESSDP allows the user to answer multiple-choice
questions and questions that need a 'yes' or a 'no' reply. For ESSDP the user
interface is a simple, text-oriented interface. Interaction with a user is
accomplished by the functions available in CLIPS for input/output. We have
implemented a Web based version of ESSDP but in this paper we choose to
present only the text oriented interface.

4.2. The ESSDP Rule-Base

A rule is comprised of two parts, the antecedent and the consequent. The
antecedent is the if portion of the rule and is a set of conditions or facts that
must be satisfied to execute the rule. In CLIPS, the antecedent conditions are
satisfied by the existence or non-existence of facts in the fact-list. The
consequent is the then portion of a rule and comprises of actions that are

www.manaraa.com

306 Software Engineering with Computational Intelligence

performed when the rule is executed. The CLIPS inference engine executes
all the action statements whenever the antecedent of a rule is satisfied.

The five-step methodology described earlier helps us produce the
questions, categorize them in various levels of functionality and also assign
weights to them. We then write rules that present those questions to the user
and process the answers along with the rules to determine the outcome.

CLIPS also provides us mechanisms to assign priorities to rules. It is
called salience in CLIPS. When multiple rules are present in the agenda a
rule with higher salience fires before a rule with lower salience. Since we
have rules that ask questions and rules that suggest patterns, we assign them
different salience. All question rules are assigned the normal salience, which
by default is O. Rules that suggest patterns are assigned a negative salience
number so that they are fired after the firing of question rules. To represent a
pattern in CLIPS, we define a record for a pattern. A record is similar to a
struct in C and defines a data structure that can refer to as a whole. The
deftemplate construct is used in CLIPS to define such a record. The record is
called pattern and has following fields:
• Name: The name of the pattern.
• Category: The category of the Pattern. This is more like a flag, which

holds integer values to indicate the category of that pattern. The
categories can be anyone of structural, behavioral, creational, interface
or complex.

• Final: This is an integer flag which indicates whether a conclusion
has been reached for that pattern.

• Certainty: The certainty for the recommendation of a particular pattern.
• Asked-List: This list is used to track which questions have already been

presented to the user.

When the user starts the ESSDP, a fact is asserted which is (start
questions). This fact does not directly contribute towards determining the
design pattern, however it does help in controlling the flow of decision
making and in the question-answer session. We term such facts as control
facts.

Rule I: This rule is named as zero-stage-division and asks the user the
level 0 question. Note variables are denoted by names beginning with a
question mark (?) in CLIPS.

IF there is (start-questions)
AND there is NOT (concluded pattern)
begin

/*
ask-question-function prints the question on the
screen and returns the answer from the user in the

www.manaraa.com

An Expert System for Suggesting Design Patterns

variable
*/
?ans <= aSk-quest ion-function

nIs your design problem concerned with:
creating complex objects (create) -or
architectural structures of classes (struct) -or
behavioral aspect of objects (behav) -or-
don't know (dontknow)?"

if ?ans = struct then assert (pattern (name
n structural") (level 0»
if ?ans = behav then assert (pattern (name
nbehavioral") (level 0»
if ?ans = create then assert (pattern (name
ncreational") (level 0»
if ?ans = dontknow then
begin

assert (pattern (name n structural") (level 0»
assert (pattern (name nbehavioral") (level 0»
assert (pattern (name ncreational") (level 0»

end
/* remove the fact start-questions, i.e. change mode
of ESSDP */
retract (start-questions)
/* control fact to indicate ESSDP mode is now asking
questions */
assert (asking-questions)

end

307

In the above rule, we use the record structure called pattern. It gets
asserted as a fact in the system with some or all of the fields filled. After
each question is asked, the asked-list is updated.

Rule 2: The rule shown below is named first-stage-struct-division. It
helps the user decide which subgroup to pursue. In case the category of
patterns does not have subgroups then such a rule is omitted.

IF there is (asking-questions)
AND there is NOT (concluded pattern)
AND there is (pattern (name n structure") (level 0»

begin
?ans <= ask-question-function(

nIs your design problem concerned with component
interfacing (iface) -or-
constructing a complex component through composition

(complx) -or-
don't know (dontknow)?"

)

if ?ans = iface then assert (pattern (name
"interface") (level 1»
if ?ans = complx then assert (pattern (name "complex")
(level 1»
if ?ans = dontknow then

www.manaraa.com

308 Software Engineering with Computational Intelligence

begin
assert (pattern (name" interface") (level 1»
assert (pattern (name "complex") (level 1»

end
end

Rule 3: Given below is a rule that asks the intent questions, that is level 1
questions from the user. The example rule shown below asks questions
related to interface type patterns, which are adapter, bridge, facade and
proxy.

IF there is (asking questions)
AND there is NOT (concluded pattern
AND there is (pattern (name "interface") (level 1»
begin

?ans <= ask-question-function (
"Is your design problem concerned with adapting one
interface to another? (yes/no)")

if ?ans = yes then assert (pattern (name
Adapter")

(level 99»
?ans <= ask-question-function

"Is your design problem concerned with keeping
implementation and interface independent of each
other? (yes/no)")

if ?ans = yes then assert (pattern (name "Bridge")
(level 99»)
?ans <= ask-question-function(

"Is your design problem concerned with providing a
simple and easy to use interface for a subsystem?
(yes/no)")

if ?ans = yes then assert (pattern (name "Facade")
(level 99»
?ans <= ask-question-function (

"Is your design problem concerned with controlling
access to an object? (yes/no)")

if ?ans = yes then assert (assert (pattern (name
"Proxy") (level 99»)

end

Similar rules are produced for complex type patterns. In case of patterns
with no sub grouping, we can directly ask intent questions (level 1) without
having to go through the phase of asking level 0.5 questions.

Rule 4: Once all the rules related to level 0, level 0.5 and level 1 are
written, we create rules to ask level 2 and level 3 questions. As an example,
shown below is a rule for question two of adapter level 2.

IF there is (asking questions)
AND there is NOT (concluded pattern)
AND there is (pattern (name "Adapter") (level 99) (final
0))

www.manaraa.com

An Expert System/or Suggesting Design Patterns

AND there is NOT (pattern (name "Adapter") (level 99)
(final 0)
asked-list ($?prefix L2-2 $?suffix))
begin

?ans <= ask-question-function(
"Do you want to adapt an implementation to a
desired interface? (yes/no)")

if ?ans = yes then
?adapter-positive-response-counter <= ?adapter
positive-response-counter + ?adapter-leve12-weight
if ?adapter-positive-response-counter > adapter
selection-threshold then

modify (pattern (name "Adapter") (final 1))
else

?adapter-negative-response-counter <= ?adapter
negative-response-counter - ?adapter-leve12-weight

if ?adapter-negative-response-counter < ?adapter
rejection-threshold then

end

retract (pattern (name "Adapter") (level 99) (final
0))

modify (pattern (name "Adapter") (asked-list insert
L2-2))

309

The multi valued variables are denoted by names beginning with the $?
symbol in CLIPS.

In the above rule, the pattern record for adapter is modified to indicate
the final field is 1 when the positive counter exceeds the selection threshold.

Rule 5: This rule suggests a design pattern with a certainty value to the
user whenever the positive counter accumulates to the selection threshold.
The user is then asked whether to continue with more questions or stop and
accept the suggested design pattern. This rule can be turned on and off as an
option to suite different users' preferences. The rule below is shown for the
adapter pattern.

IF there is (asking questions)
AND there is NOT (concluded pattern)
AND there is NOT (adapter mid selection over)
AND there is (pattern (name "Adapter") (level 99) (final
1)
(certainty?cert))
begin

?ans <= ask-question-function(
"Suggesting adapter with certainty value of ?cert
Would you like to continue with more questions?
(yes/no)"

if ?ans = yes then
modify (pattern (name "Adapter") (level 99) (final
0))

www.manaraa.com

310 Software Engineering with Computational Intelligence

else
modify (pattern (name "Adapter") (level 99) (final
2))

assert (adapter mid selection over)
end

If the user does not want to continue, then the final flag is set to 2. The
system will skip the questions and activate the rule shown below. A final
value of ° indicates that the user wants to continue.

The rule that decides the final answer is shown below. It has a salience
of -999 so that it fires only after all the rules described above have been
fired.

IF there is NOT (pattern (name ?pname) (level 99) (final
0))

AND there is (pattern (name ?name) (level 99) (final 2)
(certainty?cer))

AND there is NOT (concluded pattern)
begin

assert (concluded pattern ?name ?cer)
end

Another rule then prints out the final answer on the user interface
depending on the details asserted in (concluded pattern) fact. The last rule in
the rule-base is one that has the lowest salience of -1000. This last rule fires
on the absence of (concluded pattern) fact and displays a "failed to choose a
pattern" message to the user.

All of the rules described above are coded in a CLIPS file. This CLIPS
file, apart from the rule-base, also contains the initial-facts to get the system
started, the threshold values and the user interface functions. The system,
when fully implemented, will consists of about 160 rules, 150 questions and
3,000 lines of CLIP code excluding comments.

5. EVALUATION

We have conducted a small experiment to assess the effectiveness of
ESSDP. The experiment involved 11 students from a design patterns class at
the beginning of the course. The students, referred to as subjects, were given
an overall introduction to what design patterns could do and design problems
the patterns could solve. The subjects then were asked to randomly select ten
out of the eighteen patterns (seven structural patterns and eleven behavioral
patterns) that had been implemented at the time of the experiment. The
subjects were required to use ESSDP to search for the patterns that could
solve their design problems. The subjects had to submit the dialogs with the
expert system and provide information on the subject themselves and
evaluations of three aspects of the ESSDP as shown in Table 2. We consider

www.manaraa.com

An Expert System/or Suggesting Design Patterns 311

the experiment to be partial and preliminary due to the small number of
subjects participated and the lack of detailed assessment.

More extensive assessments will be conducted when the system is fully
implemented and optimized. However, this preliminary, initial assessment is
considered useful for the following reasons:
1. It helps us in determining if the effort is worthwhile. The initial feedback

as shown by the experiment result (see below) is very encouraging.
2. It helps us to assess whether the ESSDP system can be used by software

engineers other than the ESSDP developers. The feedback is very
positive. Most of the subjects or all of the subjects we asked said that the
system was friendly and very easy to use.

3. It helps us identify weaknesses and improvements. For example,
although the number of questions needed to be answered is acceptable in
most cases, reducing the number will effectively improve the usefulness
of the system.

www.manaraa.com

312 Software Engineering with Computational Intelligence

Subj 00 DP Success Effectiveness #Questions Knowledge Knowledge Rate

I beginner want to all the time very
12

know effective

2 beginner know some most of the effective 12
time

3 knowledgeable don't know all the time very 17
effective

4 knowledgeable want to most of the effective 18 know time

5 knowledgeable know some all the time very
9 effective

6 knowledgeable know some most of the effective 10
time

7 knowledgeable don't know most of the effective 12
time

8 knowledgeable know some all the time
very 12

effective

9 knowledgeable know some all the time very 15
effective

\0 beginner don't know all the time very
13 effective

II knowledgeable know some all the time very
8 effective

Summary

knowledgeable know some always
very less than

effective 13
73% 55% 64%

64% 64%

beginner don't know most of the effective
more than

time 12
27% 45%

36%
36% 36%

Table 2. Summary of testing of ESSDP by 11 subjects.

A brief explanation of Table 2 is as follows. The 00 Knowledge column
denotes how good the subject knew 00 concepts and 00 design. The table
shows that 73% of the subjects believed that they were knowledgeable, only
27% were beginners. Knowledgeable is interpreted as an average rating,
meaning they know 00 concepts but are not experts or "know a lot". Only
55% knew some design patterns before joining the class. 45% did not know
any or wanted to know what were design patterns. Data in these two columns
are consistent. The lower percentage in the "DP Knowledge" column than
the "00 Knowledge" column reflects the fact that DP knowledge requires
00 knowledge as a prerequisite.

Is you desing problem concerned with
creating complex objects, (create)
-or-
architectural structures of classes (struct)
-or-

www.manaraa.com

An Expert System for Suggesting Design Patterns

behavioral aspect of objects (behav)
-or-
don't know (dontknow) . Struct

Is your design problem concerned with component
interfacing (iface) -or-
constructing a complex component through composition
(complx)? Complx
Is your design problem concerned with recursive
composition of complex objects from simpler ones?
(yes/no) yes

313

Is your design problem concerned with dynamically adding
responsibilities to objects? (yes/no) no

Is your design problem concerned with representing
numerous copies of
the same object? (yes/no) no

Do you want your system to be layered, by grouping
components? (yes/no) yes

Would you like to make your system easier to add
components? (yes/no) yes

Do you want to hide difference between composite objects
and
individual objects from client application? (yes/no) yes

Will you treat composite objects uniformly? (yes/no) yes

Do you want to represent part-whole hierarchy? (yes/no)
yes

**
**

Suggesting Composite pattern, with 1.0 certainty.

Figure 6. Search scenario 1: the user knows what he wants.

Is you desing problem concerned with
creating complex objects, (create)
-or-
architectural structures of classes (struct)
-or-
behavioral aspect of objects (behav)
-or-
don't know (dontknow) . dontknow

Is your design problem concerned with
component interfacing (iface) -or-
constructing a complex component through composition

www.manaraa.com

314 Software Engineering with Computational Intelligence

(complx)? Complx

Is your design problem concerned with notifying other
objects when an object changes (yes/no) no

Is your design problem concerned with state dependent
behaviors? (yes/no) no

Is your design problem concerned with selecting
algorithms according to needs? (yes/no) no

Is your design problem concerned with undoing of
operations? (yes/no) no

Is your design problem concerned with accessing contents
of an aggregate object without exposing its internal
representation ? (yes/no) yes

Is your design problem concerned with recursive
composition of complex objects from simpler ones?
(yes/no) yes

Is your design problem concerned with dynamically adding
responsibilities to objects? (yes/no) no

Is your design problem concerned with representing
numerous copies of the same object? (yes/no) no

will you traverse through a list of aggregate-object in
different ways depending upon your motive ? (yes/no) yes

Do you want to provide a uniform interface for traversing
different aggregate structures ? (yes/no) no

Do you want to provide a way to browse through aggregate
objects? (yes/no) yes

Do you want your system to be layered, by grouping
components? (yes/no) yes

Would you like to make your system easier to add
components? (yes/no) yes

Do you want to hide difference between composite objects
and individual objects from client application? (yes/no)
yes

will you treat composite objects uniformly? (yes/no) yes

Do you want to represent part-whole hierarchy? (yes/no)
yes

**

www.manaraa.com

An Expert System/or Suggesting Design Patterns 315

**

Suggesting Iterator pattern, with 0.6 certainty.

Figure 7. Search scenario 2: the user does not know what he wants.

The last three columns, "Success Rate", "Effectiveness" and "#Questions
(answered before getting a suggestion)" consistently show that 64% of the
subjects considered the system to be able to suggest the needed patterns all
the time, very effective and require the user to answer no more than twelve
questions. The individual subject assessments also individually confirmed
the result. That is, subjects who had "all the time" rating for "Success Rate"
also had "very effective" rating for "Effectiveness" and most of them
required to answer about twelve questions (except subject 3 and subject 9
who had to answer seventeen and fifteen questions, respectively). It is worth
noticing that the (evaluation of the) performance of the system is
independent to the degrees of 00 knowledge and design pattern (DP)
knowledge of the subjects. This independence confirms to our initial
motivations of developing the ESSDP. That is, providing pattern search
assistance to novices as well as validating pattern beginner's choices.

In summary, the preliminary evaluation indicates that the system is able
to suggest the needed patterns most of the time, is effective and requires
answering of no more than twelve questions. The number of questions
needed to be answered will be reduced if the system evaluates the thresholds
each time the thresholds are updated and recommend the pattern whose
positive counter exceeds the positive threshold. We have prototyped such
changes and found that the number of questions needed to be answered has
reduced by 20% or 10 questions needed to be answered.

We wish to point out that the more the user knows his design problem
the more effective the search will be, as illustrated in Figure 6 and Figure 7.
In Figure 6, the user selects "struct" as the answer to the first question while
in Figure 7 the user selects "dontknow" as the answer.

In the first case, the user knows that his design problem is concerned
with composing classes/objects to form larger structures while in the second
case the user does not know this. The first case requires the user to answer
ten questions and suggested the Composite pattern with a 1.0 certainty
(100%). However the second case requires the user to answer eighteen
questions and finally the system suggested the Iterator pattern with only a 0.6
certainty (60%). That is the number of questions needed to be answered by
the user increased by 80% while the certainty of the pattern suggested
decreased by 40%. In this case, we are not clear if the pattern suggested
would solve the user's design problem. But the low certainty value of 0.6

www.manaraa.com

316 Software Engineering with Computational Intelligence

suggests that it is not likely that the iterator pattern would solve the user's
design problem.

6. CONCLUSIONS

We have presented a five step methodology for constructing an expert
system for suggesting design patterns and illustrated the methodology
through the construction of the ESSDP expert system. ESSDP implements
the twenty-three design patterns in Gamma et aI's book. Our preliminary
evaluation of ESSDP by eleven subjects shows that ESSDP and hence the
methodology are relatively effective, although much improvements are
required.

As near term future work, we plan to refine the ESSDP system to
improve its success rate and effectiveness and reduce the number of
questions needed to be asked of the users. We also plan to extend the system
to cover more design patterns including analysis patterns [fowl96a],
responsibility assignment patterns [larmOla] and patterns from [tich98a].
Patterns from specific domains like telecommunications design patterns will
also be considered.

We have implemented a Web portal for accessing the ESSDP system.
We plan to integrate the two to provide WWW access to the expert system so
that 00 developers from other organizations can benefit from the work.
Providing a WWW access will enable us to collect feedback from a large
users base with various applications and use feedback to further improve the
system.

ACKNOWLEDGEMENT

We would like to thank Larry Holder for suggesting the CLIPS expert
system shell and resources. We also like to thank the anonymous reviewers
for the improvement suggestions and Chien-hung Liu for help on CLIPS.

NOTES
It is more appropriate to call it a lattice rather than a tree but we prefer to use
tree since it is easier to explain the methodology using trees.

REFERENCES
[alex77a] c. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King

and S. Angel, "A Pattern Language," Oxford University Press, New York,
1977.

www.manaraa.com

[beck96a]

[birm86a]

[chid94a]

[chuw99a]

[fowI96a]

[gamm95a]

[giar94a]

[guomOOa]

[huntOOa]

[jacob99a]

[keIl99a]

[lins75a]

[larmOla]

[monr97a]

[nobI98a]

[pede89a]

[rile02a]

[schm96a]

An Expert System for Suggesting Design Patterns 317

K. Beck, 1. O. Coplien, R. Crocker, L. Dominick, G. Meszaros, P.
Paulisch and 1. Vlissides, "Industrial Experience with Design Patterns", In
Proceedings of the 18th International Conference on Software
Engineering (ICSE '96), IEEE Computer Society, Los Alamitos, CA,
1996. pp. 103-114.

W. Birmingham, R. Joobbani and J. Kim, "Knowledge Based Expert
Systems and Their Applications", In Proceedings ofthe 223rd ACM/IEEE
Conference on Design Automation, ACM Press, New York, NY, 1986.
pp. 531-539.

S. Chidamber and c.P. Kemerer, "A metrics suite for object-oriented
design," IEEE Trans. on Software Engineering, vol. 2, no. 6, pp. 476-493,
June 1994.

W.e. Chu, Chih-Wei Lu, J.P. Shiu, X. He, "Pattern Based Software Re
engineering: A Case Study," IEEE Proceedings of the Asia Pacific
Software Engineering Conference, 1999. pp. 300-308.

Martin Fowler, "Analysis Patterns," Addison Wesley Longman, Inc.
1996.

Erich Gamma, Richard Helm, Ralph Johnson and John M. Vlissides,
"Design Patterns: Elements of Reusable Object-Oriented Software,"
Addison-Wesley, \995.
J. Giarratano, G. Riley, "Expert Systems," Second Edition, PWS
Publishing Company, Boston, MA, 1994.

Masuda Gou, Sakamoto Norihiro, Ushijima Kazuo, "Redesigning of an
Existing Software using Design Patterns," Proc. of Int. Sympo. On
Principles of Software Evolution 2000, pp.169-173.

John Hunt, "The Unified Process for Practitioners", Springer-Verlag New
York, Inc., New York, NY, 2000.

I Jacobson, G. Booch and J. Rumbaugh, "The Unified Software
Development Process.", Addison-Wesley, Reading, MA, 1999.

R.K. Keller, R. Schauer, S. Robitaille, P. Page, "Pattern-Based Reverse
Engineering of Design Components," ICSE'99 Los Angeles CA, 1999.

H.A. Linstone and M. Turoff. "The Delphi Method: Techniques and
Applications," Addison-Wesley, Reading, MA, 1975.

Craig Larman, "Applying UML and Patterns," Prentice Hall, 1998.

R.T. Monroe, A. Kompanek and D. Garlan, "Architectural styles, design
patterns, and objects," IEEE Software, Vol. 14 No.1, Jan.-Peb. 1997. pp.
43--52.

J. Noble, "Classifying relationships between object-oriented design
patterns", In Proceedings of Australian Software Engineering Conference
(ASWEC), IEEE Computer Society, Los Alamitos, CA, 1998. http://
citeseer.nj.nec.comlnoble98classifying.html.

K. Pedersen, "Expert Systems Programming: Practical Techniques for
Rule-Based Programming," John Wiley & Sons, New York, NY, 1989.

Gary Riley, "A Tool for Building Expert Systems",
http://www.ghg.net/clips/CLIPS.html.
D. C. Schmidt, "Using Design Patterns to Guide the Development of
Reusable Object-Oriented Software", ACM Computing Surveys, 28(4es):
162, ACM Press, New York, NY, 1996.

www.manaraa.com

318

[tanh99a]

[tich98a]

[tich02a]

Software Engineering with Computational Intelligence

Hee Beng Kuan Tan, Tok Wang Ling, "Integrated design patterns for
database applications," Journal of Systems and Software, July 1999, pp.
159-172.

W. F. Tichy, "A Catalogue of General-Purpose Design Patterns", In
Proceedings of Technology of Object-Oriented Languages and Systems
(TOOLS 23), IEEE Computer Society, 1998. pp. 330-339.

W. F. Tichy, "Essential Software Design Patterns", http://
wwwipd.ira.uka.de/~ tichy/patterns/overview.html, 2002.

www.manaraa.com

Condensing Uncertainty via Incremental
Treatment Learning

Tim Menzies \ Eliza Chiang2, Martin Feather3, Ying Hu2, James D. Kiper4

J Lane Department of Computer Science
University of West Virginia, Morgantown, USA
tim@menzies.com

2 Electrical & Computer Engineering University of British Columbia
yingh@ece. ubc. ca
echiang@interchange.ubc.ca

3 Jet Propulsion Laborator
California Institute of Technology
martin.sfeather@jpl.nasa.gov

4 Computer Science & Systems Analysis
Miami University
kiperjd@muohio.edu

ABSTRACT
Models constrain the range of possible behaviors defined for a domain.
When parts of a model are uncertain, the possible behaviors may be a data
cloud: i.e. an overwhelming range of possibilities that bewilder an analyst.
Faced with large data clouds, it is hard to demonstrate that any particular
decision leads to a particular outcome. Even if we can't make definite
decisions from such models, it is possible to find decisions that reduce the
variance of values within a data cloud. Also, it is possible to change the
range of these future behaviors such that the cloud condenses to some
improved mode. Our approach uses two tools. Firstly, a model simulator is
constructed that knows the range of possible values for uncertain
parameters. Secondly, the TAR2 treatment learner uses the output from the
simulator to incrementally learn better constraints. In our incremental
treatment learning cycle, users review newly discovered treatments before
they are added to a growing pool of constraints used by the model simulator.

1. INTRODUCTION
Often, during early lifecyc1e decision making in software engineering,

analysts know the space of possibilities, but not the constraints on that space.
For example:

• They might know qualitatively that the more shared data, the less
modifiable is a software system. However, they may not know the exact
quantitative values for this relationship.

• Their experience might tell them that their source lines of code estimates
are inaccurate by 50%.

www.manaraa.com

320 Software Engineering with Computational Intelligence

What are our analysts to do? One possibility is to demand more budget
and time to perform further analysis which removes these uncertainties. For
example, metrics collection programs might be commenced to collect values
for uncertain parameters. Elsewhere, we have documented the impressive
results that can come from such a methodology/process [30].

When elaborate metrics collection is too expensive however,
computational intelligence methods may be useful. If domain experts can
offer a rough description of how (e.g.) variable A effects variable B, then
fuzzy logic methods [17, 55] can be used to perform inference over the
model, perhaps using the methods of Jahnke et al. [25]. If the model
represents a situation for which we have historical data, then genetic
algorithms can be used to mutate the current model towards a model that best
covers the historical data [3]. Alternatively, we could throwaway the current
model and use the historical data to auto-generate a new neural net model
[50].

The premise of this paper is metrics starvation; i.e. situations in which
we can access neither the relevant domain expertise required for fuzzy logic,
nor the historical data required for genetic algorithms or neural nets. Our
experience is that metrics starvation is common. For example, the majority of
software development organizations do not conduct systematic data
collection. As evidence for this, consider the Software Engineering Institute's
capability maturity model (CMM [43]), which categorizes software
organizations into one of five levels based on the maturity of their software
development process. Below CMM level 4, there may be no systematic and
reliable data collection. Below CMM level 3, there may not even be a written
definition of the software process. Many organizations exist below CMM
level 3 [personnel communication, SEI researchers]. Hence, reliable data on
SE proj ects is scarce or hard to interpret.

However, a lack of systematic data does not mean that no inferences can
be made about some software development process. If we can't constrain the
range of model behavior with domain metrics, we can still make decisions by
surveying the range of possible behaviors. Suppose we have a model
expressing what is known within a domain. If we are uncertain over parts of
that model, then we might supply ranges for those uncertain parameters.
When we run this model, if we ever require some uncertain parameter, we
might select and cache a value for that parameter, based on the supplied
ranges. To survey the range of possible behaviors, we just parameters.
Elsewhere, we have documented the impressive re-run the model many
times, taking care to clear the cache between each run. Many variants on this
scheme have been discussed in the literature. For example:

• This scheme is the same as Monte Carlo simulations when uncertain
parameters are just system inputs.

www.manaraa.com

Condensing Uncertainty via Incremental Treatment Learning 321

• This scheme is the same as abductive inference [27] where the uncertain
parameters are truth assignments to assumptions within the model, and
some global invariant checking executes before a new value is assigned.

10 " " , -" . .:~~

\., c;

I " 0 ;r-~ I ~ 1;

~ ·5

.10 'I}~

·1 5 .
7~ :;1~ ~;

3
Cosl

Fig 1.i. Cloud 1 (from §4.1).

10

i 0
c:
d! ·5

· 10

·15

2 3 4

COS!

Fi~ l.iii. Cloud1, condensed.

300 .----r----r---,.-----,

250

200
E
~ 150 ..
'"

~

100

50

0L-400~,~OOO--7-00~.0~OO--1.00~0.0-00-~
COSI

Fig Iii. Cloud2 (from §4.3).

300 ,----,---..,---..,.-----,

250

200

1 150

100

50

OL--L--~---~-~

400,000 700.000 1,000,000
Cosl

Fi~ ,iv, Cloud2: condensed,

Figure 1. Examples of condensing clouds, The right-hand model's cost values are
continuous while the left-hand model has discrete costs,

The advantage of this "select and cache'" method is that the range of
possible behaviors can be explored without expensive further analysis. The
disadvantage of this approach is data clouds: an overwhelming amount of
data that clouds and confuses the issues. For example, Figure I.i and Figure
I.ii show data clouds generated from case studies described later in this
paper. In these figures, each mark represents the cost and benefits associated
with a set of decisions about the structure of a software project. Note the
large variance in the possible cost and benefits from the different possible
decisions.

Faced with such large data clouds, it is hard to demonstrate that any
particular decision leads to a particular outcome. What is required is some
method for condensing these clouds of uncertainty without expensive data
collection for all the uncertain parameters. Ideally, condensation methods
should be minimal; i.e. they require a commitment to only a small portion of
the uncertain variables within a model.

www.manaraa.com

322 Software Engineering with Computational Intelligence

This papers experiments with minimal condensation using the T AR2
treatment learner [19,24,33-36] A treatment learner seeks the least number
of attribute ranges that most differentiate between desired and undesired
behavior. Figure 2 shows how T AR2 can be applied incrementally to
explore data clouds. A simulator executes a model generated by some
manual modelling process. T AR2 reduces the data generated by the
simulator to a set of proposed treatments. After some discussion, users add
the approved treatments to a growing set of constraints for the simulation.
The cycle repeats until users see no further improvement in the behavior of
the simulator.

manual automatic

(modelling) ... Model
..

[simualtor) _____ data --..... (T AR2) ...
~Known + constraints .. conr:)

GJ

+ f.-t'" T2= approved treatments

~
{ IT21 <= IT11 } , ..

(discussion J -:: T1 =proposed treatments

Figure 2. Incremental treatment learning.

Experiments with this approach have shown that T AR2 can:

• Reduce the variance of values within a data cloud
• Improve the mean of values within data clouds

For example, Figure l.iii and Figure 1.iv show the results of applying
incremental treatment learning to Figure 1.i and Figure l.ii. Note that in
both studies, the mean of the benefits increased, the mean of the costs
decreased, and the variance in both measures was greatly decreased.

The notion that extra constraints can reduce the space of uncertainties is
hardly surprising. However, what is surprising is how few extra constraints
TAR2 needs to condense (e.g.) Figure l.ii to Figure l.iv and how easily
T AR2 can automatically find those constraints. The claim of this paper is
that:

www.manaraa.com

Condensing Uncertainty via Incremental Treatment Learning 323

In the average case, a simple algorithm (T AR2) can quickly find a
very small number of key constraints that result in massive
condensations of data clouds towards some desired goal.

There are three implications of this claim. Firstly, even when we don't
know exactly what is going on within a model, it is possible to define
minimal strategies to grossly decrease the uncertainty in that model's
behavior.

Secondly, even if we aren't sure about the impact of certain decisions, we
can be sure that certain other decisions will be ineffective. Decisions about
treatment variables will override decisions about variables not found within a
treatment. Hence, decisions about variables outside the treatments are
redundant.

Thirdly, incremental treatment learning can reduce the cost of software
modeling. Before applying elaborate modeling techniques or tools, it is wise
to try cheaper and simpler techniques. Our results here show that even hastily
built incomplete models can be used for effective decision making. Since
much can be learnt, even from sketchy data, it may be possible to avoid
elaborate and extensive and expensive metrics collection. Further, once the
treatments are known, then a minimal metrics collection program can be
defined, just for the few variables in the treatments.

The rest of this paper describes the details of our condensation technique.
T AR2 was motivated by funnel theory which is a claim that most decisions
are redundant or irrelevant. In models containing funnels, a small number of
key variables are enough to control a model, despite the large range of
possibilities outside the funnel. Funnel theory is discussed in §2. Our
algorithm for finding the key decisions within the funnels is discussed in §3.
Case studies are then explored in §4 where T AR2 can reduce the variance
and improve the mean of three case studies. After that, §5 discusses when
this approach may not be appropriate and §6 discusses related work.

2. FUNNEL THEORY
The premise of this paper is that within the space of possible decisions,

there exist a small number of key decisions that determine all others. After
Menzies, Easterbrook, Nuseibeh, and Waugh, we call this premise funnel
theory- the metaphor being that all processing runs down the same narrow
funnel [32].

To introduce funnels, we first say that a decision space supports reasons;
i.e. chains of reasoning that link inputs in a certain context to desired goals.
Chains have links of at least two types. Firstly, there are links that clash with
other links. Secondly, there are the links that depend on other links. One
method of optimizing the decision making process would be to first decide

www.manaraa.com

324 Software Engineering with Computational Intelligence

about the non-dependent clashing links. These are the key decisions since
they determine most of the other non-key decisions.

For example, suppose the following decision space is explored using the
invariant no _good (X, -,x) and everything that is not a context or a goal is
open to debate:

a --+ b --+ c --+ d --+ e
contextl --+ f --+ g --+ h --+ I --+ j --+ goal
context2 --+ k --+ g --+ 1 --+ rn --+ j --+ goal

n --+ o --+ p --+ q --+ e

Like any model, any of (a, b, .. q) is subject to discussion. However,
in the context of reaching some specified goals from context1 and context2,
the only important discussions are the clashes (g, -,g, j, -,j) (the (e, -,e)

clash is not exercised in the context of context!; context2 ~ goal, since no
reason uses e or -,e). Further, since (j, -,j) are fully dependent on (9,

-,g), then the core decision must be about variable (9) with two disputed
values: true and false.

The funnel of a decision space contains the non-dependent clashing
links; e.g. {g}. The decisions with greatest information content are the
decisions about the funnel variables, since these variables set the others. If
the space contains narrow funnels (i.e. funnels with small cardinality) then
the total decision space can be greatly reduced to a small number of highly
informative disputes about funnel variables. Analysts are still free to debate
whatever they want (and they will, seemingly endlessly), but with this
approach, a fynnel-aware analyst can steer the discussion towards the issues
that tell us rost about a domain. The net effect can be less argument.
Suppose OUI) analysts agree that 9 is true, then in the context of arguing
about how Context 1; context2 ~ goal, the decision space reduces to:

contextl --+ f --+ g --+ h --+ I --+ j --+ goal.

The reasoning starting with k has been culled since, by endorsing g, we
must reject all lines of reasoning that use -,g. In addition, the reasoning
starting with a, n are ignored since they are irrelevant in this context; i.e. they
do not participate in reaching a desired goal. Further, in this context, there is
little point arguing about (f, h, i, j) since if any of these are false, then no
goal can be reached.

This small example suggests how funnels can condense data clouds.
Data clouds are the result of a wide variation in model behavior. Such
variation comes from choices within a model relating to uncertain ranges.
The more commitments we make about funnel variables, the more we
collapse the space of possibilities outside the funnel. Hence, decisions about
funnel variables condense data clouds, since they restrict the behavior of a
system. Decision making in spaces containing funnels can be simple and

www.manaraa.com

Condensing Uncertainty via Incremental Treatment Learning 325

short. Once values for the funnel variables are decided, all other decisions
become redundant. In the above example, we have a decision space
containing potentially 217 = 131,072 debates about 16 Boolean variables
{a,b, .. q}. A decision about one variable (i.e. "is 9 true or false?") has
reduced this space to one option.

Relying on narrow funnels may seem an overly optimistic approach. Yet
a literature review suggests that such optimism is well-founded. There are
many examples of funnel-like behavior in the literature. For example Horgan
& Mathur [23] report that testing often exhibits a saturation effect; i.e. most
program paths get exercised early with little further improvement as testing
continues. Saturation is consistent with funnels controlling the reachable
parts of a program. If these funnels were narrow, there would be few options
in a program's execution and test inputs would quickly sample them all.
Further testing over systems with narrow funnels would yield little further
information since anything not connected to the funnels would be, by
definition, unreachable.

An analogous effect to saturation is homogenous propagation since in
the program mutation literature (aprogram mutant is a syntactically valid but
randomly selected variation to a program; e.g. swapping all plus signs to a
minus sign). Despite numerous perturbations on data values using a program
mutator, Michael found that in 80 to 90% of cases, there were no changes in
the behavior of a range of programs [40]. Another study compared results
using X% of a library of mutators, randomly selected
(XE{10,15, .. .40,100}). Most of what could be learnt from the program
could be learnt using only X=10% of the mutators; i.e. after a very small
number of mutators, new mutators acted in the same manner as previously
used mutators [54]. The same observation has been made elsewhere in the
mutation literature [1,8]. Like saturation, homogenous propagation is
consistent with funnel theory. If the overall behavior of a system is
determined by a small number of key variables, then random mutation is
unlikely to find those variables and the net effect of those mutations would
be very small.

Homogenous propagation is observed in procedural programs. An
analogous effect has been seen in declarative systems; i.e. most choices
within a declarative set of constraints have little effect on the average
behavior. Menzies & Waugh studied choices in millions of mutations of a
nondeterministic system. In their abductive framework [27,31], a consistent
set of choices generated a world of belief. Given N binary choices, there are
theoretically 2N possible worlds. However, after studying millions of
generated worlds they found the maximum number of goals found in any
world was often close to the number of goals found in a world selected at
random [39] (on average, the difference was less than 6%). This observation

www.manaraa.com

326 Software Engineering with Computational Intelligence

is inexplicable without narrow funnels. If choices had a large impact on what
was reached within a declarative system, then there should be much
variability in what is found in each world. Since the observed variability was
so small, the number of critical choices (a.k.a. funnel variables) must also be
small.

In fact, the concept of a funnel has been reported in many domains under
a variety of names including:

• Master-variables in scheduling [15];
• Prime-implicants in model-based diagnosis [47] or machine learning

[46], or fault-tree analysis [29].
• Backbones in satisfiability [41, 51];
• The dominance filtering used in Pareto optimization of designs [26];
• Minimal environments in the ATMS [16];
• The base controversial assumptions ofHT4 [31].

Whatever the name, the core intuition in all these terms is the same: what
happens in the total space of a system can be controlled by a small critical
region. The frequency of the funnel effect have made Menzies & Singh
suspect that funnels are some average case phenomenon that is emergent in
decision spaces [37]. To test this, they consider a device that can choose
between a narrower and a wider funnel. Let some goal in a system be
reachable by a narrow funnel M or a wide funnel N shown in Figure 3.

ctl A ,1' --+ ~'1

a2 ~1'" -----+ 11;- 2

H,n '\ l' '
---.-, 1! 1-'11.

c. I d
--+ goa i --

Figure 3. Alternate funnels that lead to some goal.

Under what circumstances will the narrow funnel be favored over the
wide funnel? The following definitions let us answer this question:

• Let the cardinality of the narrow funnel and wide funnels be m and n
respectively.

• Each m members of the narrow funnel are reached via a path with
probability ai while each n members of the wider funnel are reached via
a path with probability bi.

www.manaraa.com

Condensing Uncertainty via Incremental Treatment Learning 327

• Two paths exist from the funnels to this goal: one from the narrow neck
with probability c and one from the wide neck with probability d.
Therefore, the probability of reaching the goal via the narrow pathway is

narrow = CDai

while the probability of reaching the goal via the wide pathway is

wide = dDbi

With these definitions, the Menzies & Singh study can be redefined as
the search for conditions under which

(narrow / wide = R) > t (1)

where t is some threshold value. To explore Equation 1, Menzies &
Singh built a small simulator of Figure 3, and performed 150,000 runs using
different distributions for ai; b i ; C; d and a wide range of values for m;

n. The results are shown in Figure 4. For comparison purposes, the size of
the two funnels is expresses as a ratio alpha where n=alpha *m.

t= 1,000,000

...... 100
~ SO

pessimistic =: 60 jl optimistic
~ 40 log normal •
~ 20

0
2 3 4 5 () 7 8 9 10

alpha

Figure 4. 10,000 runs of the funnel simulator. Y-axis shows what percentage of
the runs satisfiess (narrow/wide=R»t . The pessimistic, lognormal, and

optimistic distributions assume a worst-case, average-case, and best-case
(respectively) distribution for {ai, bi, ci, di}. For more details, see[37].

As might be expected, at alpha=l the funnels are the same size and the
odds of using one of them is 50%. As alpha increases, then increasingly R>t

is satisfied and the narrower funnel is preferred to the wider funnel. The
effect is quite pronounced. For example, for all the studied distributions,
after the wider funnel is 2.25 times bigger than the narrow funnel, then in
75% or more of the random searches, accessing the narrow funnel is at least
1,000,000 times more likely as accessing the wider funnel (see the lower
graph of Figure 4). Interestingly, as the probability of using any of
ai I b i I Ci I d i decreases, the odds of using the narrow funnel increase (see

www.manaraa.com

328 Software Engineering with Computational Intelligence

the pessimistic curves in Figure 4). That is, narrow funnels are likely,
especially in spaces that are difficult to search.

The average case analytical result of Menzies & Singh is suggestive
evidence, but not conclusive evidence, that narrow funnels are common.
Perhaps a more satisfying test for narrow funnels would be to check if, in a
range of applications, a small number of variables are enough to control the
other variables in a model. The rest of this paper implements that check.

3. FINDING THE FUNNEL
A traditional approach to funnel-based reasoning is to find the funnels

using some dependency-directed backtracking tool such as the ATMS [16] or
HT4 [31]. Dependency-directed backtracking is very slow, both theoretically
and in practice [31]. Further, in the presence of narrow funnels, it may be
unnecessary. There is no need to search for the funnel in order to exploit it.
Any reasoning pathway to goals must pass through the funnels (by
definition). Hence, all that is required is to find attribute ranges that are
associated with desired behavior.

outlook temE{OF} humidi!}: wind,Y? class
sunny 85 86 false none
sunny 80 90 true none
sunny 72 95 false none
rain 65 70 true none
rain 71 96 true none
rain 70 96 false some
rain 68 80 false some
ram 75 80 false some

sunny 69 70 false lots
sunny 75 70 true lots

overcast 83 88 false lots
overcast 64 65 true lots
overcast 72 90 true lots
overcast 81 75 false lots

Figure 5. A log of some golf playing behavior.

T AR2 is a machine learning method for finding attribute ranges
associated with desired behavior. Traditional machine learners generate
classifiers that assign a class symbol to an example [44]. T AR2 finds the
difference between classes. Formally, the algorithm is a contrast set learner
[4] that uses weighted classes [9] to steer the inference towards the preferred
behavior. The algorithm differs from other learners in that it seeks contrast
sets of minimal size.

www.manaraa.com

Condensing Uncertainty via Incremental Treatment Learning 329

T AR2 can best be introduced via example. Consider the log of golf
playing behavior shown in Figure 5. This log contains four attributes and 3
classes. Recall that TAR2 accesses a score for each class. For a golfer, the
classes in Figure 5 could be scored as none=2 (i.e. worst), some=4, lots=8
(i.e. best).

T AR2 seeks attribute ranges that occur more frequently in the highly
scored classes than in the lower scored classes. Let a : r be some attribute
range e.g. outlook. overcast. da : r is a heuristic measure of the worth of a:r
to improve the frequency of the best class. Va: r uses the following
definitions:

x (a : r) the number of occurrences of that attribute range in class
X; e.g. lots(outlook.overcast)=4.

all (a : r) total number of occurrences of that attribute range in all
classes; e.g. all(outlook.overcast)=4.

best the highest scoring class; e.g. best = lots;

rest the non-best class; e.g. rest = {none; some};

$Class score of a class Class is $Class.

da : r is calculated as follows:

~a:r=(for xerest do
~a:r .- ~a:r*(($best- $X) * (best(a:r) -

X(a:r)))
)/all(a:r)

For example, when a. r is outlook. overcast, then doutlook:overcast is
(((8-2) * (4-0)) + ((8-4) * (4-0))) / (4+0+0) =40/4=10

The attribute ranges' in our golf example generate the d histogram shown
in Figure 6. Note that outlook=overcast's d is the highest, potentially most
effective, attribute range.

www.manaraa.com

330 Software Engineering with Computational Intelligence

3 ~----------~~~-------~--------------~

2 +--------------1

-5 -3 -1 3 5 7 9

Figure 6. d distribution seen in golf data sets. The X-axis shows the range of d
values seen in the gold data set. The Y-axis shows the number of attribute

ranges that have a particular d.

A treatment is a subset of the attribute ranges with an outstanding ~a=r
value. For our golf example, such attributes can be seen in Figure 6: they are
the outliers with outstandingly large ~s on the right-hand-side. (These
outliers include outlook=overcast).

To apply a treatment, T AR2 rejects all example entries that contradict
the conjunction of attribute ranges in the treatment. The ratio of classes in
the remaining examples is compared to the ratio of classes in the original
example set. The best treatment is the one that most increases the relative
percentage of preferred classes. In the case where N treatments increase the
relative score by the same amount, then N best treatments are generated and
T AR2 picks one at random. In our golf example, a single best treatment was
generated containing outlook=overcast; Figure 7 shows the class distribution
before and after that treatment, i.e. if we choose a vacation location that is
generally overcast, then in 100% of cases we should be playing lots of golf,
all the time.

no change

~fuJ
o 5 3 6

O'utl ()o.k~ =
OtIC']' co S t

~LJ
o 0 0 4

CJ
mIlD .. = none (worst)

= some
= lots (be lOt)

Figure 7. Finding treatments that can improve golf playing behavior. With no
treatments, we only play golf lots of times in 6/(5+3+6) = 57% of cases. With the
restriction that outlook=overcast, then we play golf1ots of times in 100% of cases.

www.manaraa.com

Condensing Uncertainty via Incremental Treatment Learning

Claim
c1
c2
c3
c4
c5

Notes
among the few vital goals

a claim by David Pamasj'[42]
few assumptions among interacting modules

expected size of data is huge
many implementors familiar with ADT (from

domain experts)

Figure 8a. the claims of Fig 8b.

331

Figure 8b. A model that assesses architectural choices within software. Options
within the model are the leaf nodes shown in gray. These options can be

architectural decisions such as the use of abstract data types, implicit invocation,
pipe & flter methods, or shared data. Some links in the model are dependant of

various claims cl, ... ,c5 shown in Fig Sa. For example, claim[c2] is Pamas's [42]
argument that having a single share data model across an entire application has a
negative impact on the modifability of that process. The inference rules of this

diagram are shown in Fig 8c.

www.manaraa.com

332 Software Engineering with Computational Intelligence

The benefit of the this network is the benefit computed for the top-level node good.
This benefit is defined recursively as follows:

• The benefit of a leaf node is 1 if it is selected, or 0 otherwise. Leaf nodes
represent choices in the network. Leaf nodes are shown in gray in Fig 8b.

• The benefit of a non-leaf node is computed from its input influences.

• An influuence of an edge on an upstream node is the product of the edge
weight and the benefit of the downstream node.

• Edge weights are set by tables that offer numeric values for (++, +, =,-,--).

• Nodes are either disjunctions or conjunctions. Conjunctions are shown as
diamonds in Fig 8b .. The benefit of a conjunction is minimum of the input
influences. The benefit of a disjunction is the average of the input influences.
For a rationale on why these rules were selected, see [10]. In summary: these
rules were not unreasonable and the users wanted it that way. Future
experiments in this domain will explore variants of these rules.

Figure 8c. inference rules for Fig 8b.

4. CASE STUDIES
This section presents three examples of incremental treatment learning.

The examples are sorted by model size: smallest to largest. The largest and
final model is too detailed to explain here but the second largest model is
explained in sufficient detail for the reader to reproduce the entire
experiment. In all examples, the objective of incremental treatment learning
is to find a subset of all possible decisions that reduces the variance and
improves the mean of the important variables within a data cloud.

4.1. Case Study A: Software Architectures
Figure 8 shows some architectural assessment knowledge taken from

Shaw & Garlan's Software Architectures book [49]. The knowledge is
expressed in our variant of the softgoal notation of Chung et al. [12]. In the
softgoal approach, a softgoal is distinguished from a normal goal as follows:

• While a goal has well-defined non-optional feature of a system that must
be available, a softgoal is a goal that has no clear cut criteria for success.

• While goals can be conclusively demonstrated to be satisfied or not
satisfied, softgoals can only be satisfied to some degree.

Much is under-constrained in Figure 8. In fact, there are 421 • 29 '" 1015

possibilities within this model:

• The nine boolean choices in the model are leaf nodes representing
software architecture options or claims about the application. Hence,
there are 29 combinations of these choices.

• Edges between nodes in Figure 8 are annotated with a symbol denoting
how strongly the downstream node impacts the upstream node. These

www.manaraa.com

Condensing Uncertainty via Incremental Treatment Learning 333

annotations are {++,+,=,-,--} denoting makes; helps; equals; hurts;
breaks(respectively). For the sake of exposition, we say that the values
for four of these annotations come from a range of 21 possible values:

1 ~ X makes > Xhelps > X hurts > Xbreaks > -1

XI E {-I, -0.9, -0.8; ... 0, ... 0.9, I} (2)

(The exact value of equals is not varied since this annotation is used to
propagate influences unchanged over an edge; i.e. weight (equals) =1).
Hence, in the worst case, there are 421 '" 1012 possible edge weights.

These possibilities generate a wide range of behavior. Our softgoal
interpreter [10] computes a cost and benefit figure resulting from a selection
of edge weights and choices in diagrams like Figure 8 (the details of this
computation are discussed in the inference rules table of Figure 8). Figure 1.i
shows the range of benefits and costs seen after 10,000 random selection of
choices and edge weights. Note the large variance in these figures.

To apply incremental treatment learning for this case study, we first
require a scoring scheme for the different classes. In 10,000 runs of Figure 8,
with no constraints on any selections, the observed costs ranged from 1 to 4
and the benefit ranged from -18 to 12 (see Figure l.i). Since high benefit and
low cost is preferable to high cost and low benefit, these ranges were scored
as shown in Figure 9. In that figure, the best range is benefit 2': 12 and cost =
1 and the worst range is benefit :::;18 and cost = 4.

Cost
Benefit 1 2 3 4

12 1 2 3 4
scoring function: 6 5 6 7 8

0 9 10 11 12
-6 13 14 15 16

-12 17 18 19 20
-18 21 22 23 24

Figure 9. Class scoring function

T AR2 was applied to Figure 8 four times. Each round comprised 10,000
runs where:

• Edge weights were selected at random at the start of each run from
Equation 2.

• From the space of remaining choices, architectural options and claims
were selected at random.

Initially, no restrictions were imposed on the architectural options and
claims. This generated the ranges of cost and benefit shown in Figure l.i.

www.manaraa.com

334 Software Engineering with Computational Intelligence

Such a data cloud is hard to read. A more informative representation is the
percentile matrix of Figure 10. Each cell of this matrix shows the percent of
runs that falls into a certain range. Each cell is colored on a scale ranging
from white (0%) to black (100%).

Benefit

12
6 2 I 4
0 15 4
-6 4 I

-12 2
-18 I

Figure 10. Percentage distributions of benefits and costs seen in 10,000 runs of
Figure 8, assuming Equation 2 and a random selection of architectural options

and claims.

www.manaraa.com

Condensing Uncertainty via Incremental Treatment Learning

Benefit
round I 12 1 2 1 4

6 5 9 3 17
0 II 30 26 7
-6 2 5
-12
-1

KEY! = (claim[cl] = yes) /\ (pipe& filter[t arg etsystem] = yes)

Benefit
round 2:

KE Y2 = KEYI/\ (shal'eddata[t arg et YSlem] = yes) /\

(implicitin vocation[t arg etsystem] = no)

Benefit
round 3: 12

6
o
-6

-12
-I

KEY3 = KEY2/\ (abstl'actdatalype[t argetsystem] = 110)

/\ (claim[c3] = no)

Benefit
round 4 12

6
o
-6
-12
-1

KEY 4 = KEY J /\

(claim [c 2] = yes) /\ (claim [c 4] = yes)

Figure 11. Percentile matrices showing four rounds of incremental treatment
learning for Fig 8.

335

www.manaraa.com

336 Software Engineering with Computational Intelligence

Figure 11 shows the results of applying incremental treatment learning to
Figure 8. Each round took the key decisions learnt by TAR2 from 10,000
examples generated in the previous round. 10,000 more runs were then
performed, with the selection of architectural options and claims restricted
according to the current set of key decisions. Note that as the key decisions
accumulate the variance in the behavior decreases and the means improve
(decreased cost and increased benefit).

This experiment stopped after four rounds since there was little observed
improvement between round 3 and round 4. Figure l.iii shows the results of
the round 3, not round 4; i.e. this experiment returned the results from round
3, and not round 4. By stopping at round 3, analysts can avoid excessive
decision making since they need never discuss c2; c4; c5 with their users.
Alternatively, if in some dispute situation, an analyst could use c2; c4; c5 as
bargaining chips. Since these claims have little overall impact, our analyst
could offer them in any configuration as part of some compromise deal in
exchange for the other key decisions being endorsed.

83

Sw3

Figure 12. A qualitative circut. from [5].

4.2. Case Study B: Circuit Design
Our next example contains a model somewhat more complex than §4.1.

This example is based on models first developed by Bratko to demonstrate
principles of qualitative reasoning [5].

While our last example generated cost and benefit figures for a software
project, this example is a qualitative model of a circuit design shown in
Figure 12. Such qualitative descriptions of a planned piece of software might
appear early in the software design process. We will assume that the goal of
this circuit is to illuminate some area; i.e. the more bulbs that glow, the
better.

For exposition purposes, we assume that much is unknown about our
circuit. All we will assume is that the topology of the circuit is known, plus
some general knowledge about electrical devices (e.g. the voltage across

www.manaraa.com

Condensing Uncertainty via Incremental Treatment Learning 337

components in series is the sum of the voltage drop across each component).
What we don't know about this circuit are the precise quantitative values
describing each component.

% sum(X,Y,Z).
sum (+ , + , +) .
sum (0 , + , +) .

sum(-,+,Any) .

sum (+,0, +) .
sum(O, 0, 0) .
sum (- , 0, -) .

sum (+, +, Any) .
sum (0, - , -) .
sum (- , - , -) .

Figure 13. Qualitative mathematics using a Prolog syntax[5].

% bulb (Mode, Light, Volts,
bulb (blown, dark, Any,
bulb (ok, light, +,
bulb (ok, light, -
bulb (ok, dark, 0,

% num(Light,Glow). %
switch(State,Volts,Amps)

Amps)
0) .
+) .
-) .
0) .

num(dark, 0). switch(on, 0,
Any) .

num(light,l). switch(off, Any,
0) .

Figure 14. Definitions of qualitative bulbs and switches. Adapted from [5].

When quantitative knowledge is unavailable, we can use qualitative
models. A qualitative model is a quantitative mode whose numeric values x
are replaced by a qualitative value x' having one of three qualitative states:
+,-,O;i.e.

x, + if x > 0
x, = 0 if x = 0
x' = - if x < 0

The sum relation of Figure 13 describes our qualitative knowledge of
addition using a Prolog notation. In Prolog, variables start with upper case
letters and constants start with lower-case letters or symbols. For example,

sum(+, +, +)

says that the addition of two positive values is a positive value. There
is much uncertainty within qualitative arithmetic. For example,

sum (+ I - I Any)

says that we cannot be sure what happens when we add a positive and
a negative number. The bulb relation of Figure 14 describes our
qualitative knowledge of bulb behavior. For example,

www.manaraa.com

338 Software Engineering with Computational Intelligence

bulb (blown, dark,Any, 0)

says that a blown bulb is dark, has zero current across it, and can have
any voltage at all. Also shown in Figure 14 are the num and switch
relations. Num defines how bright a dark or light bulb glows while
switch describes our qualitative knowledge of electrical switches. For
example,

switch(on, 0, Any)

says that if a switch is on, there is zero voltage drop across it while any
current can flow through it.

I circult(switch(Swl, VSwI, CI) ,
2 bulb(BI, LI, VBI, CI) ,
3 switch(Sw2, VSw2, C2) ,
4 bulb(B2, L2, VB2, C2) ,
5 switch(Sw3, VSw3, CSw3) ,
6 bulb(B3, L3, VB3, CB3) ,
7 Glow)
8 VSw3 = VB3,
9 sum(VSwl, VB1, VI) , % 9 options
10 sum (VI, VB3, +) , % 1 option
11 sum(VSw2, VB2, VB3) , % 9 options
12 switch(Sw1, VSw1, Cl) , % 2 options
13 bulb (B1, L1, VB1, Cl) , % 4 options
14 switch(Sw2, VSw2, C2) , % 2 options
15 bulb(B2, L2, VB2, C2) , % 4 options
16 switch(Sw3, VSw3, CSw3) , % 2 options
17 bulb(B3, L3, VB3, CB3) , % 4 options
18 sum(CSw3, CB3, C3) , % 9 options
19 sum(C2, C3 ,Cl) , % 9 options
20 num(L1, Nl) ,
21 num(L2, N2) ,
22 num(L3, N3) ,
23 Glow is N1+N2+N3.

Figure 15. Figure 12 modeled in Prolog. Adapted from [5].

www.manaraa.com

Condensing Uncertainty via Incremental Treatment Learning 339

Sw3

(KEY:0 Bulb ../ - Switch ~ Openner -0+ Closer J
Figure 16. A device modeled using the Prolog of Figure 15.

The circuit relation of Figure 15 describes qualitative knowledge of a
circuit using bulb, num, sum and switch. This relation just records what we
know of circuits wired together in series and in parallel. For example:

• Switch 3 and Bulb3 are wired in parallel. Hence, the voltage drop across
these components must be the same (see line 8)

• Switch 2 and Bulb2 are wired in series so the voltage drop across these
two devices is the sum of the voltage drop across each device. Further,
this summed voltage drop must be that same as the voltage drop across
the parallel component Bulb3 (see line 11).

• Switchl and BulbI are in series so the same current Cl must flow
through both (see line 12 and line 13).

In order to stress test our method, our case study will wire up three
copies of Figure 15 in such a way that solutions to one copy won't
necessarily work in the other copies. Figure 16 shows our circuit connected
by a set of openers and closers that open/close switches based on how much
certain bulbs are glowing. For example, the closer between bulb B2Aand
switch SwlB means that if B2A glows then SwlB will be closed. These
openers and closers are defined in Figure 17. The full model is shown in
Figure 18.

www.manaraa.com

340 Software Engineering with Computational Intelligence

% inf(Sign,Bulb,Switch)

inf(Inf,bulb(_,Shine, ,) ,switch(Pos, ,)):

inf1(Inf,Shine,Pos) .

% inf1(Sign,Glow,SwitchPos)

inf1(+,dark, off). inf1(+,light, on).

inf1(-,dark, on). inf1(-,light, off).

Figure 17. The infl/3 predicate used to connect bulb brightness to switches.

The less that is known about a model, the greater the number of possible
behaviors. This effect can easily be seen in our qualitative model. Each line
of Figure 15 is labeled with the number of possibilities it condones: i.e.

9*1*9*2*4*2 * 4 * 2 * 4 * 9 * 9 = 3,359,232

Copied three times, this implies a space of up to 3,359,2323 = 1019

options. Even when many of these possibilities are ruled out by inter
component constraints, the circuits relation of Figure 18 can still succeed
5,228 times (some sample output is shown in Figure 19).

Given the goal that the more lights that shine, the better the circuit, we
assume 10 classes: 0,1,2,3, ... 9, one for every possible number of glowing
bulbs. As shown in Figure 20, within the 35,228 runs, there are very few
lights shining. In fact, on average within those runs, only two lights are
shining. T AR2's mission is to explore the space, trying to find key decisions
which, when applied to the circuit, can most improve this low level of
lighting.

4.2.1. Round 1

After learning treatments from the all 35,228 initial runs, and applying
them to the data, T AR2 generated Figure 21. In summary, Figure 21 is
saying that making a single decision will change the average illumination of
the circuit from 2 to 5 (if Sw2C=oft) or 6 (if Sw3C=on).

www.manaraa.com

Condensing Uncertainty via Incremental Treatment Learning

1circuits :-
2 % some initial conditions
3 value(light,bulb,B1a),
4 % Uncomment to constrain Sw2c
5 % value(off,switch,Sw2c),
6 % Uncomment to constrain Sw1c
7 % value (on,switch,Swlc) ,
8 % Uncomment to constrain Sw3c
9 % value(on,switch,Sw3c),
10 % explore circuit A
11 circuit (Sw1a,Bla,Sw2a,B2a,Sw3a,B3a,GlowA) ,
12 % let circuit A influence circuit B
13 inf(+,B1a,Sw1b),
14 inf(-,B2a,Sw3b),
15 % let circuit B influence circuit C
16 circuit (Sw1b,B1b,Sw2b,B2b,Sw3b,B3b,GlowB) ,
17 % propagate circuit B to circuit C
18 inf(-,B3b,Sw2c),
19 inf(+,B2b,Sw3C),
20 % explore circuit C
21 circuit(Sw1c,B1c,Sw2c,B2c,Sw3c,B3c,G1owC),
22 % compute total shine
23 Shine is GlowA+G1owB+GlowC,
24 % make one line of the examples
25 format('-p,-p,-p,-p,-p,-p,-p,-p,-p',
26 [Sw1a,Sw2a,Sw3a,Sw1b,Sw2b,Sw3b,
27 Sw1c,Sw2c,Sw3c]),
28 format('-%,-%,-%,-%,-%,-%,-%,-%,-%,-p
29 [B1a,B2a,B3a,B1b,B2b,B3b
30 ,B1c,B2c,B3c,Shine]) ,nl.
31
32
33
34

data tell('circ.data'),
forall(circuits,true) , told.

35 % some support code
36 value (Sw, switch, switch(Sw,_,_)).
37 value (Light, bulb,bulb(_,Light,_,_)).
38
39 :- format-predicate('%' ,bulbls(_,_)).
40
41 bulbls(,bulb(X, , ,)) :-
42 var(X) -> write('?') !write(X).
43 portray (X) :- value(Y, ,X), write(Y).

Figure 18. Fig 16 expressed in Prolog.

341

www.manaraa.com

342 Software Engineering with Computational Intelligence

Swla Sw2a Sw3a Swlb B3b Blc B2c B3c Shine
on off off on blown blown blown blown 2
on off off on blown blown blown blown 2
on off off on blown blown blown blown 2
on off off on blown ok blown blown 2
on off off on ok blown blown blown 2
on off off on blown blown blown ok 2
on off off on ok blown ok blown 3
on off off on ok blown ok ok 3
on off off on ok blown blown blown 3
on off off on blown ok ok blown 5

Figure. 19. Some output seen in circ.data generated using data (line 32 of Figure
18). Columns denote values from Figure 16. For example, Sw1a and Sw1b

denotes switch 1 in ciruit A and ciruit A respectively.

'5

30

15

Figure 20. Frequency count of number of bulbs glowing in the 35,228 solutions of
circuits of Figure 18.

For exposition purposes, this example assumed that something prevents
our users from making this key decision; i.e. Sw3C=on. Our experience with
incremental treatment learning is that this is often the case. When users are
presented with the next key decision, they often recall some key knowledge
that they neglected to mention previously. In this case, we assumed that it is
preferable if switch 3 in circuit C is not closed- since that would violate (say)
the warranty on circuit C. Our analysts therefore agreed to the next best
treatment, i.e. Sw2C=off; shown in Figure 21, left hand side (LHS).

www.manaraa.com

Condensing Uncertainty via Incremental Treatment Learning

if Sw2c=off then ...

45 ~--------~-n---------~

30

15

O+-~-r~~~~~~~~~'-~

o 1 234 5 678 9

if Sw3c=on then ...

45

30

15

il 0 n

0 1 2 3 4 5 6 7 8 9

Figure 21. Run#1 ofTAR2 over the data seen in Figure 20.

Figure 18 when Sw2c=off

45 T-----------~~~1------------~

30

15

o 2 3 4 5 6 7 8 9

Figure 22. Frequency count of number of bulbs glowing in the 3,264 solutions
of circui ts of Figure 18 when Sw2C=off.

4.2.2. Round 2

343

After constraining the model to Sw2C=off (i.e. by uncomrnenting line 5
in Figure 18), fewer behaviors were generated: 3,264 as compared to the
35,228 solutions seen previously. The frequency distribution of the shining
lights in this new situation is shown in Figure 22.

www.manaraa.com

344 Software Engineering with Computational Intelligence

Happily, Figure 22 has the same distribution as Figure 21.LHS; i.e. in
this case, when the constraints proposed by T AR2's best treatment were
applied to the model, the resulting new behavior of the model matched the
new behavior predicted by the treatment.

Executing T AR2 again found the next most informative decision, as
shown in Figure 23. Here, TAR2 said that our best treatment would be to
guarantee that bulb 3 in circuit C is never blown. Perhaps this is possible if
we were to use better light bulbs with extra long life filaments. However, for
the sake of exposition, we assumed that there is no budget for such expensive
hardware. Hence, to avoid this expense, our analysts agreed that always
closing switch 1 in circuit C (as proposed by Figure 23.LHS) is an acceptable
action.

when Sw2c=off then
if Sw1C=on then ...

. sT---------~~------~
30

lS
n n

o 1 23. 5 8 7 e •

when Sw2c=on then
if 83C=ok then ...

45 T----------n------~

30

15

012345678.

Figure 23. Run #2 ofTAR2 over the data seen in Figure 22.

4.2.3. Round 3

After constraining the model to SwlC=on (i.e. by uncommenting line 7
in Figure 18), fewer behaviors were generated: 648 as compared to the 3,264
solutions seen previously. The frequency distribution of the shining lights in
this new situation is shown in Figure 24.

www.manaraa.com

Condensing Uncertainty via Incremental Treatment Learning 345

Figure 18 when Sw2c=off and
Sw1C=on

45

30

15

0 DO
0 1 2 3 4 5 6 7 8 9

Figure 24. Frequency count ofnurnber of bulbs glowing in the 648 solutions of
cireui ts of Figure 18 when Sw2C=offand SwlC=on.

Figure 24 has the same distribution as Figure 23.LHS. That is, once
again, T AR2's predictions proved accurate. Executing T AR2 again generated
Figure 25 and finds the next most informative decision.

when Sw2c=off
and Sw1C=on then
if 83C=ok then ...

30T-------------f1~~--~

15

o 1 ~ 3 • 5 I 7 a 8

when Sw2c=off
and Sw1C=on then
if Sw3C=on then ...

45.,-------1 t----t
30

15

o 1 2 3 4 5 I 7 a 8

Figure 25. Run#3 ofTAR2 over the data seen in Figure 24.

The cycle could stop here since the next best treatments are not
acceptable. Figure 25.LHS wants to use overly expensive hardware to ensure
that bulb 3 in circuit C is always not blown. Figure 2S.RHS wants to use an
undesirable action and close switch 3 in circuit C. However, our engineers

www.manaraa.com

346 Software Engineering with Computational Intelligence

have enough infonnation to propose some options to their manager: if they
increase their hardware budget, they could make the improvements shown in
Figure 25.LHS. Alternatively, if there was some way to renegotiate the
warranty, then the improvements shown in Figure 25.RHS could be
achieved.

To verify this, our engineers continue constraining Figure 18 to the case
of Sw3c=on by uncommenting line 9 in Figure 18. The resulting
distributions looked exactly like Figure 25.RHS. Further, only 64 solutions
were found. Note that this observation is consistent with funnel theory:
resolving three of the top treatments proposed by T AR2 constrained our
system to one fifth of one percent of its original 35,228 behaviors.

4.3. Case Study C: Satellite Design
Our third example is much larger that then two previous. For reasons of

confidentiality, the full details of this third model cannot be presented here.
Further, this model uses so much domain-specific knowledge of satellite
design that the general reader might learn little from its full exposition.

Analysts at the Jet Propulsion Laboratory sometimes debate design
issues by building a semantic network connecting design decisions to
requirements [14]. This network links faults and risk mitigation actions that
effect a tree of requirements written by the stakeholders (see Figure 26).
Potential faults within a project are modelled as influences on the edges
between requirements. Potential fixes are modelled as influences on the
edges between faults and requirements edges.

www.manaraa.com

Condensing Uncertainty via Incremental Treatment Learning

© 0.9
reqUlre4 ------~~

• Faces denote requirements;

• Toolboxes denote actions;

• Skulls denote faults;

• Conjunctions are marked with one arc; e.g. require1 if require2 and
require3.

• Disjunctions are marked with two arcs; e.g.faulti iffault2 orfault3.

• Numbers denote impacts; e.g. action5 reduces the contribution of fault3
to faulti, faulti reduces the impact of require5, and actioni reduces the
negative impact of fault i.

347

• Oval denotes structures that are expressible in the latest version of the 1PL
semantic net editor (under construction).

Figure 26. Above: a semantic net of the type used at JPL [18] Below:
explanation of symbols.

This kind of requirements analysis seeks to maximize benefits (i.e., our
coverage of the requirements) while minimizing the costs of the risk
mitigation actions. Optimizing in this manner is complicated by the
interactions inside the model - a requirement may be impacted by multiple
faults, a fault may impact multiple requirements, an action may mitigate
multiple faults, and a fault may be mitigated by multiple actions. For
example, in Figure 26, fault2 and require4 are interconnected: if we cover
require4 then that makes fault2 more likely which, in turn, makes faultI
more likely which reduces the contribution of require5 to require3.

The net can be executed by selecting actions and seeing what benefits
results. One such network included 99 possible actions; i.e. 299 ::::i1030

combinations of actions. The data cloud of Figure l.ii was generated after
10,000 runs where each run selected at random from the 99 options. Note the
wide variance in the possible behaviors.

www.manaraa.com

348 Software Engineering with Computational Intelligence

round 0

round I

round 2

round 3

round 4

Figure 27. Percentile matrices showing four rounds of incremental treatment
learning for JPL satellite design. The data clouds for round 0 and round 4

appear as Figure l.ii and Figure l.iv (respectively).

www.manaraa.com

Condensing Uncertainty via Incremental Treatment Learning 349

The results of incremental treatment learning is shown in Figure 27. The
first percentile matrix (called round 0) summarizes Figure l.ii. As with all
our other examples, as incremental treatment learning is applied, the variance
is reduced and the mean values improve (compare round 0 with round 4 in
Figure 27). In a result consistent with funnel theory, T AR2 could search a
space of 1030 decisions to find 30 (out of 99) that crucially affected the
costlbenefit of the satellite; i.e. T AR2 found 99-30=69 decisions that can be
ignored [19].

For comparison purposes, a genetic algorithm (GA) was also applied to
the same problem of optimized satellite design [48]. The GA also found
decisions that generated high benefit, low cost projects. However, each such
GA solution commented on every possible decision and there was no
apparent way to ascertain which of these were the most critical decisions.
The T AR2 solution was deemed superior to the GA solution by the domain
experts, since the T AR2 solution required just 30 actions.

5. WHEN NOT TO USE INCREMENTAL TREATMENT
LEARNING

OUf approach is an inexpensive method of generating coarse-grained
controllers from rapidly written models containing uncertainties. This kind of
solution is inappropriate for certain classes of software such as mission
critical or safety critical systems. For those systems, analysts should move
beyond T AR2 and apply more elaborate modelling methods and extensive
data collection to ensure exact and optimal solutions.

There are several other situations where incremental treatment learning
should not be used. When trusted and powerful heuristics are available for a
model, then a heuristic search for model properties may yield insight than
random trashing within a model. Such heuristics might be modelled via (e.g.)
fuzzy membership functions or Bayesian priors reflecting expert intuitions
on how variables effect each other. Of course, such heuristics must be
collected, assessed, and implemented. When the cost of such collection and
assessment and implementation is too great, then our approach could be a
viable alternative.

Also, our approach requires running models many thousands of times
and therefore can't be applied to models that are too expensive or too slow to
execute many times. For example:

• It may be too expensive or dangerous to conduct Monte Carlo
simulations of in-situ process control systems for large chemical plants
or nuclear power stations.

• Suppose some embedded piece of software must be run on a specialized
hardware platform. In the case where several teams must access this

www.manaraa.com

350 Software Engineering with Computational Intelligence

platform (e.g. the test team, the development team, the government
certification team, and the deployment team), then it may be impossible
to generate sufficient runs for incremental treatment learning.

• Many applications connect user actions on some graphical user interface
to database queries and updates. Monte Carlo simulations of such
applications may be very slow since each variable reference might
require a slow disk access or a user clicking on some OK button. An
ideal application suitable for incremental treatment learning comprises a
separate model for the business logic which can be executed without
requiring (e.g.) screen updates or database accesses.

6. RELATED WORK

6.1. Prior T AR2 Results
Other publications on treatment learning have assumed a one-shot use of

T AR2 [24, 34-36]. This paper assumes an iterative approach. Our experience
with users is that this iterative approach encourages their participation in the
process and increases their sense of ownership in the conclusions.

6.2. Entropy-Based Learners
T AR2's treatments might be viewed as the attributes that most inform the

decision making process. Holders of that view might therefore argue that
treatments could be better formed using entropy measures of information
content. Many machine learners have used such measures including the top
down decision tree induction algorithm C4.5 [45]. The attribute that offers
the largest information gain is selected as the root of a decision tree. The
example set is then divided up according to which examples do/do not satisfy
the test in the root. For each divided example set, the process is then r.epeated
recursively. The information gain of each attribute is calculated as follows. A
tree C contain p examples of some class and n examples of other classes. The
information required for the tree C is as follows [44]:

I(p,n)= -(p/(p+n))*lo92(p/(p+n))
-(n/(p+n))*lo92(n/(p+n))

Say that some attribute A has values Al,A2' ... Av. If we select Ai as
the root of a new sub-tree within C, this will add a sub-tree Ci containing
those objects in C that have Ai. We can then define the expected value of the
information required for that tree as the weighted average:

E(A)= (for ie values do
E(A):= (E(A) + «Pi+ni)/(p+n)*I(Pi,ni)))

www.manaraa.com

Condensing Uncertainty via Incremental Treatment Learning

lstat <= 11.66
rm <= 6.54

lstat <= 7.56 THEN
lstat > 7.56

dis <= 3.9454

medhigh
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I

I
I
I
I

ptratio <= 17.6 THEN medhigh
ptratio > 17.6
I age <= 67.6 THEN medhigh
I age. > 67.6 THEN medlow

dis > 3.9454 THEN medlow
rm > 6.54

rm <= 7.061
I lstat <= 5.39 THEN high}
I lstat > 5.39
I I nox <= 0.435 THEN medhigh}

I I nox > 0.435
I I ptratio <= 18.4 THEN
I I ptratio > 18.4 THEN
I rm > 7.061 THEN high
lstat > 11.66

lstat <= 16.21
I b <= 378.95
I I lstat <= 14.27 THEN
I I lstat > 14.27 THEN
I b > 378.95 THEN medlow
lstat > 16.21

I nox <= 0.585

I ptratio <= 20.9

I I b <= 392.92 THEN
I I b > 392.92 THEN
I ptratio > 20.9 THEN
I nox > 0.585 THEN low

medlow
low

low
medlow
low

high
medhigh

351

Figure 28.A. A learnt decision tree from C4.5 from the 506 cases in HOUSING
example from the UC Irvine machine learning repositor

http://www.ics.uci.edul-mlearnlMLRepository.htrnl. The Classes for the houses
are high, medhigh, medlow, and low. These classes indicate median value of

owner-occupied homes in $1 OOO's.

www.manaraa.com

352 Software Engineering with Computational bitelligence

BA EL E

l00 r-----------------~

75

50

25

6.7 ~ ~ <9.8

1\ 12.6 ~ PTRATION < 15.9

97
l00 ~----------------~

75

50

25

00 3
O~--~----~~~~ __ -L~

Figure 28.B. TAR2's output from the data used in Fig 28.A. The table shows the
distributions of the classes in the example set (left-hand-side) and the results of the
learnt treatment (right-hand-side). In the treatment PTRATIO denotes the pupil

teacher ratio by town and RM denotes the average number of rooms per dwelling.

The information gain of branching on A is therefore:
gain(A) = I(p, n) - E(A)

Figure 28.A shows the kind of decision tree generated using C4.5 from
506 examples. Figure 28.B shows the treatment learnt by T AR2 from the
same data. Note that the treatment is much smaller that the tree learnt by
C4.5. It turns out that C4.5's information measure is not the best method for
forming treatments. Equation 3 selects attributes that most reduce the
diversity of classes seen in the examples that fall into a subtree. Treatment
learners needs a different kind of measure; i.e. one that that finds attribute
ranges which occur more frequently in desired classes than in the undesired
classes.

Decision tree learners like C4.5 can be used as a preprocessor to
treatment learning. The TARI system (called TARZAN) [38] swung through
the decision trees generated by C4.5 and 10-way cross-validation. TARZAN
returned the smallest treatments that occurred in most of the ensemble that
increased the percentage of branches leading to some preferred highly
weighted classes and decreased the percentage of branches leading to lower
weighted class. T AR2 was as experiment with applying TARZAN's tree
pruning strategies directly to the C4.5 example sets. The resulting system is
simpler, fast to execute, generates smaller theories that C4.5, and does not
require calling a learner such as C4.5 as a subroutine.

www.manaraa.com

Condensing Uncertainty via Incremental Treatment Learning 353

6.3. Association Rule Learning
Another way to categorize T AR2 is a weighted-class minimal contrast

set association rule learner that uses confidence measures but not support
based pruning. This section discusses those terms.

Top-down decision tree classifiers like C4.5 and CART [7] learn rules
with a single attribute pair on the right-hand side; e.g. class= goodHouse.
Association rule learners like APRIORI [2] generate rules containing
multiple attribute pairs on both the left-hand-side and the right-hand-side of
the rules.

That is, classifiers have a small number of pre-defined targets (the
classes) while, for association rule learners, the target is less constrained.

General association rule learners like APRIORI input a set of D
transactions of items I and return associations between items of the form
LHS=>RHS where LHS c I and RHS c I and LHS n RHS = 0 In the
terminology of APRIORI, an association rule has support s if s% of the D
contains X 1\ Y ; i.e. s = IXI\ YI / IDI (where IXI\ YI denotes the number of
examples containing both X and Y). The confidence c of an association rule
is the percent of transactions containing X which also contain Y ; i.e.
c=IXI\ YVIXI. Many association rule learners use support-based pruning i.e.
when searching for rules with high confidence, sets of items Ij, ... ,Ik are only
be examined only if all its subsets are above some minimum support value.

Specialized association rule learners like CBA [28] and T AR2 impose
restrictions on the right-hand-side. For example, TAR2's right-hand-sides
show a prediction of the change in the class distribution if the constraint in
the left-hand-side were applied. The CBA learner finds class association
rules; i.e. association rules where the conclusion is restricted to one
classification class attribute. That is, CBA acts like a classifier, but can
process larger datasets that (e.g.) C4.5. TAR2 restricts the right-hand-side
attributes to just those containing criteria assessment.

A common restriction with classifiers is that they assume the entire
example set can fit into RAM. Learners like APRIORI are designed for data
sets that need not reside in main memory. For example, Agrawal and Srikant
report experiments with association rule learning using very large data sets
with 10,000,000 examples and size 843MB [2]. However, just like Webb
[53], TAR2 makes the memory-is-cheap assumption; i.e. TAR2 loads all it's
examples into RAM.

Standard classifier algorithms such as C4.5 or CART have no concept of
class weighting. That is, these systems have no notion of a good or bad class.
Such learners therefore can't filter their learnt theories to emphasize the
location of the good classes or bad classes. Association rule learners such as

www.manaraa.com

354 Software Engineering with Computational Intelligence

MINW AL [9], TARZAN [38] and TAR2 explore weighted learning in which
some items are given a higher priority weighting than others. Such weights
can focus the learning onto issues that are of particular interest to some
audience.

Support-based pruning is impossible in weighted association rule
learning since with weighted items, it is not always true that subsets of
interesting items (i.e. where the weights are high) are also interesting [9].
Another reason to reject support-based pruning is that it can force the learner
to only miss features that apply to a small, but interesting subset of the
examples [52]. Without support-based pruning, association rule learners rely
on confidence-based pruning to reject all rules that fall below a minimal
threshold of adequate confidence. T AR2's analogue of confidence-based
pruning is the A measure shown in §3.

One interesting specialization of association rule learning is contrast set
learning. Instead of finding rules that describe the current situation,
association rule learners like STUCCO [4] finds rules that differ
meaningfully in their distribution across groups. For example, in STUCCO,
an analyst could ask, "What are the differences between people with Ph.D.
and bachelor degrees?" T AR2's variant on the STUCCO strategy is to
combine contrast sets with weighted classes with minimality. That is, TAR2
treatments can be viewed as the smallest possible contrast sets that
distinguish situations with numerous highly-weighted classes from situations
that contain more lowly-weighted classes.

6.4. Funnel Theory
Our development on funnel theory owes much to the deKleer's ATMS

(assumption-based truth maintenance system) [16]. As new inferences are
made, the ATMS updates its network of dependencies and sorts out the
current conclusions into maximally consistent subsets (which we would call
worlds). Narrow funnels are analogous to minimal environments of small
cardinality from the ATMS research. However, funnels differ from the
ATMS. Our view of funnels assumes a set-covering semantics and not the
consistency-based semantics of the ATMS (the difference between these two
views is detailed in [13]). The worlds explored by funnels only contain the
variables seen in the subset of a model exercised by the supplied inputs. An
ATMS world contains a truth assignment to every variable in the system.
Consequently, the user of an A TMS may be overwhelmed with an
exponential number of possible worlds. In contrast, our heuristic exploration
of possible worlds, which assumes narrow funnels, generates a more succinct
output. Further, the ATMS is only defined for models that generate logical
justifications for each conclusion. Iterative treatment learning is silent on the

www.manaraa.com

Condensing Uncertainty via Incremental Treatment Learning 355

form of the model: all it is concerned with is that a model, in whatever form,
generates outputs that can be classified into desired and undesired behavior.

6.5. Fault Trees
We are not the first to note variability in knowledge extracted from

users. Leveson [22] reports very large variances in the calculation of root
node likelihood in software fault tree analysis:
• In one case study of 10 teams from 17 companies and 9 countries, the

values computed for root node likelihood in trees from different teams
differed by a factor of up to 36.

• When a unified fault tree was produced from all the teams,
disagreements in the internal probabilities of the tree varied less, but still
by a factor of 10.

The work presented here suggests a novel method to resolve Leveson's
problem with widely varying root node likelihoods. If funnel theory is
correct, then within the space of all disagreements in the unified fault tree,
there exist a very small number of key values that crucially impact the root
node likelihood. Using T AR2 the feuding teams could restrict their debates
to just those key decisions.

6.6. Bayesian Reasoning
We do not use Bayesian reasoning for uncertain models for the same

reason we don't use computational intelligence methods. Recall from our
introduction that this work assumes metrics starvation: i.e. the absence of
relevant domain expertise or specific numeric values in the domain being
studied. Bayesian methods have been used to sketch out subjective
knowledge (e.g. our software management oracle), then assess and tune that
knowledge based on available data. Success with this method includes the
COCOMO-II effort estimation tool [11] and defect prediction modelling
[20]. In the domains where statistical data on cause-and-effect are lacking
(e.g. our metrics starved domains), we have to approximate (i.e guess/make
up) some values to describe the model. Since there are too many
uncertainties within the model, Bayesian reasoning may not yield stable
result.

6.7. Simulation for Decision Making
Other research has explored simulation for making design decisions.

Bricconi et al. [21] built a simulator of a server on a network, then assessed
different network designs based on their impact on the server. Menzies and
Sinsel assessed software project risk by running randomly selected
combinations of inputs through a software risk assessment model [38].

www.manaraa.com

356 Software Engineering with Computational Intelligence

Josephson et al. [26] executed all known options in a car design to find
designs that were best for city driving conditions. Bratko et al. [6] built
qualitative models of electrical circuits and human cardiac function. Where
uncertainty existed in the model, or in the propagation rules across the
model, a Bratko-style system would backtrack over all possibilities.

Simulation is usually paired with some summarization technique. Our
research was prompted by certain short-comings with the summarization
techniques of others. Josephson et al. used dominance filtering (a Pareto
decision technique) to reduce their millions of designs down to a few
thousand options. However, their techniques are silent on automatic
methods for determining the difference between dominated and undominated
designs. Bratko et al. used standard machine learners to summarize their
simulations. Menzies and Sinsel attempted the same technique, but found the
learnt theories to be too large to manually browse. Hence, they evolved a
treequery language (TAR!) to find attribute ranges that were of very
different frequencies on decision tree branches that lead to different
classifications. T AR2 grew out of the realization that all the T ARl search
operations could be applied to the example set directly, without needing a
decision tree learner as an intermediary. TAR2 is hence much faster than
TAR! (seconds, not hours).

7. CONCLUSION
When not all values within a model are known with certainty, analysts

have at least three choices. Firstly, they can take the time to nail down those
uncertain ranges. This is the preferred option. However, our experience
strongly suggests that funding restrictions and pressing deadlines often force
analysts to make decisions when many details are uncertain.

Secondly, analysts might use some sophisticated uncertainty reasoning
scheme like Bayesian inference or the computational intelligence methods
such as neural nets, genetic algorithms or fuzzy logic. These techniques
require some minimal knowledge of expert opinion, plus perhaps some
historical data to tune that knowledge. In situations of metrics starvation, that
knowledge is unavailable.

This paper has explored a third option: try to understand a model by
surveying the space of possible model behaviors.

Such a survey can generate a data cloud: a dense mass of possibilities
with such a wide variance of output values that they can confuse, not clarify,
the thinking of our analysts. However, in the case of data clouds generated
from models containing narrow funnels, there exist key decisions which can
condense that cloud.

www.manaraa.com

Condensing Uncertainty via Incremental Treatment Learning 357

Incremental treatment learning is a method for controlling the
condensation of data clouds. At each iteration, users are presented with list of
treatments that have most impact on a system. They select some of these and
the results are added to a growing set of constraints for a model simulator.
This human-in-the-Ioop approach increases user "buy-in" and allows for
some human control of where a data cloud condenses. In the case studies
shown above, data clouds where condensed in such a way as to decrease
variance and improve the means of the behavior of the model being studied.

As stated in the introduction, there are several implications of this work.
Even when we don't know exactly what is going on with a model, it is often
possible to:

• Define minimal strategies that grossly decrease the uncertainty in that
model's behavior.

• Identify which decisions are redundant; i.e. those not found within any
funnel.

Also, when modelling is used to assist decision making, it is possible to
reduce the cost of that modelling:

• Even hastily built models containing much uncertainty can be used for
effective decision making.

• Further, for models with narrow funnels, elaborate and extensive and
expensive data collection may not be required prior to decision making.

T AR2 exploits narrow funnels and is a very simple method for finding
treatments at each step of iterative treatment learning. Iterative treatment
learning is applicable to all models with narrow funnels. Empirically and
theoretically, there is much evidence that many real-world models have
narrow funnels. To test if a model has narrow funnels, it may suffice just to
try T AR2 on model output. If a small number of key decisions can't be
found, then iterative treatment should be rejected in favor of more elaborate
techniques.

ACKNOWLEDGEMENTS
This paper benefited greatly from the remarks of the anonymous

reviewers. This research was conducted at West Virginia University; the
University of British Columbia, Vancouver, Canada; and at the Jet
Propulsion Laboratory, California Institute of Technology under NASA
contract NCC2-0979. The work was sponsored by the NASA Office of
Safety and Mission Assurance under the Software Assurance Research
Program led by the NASA IV &V Facility. Reference herein to any specific
commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not constitute or imply its endorsement by

www.manaraa.com

358 Software Engineering with Computational Intelligence

the United States Government or the Jet Propulsion Laboratory, California
Institute of Technology.

REFERENCES
[1] A. Acree. On Mutations. PhD thesis, School ofInforrnation and Computer

Science, Georgia Institute of Technology, 1980.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In
Proceedings of the 20th International Conference on Very Large Databases,
1994. Available from
http://www.almaden.ibm.comlcs/people/ragrawal/papers/vldb94_rj.ps.

[3] T. Back, F. Hoffmeister, and H.-P. Schwefel. A survey of evolution strategies. In
R. Belew and L. Booker, editors, Proceedings of the Fourth International
Conference on Genetic Algorithms, pages 2-9, San Mateo, CA, 1991. Morgan
Kaufman.

[4] S. Bay and M. Pazzani. Detecting change in categorical data: Mining contrast
sets. In Proceedings of the Fifth InternationalConference on Knowledge
Discovery and Data Mining, 1999. Available from
http://www.ics.uci.edu/-pazzanilPublications/stucco.pdf.

[5] I. Bratko. Prolog Programming for Artificial Intelligence. (third edition).
Addison-Wesley, 2001.

[6] I. Bratko, I. Mozetic, and N. Lavrac. KARDIO: a Study in Deep and Qualitative
Knowledge for Expert Systems. MIT Press, 1989.

[7] L. Breiman, 1. H. Friedman, R. A. Olshen, and C. 1. Stone. Classification and
regression trees. Technical report, Wadsworth International, Monterey, CA,
1984.

[8] T. Budd. Mutation analysis of programs test data. PhD thesis, Yale University,
1980.

[9] C. Cai, A. Fu, C. Cheng, and W. Kwong. Mining association rules with weighted
items. In Proceedings of International Database Engineering and Applications
Symposium (IDEAS 98), August 1998. Available from
http://www.cse.cuhk.edu.hklokdd/assoc_rule/paper.pdf.

[10] E. Chiang. Learning controllers for nonfunctional requirements, 2003. Masters
thesis, University of British Columbia, Department of Electrical and Computer
Engineering. In preparation.

[II] S. Chulani, B. Boehm, and B. Steece. Bayesian analysis of empirical software
engineering cost models. IEEE Transaction on Software Engineerining, 25(4),
July/August 1999.

[12] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos. Non-Functional Requirements in
Software Engineering. Kluwer Academic Publishers, 2000.

[13] L. Console and P. Torasso. A Spectrum of Definitions of Model-Based
Diagnosis. Computational Intelligence, 7:133-141, 3 1991.

[14] S. Cornford, M. Feather, and K. Hicks. Ddp a tool for lifecycle risk management.
In IEEE Aerospace Conference, Big Sky, Montana, pages 441-451, March 2001.

[15] 1. Crawford and A. Baker. Experimental results on the application of satisfiability
algorithms to scheduling problems. In AAAI '94, 1994.

[16] 1. DeKleer. An Assumption-Based TMS. Artificial Intelligence, 28:163-196,
1986.

www.manaraa.com

Condensing Uncertainty via Incremental Treatment Learning

[17] C. Elkan. The paradoxical success of fuzzy logic. In R. Fikes and W. Lehnert,
editors, Proceedings of the Eleventh National Conference on Artificial
Intelligence, pages 698-703, Menlo Park, California, 1993. AAAI Press.

359

[18] M. Feather, H. In, J. Kiper, J. Kurtz, and T. Menzies. First contract: Better,
earlier decisions for software projects. In ECE UBC tech report, 200 1. Available
from http://tim.menzies.com/pdf/01 first. pdf.

[19] M. Feather and T. Menzies. Converging on the optimal attainment of
requirements. In IEEE Joint Conference On Requirements Engineering ICRE'02
and RE'02, 9-13th September, University of Essen, Germany, 2002. Available
from http://tim.menzies. com/pdf/02re02. pdf.

[20] N. E. Fenton and M. Neil. A critique of software defect prediction models. IEEE
Transactions on Software Engineering, 25(5):675f'i689, 1999. Available from:
http://citeseer.nj.nec.com/fenton99critique.html.

[21] E. T. G. Bricconi, E. Di Nitto. Issues in analyzing the behavior of event
dispatching systems. In Proceedings of the 10th International Workshop on
Software Specification and Design (IWSSD-I 0), San Diego, USA, November
2000.

[22] M. Heimdahl and N. Leveson. Completeness and consistency analysis of state
based requirements. IEEE Transactions on Software Engineering, May 1996.

[23] J. Horgan and A. Mathur. Software testing and reliability. In M. R. Lyu, editor,
The Handbook of Software Reliability Engineering, pages 531-565, McGraw
Hill, 1996.

[24] Y. Hu. Better treatment learning, 2003. Masters Thesis, Department of Electrical
Engineering, University of British Columbia, in preparation.

[25] J. Jahnke and A. Zundorf. Rewriting poor design patterns by good design
patterns. In Proc. ofESEC:FSE '97 Workshop on Object-Oriented
Reengineering, 1997.

[26] J. Josephson, B. Chandrasekaran, M. Carroll, N. Iyer, B. Wasacz, and G. Rizzoni.
Exploration of large design spaces: an architecture and preliminary results. In
AAAI '98, 1998. Available from: http://www.cis.ohio-state.edu/ojj/Explore.ps.

[27] A. Kakas, R. Kowalski, and F. Toni. The role of abduction in logic programming.
In C. H. D.M. Gabbay and J. Robinson, editors, Handbook of Logic in Artificial
Intelligence and Logic Programming 5, pages 235-324. Oxford University Press,
1998.

[28] B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule
mining. In KDD, pages 80f'i86, Sept 1998. Available from:
http://citeseer.nj.nec.comlliu98integrating.html.

[29] R. Lutz and R. Woodhouse. Bi-directional analysis for certification of safety
critical software. In I st International Software Assurance Certification
Conference (ISACC'99), 1999. Available from
http://www.cs.iastate.edu/or\utzlpublications/isacc99.ps.

[30] T. Menzies. Practical machine learning for software engineering and knowledge
engineering. In Handbook of Software Engineering and Knowledge
Engineering. World-Scientific, December 200 I. Available from
http://tim.menzies. com/pdf/OOml. pdf.

[31] T. Menzies and P. Compton. Applications of abduction: Hypothesis testing of
neuroendocrinological qualitative compartmental models. Artificial Intelligence
in Medicine, 10:145-175, 1997. Available from
http://tim.menzies.com/pdf/96aim. pdf.

www.manaraa.com

360 Software Engineering with Computational Intelligence

[32] T. Menzies, S. Easterbrook, B. Nuseibeh, and S. Waugh. An empirical
investigation of multiple viewpoint reasoning in requirements engineering. In RE
'99, 1999. Available from: http://tim.menzies.comlpdf/99re.pdf.

[33] T. Menzies and Y. Hu. Constraining discussions in requirements engineering. In
First International Workshop on Model-basedRequirements Engineering, 2001.
Available from: http://tim.menzies.comlpdf/Ollesstalk.pdf.

[34] T. Menzies and Y. Hu. Reusing models for requirements engineering. In First
International Workshop on Model-based RequirementsEngineering, 2001.
Available from http://tim.menzies.comlpdf/01reusere.pdf.

[35] T. Menzies and Y. Hu. Agents in a wild world. In C. Rouff, editor, Formal
Approaches to Agent-Based Systems, book chapter, 172002. Available from:
http://tim.menzies.comlpdf/O I agents. pdf.

[36] T. Menzies and Y. Hu. Just enough learning (of association rules). In WVU
CSEE tech report, 2002. Available from http://tim.menzies.comlpdf/02tar2.pdf.

[37] T. Menzies and H. Singh. Many maybes mean (mostly) the same thing. In 2nd
International Workshop on Soft Computing applied to Software Engineering
(Netherlands), February, 2001. Available from
http://tim.menzies.comlpdflOOmaybe.pdf.

[38] T. Menzies and E. Sinsel. Practical large scale what-if queries: Case studies with
software risk assessment. In Proceedings ASE 2000,2000. Available from
http://tim.menzies.comlpdf/OOase. pdf.

[39] T. Menzies and S. Waugh. On the practicality of viewpoint based requirements
engineering. In Proceedings, Pacific Rim Conference on Artificial Intelligence,
Singapore. Springer- Verlag, 1998. Available from
http://tim.menzies.comlpdf/98pracai. pdf.

[40] C. Michael. On the uniformity of error propagation in software. In Proceedings
of the 12th Annual Confererence on ComputerAssurance (COMPASS '97)
Gaithersburg, MD, 1997.

[41] A. Parkes. Lifted search engines for satisfiability, 1999.

[42] D. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 5(12):1053-1058, Dec. 1972.

[43] M. Paulk, B. Curtis, M. Chrissis, and C. Weber. Capability maturity model,
version 1.1. IEEE Software, 10(4): 18-27, July 1993.

[44] R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.

[45] R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufman, 1992.
ISBN: 1558602380.

[46] R. Rymon. An SE-tree based characterization ofthe induction problem. In
International Conference on Machine Learning, pages 268-275, 1993.

[47] R. Rymon. An se-tree-based prime implicant generation algorithm. In Annals of
Math. and A.I., special issue on Model-Based Diagnosis, volume II, 1994.
Available from
http://citeseer.nj.nec.comlI93704.html.

[48] 1. D .. M. F. S. Cornford. Optimizing the design of end-to-end spacecraft systems
using risk as a currency. In IEEE Aerospace Conference, Big Sky Montana,
pages 9-16, March 2002.

[49] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, 1996.

[50] H. T. Siegelmann and E. D. Sontag. On the computational power of neural nets.
Journal of Computer and System Sciences, 50(1): 132-150, 1995.

www.manaraa.com

Condensing Uncertainty via Incremental Treatment Learning

[51] 1. Singer, I. P. Gent, and A. Smail!. Backbone fragility and the local search cost
peak. Journal of Artifcial Intelligence Research, 12:235-270,2000.

[52] K. Wang, Y. He, D. Cheung, and F. Chin. Mining confident rules without
support requirement. In 10th ACM International Conference on Informationand
Knowledge Management(CIKM 2001), Atlanta, 2001. Available from
http://www.cs.sfu.ca/owangkipublications.html.

[53] G. Webb. Efficient search for association rules. In Proceeding ofKDD-2000
Boston, MA, 2000. Available from
http://citeseer.nj.nec.comlwebbOOefficient.html.

[54] W. Wong and A. Mathur. Reducing the cost of mutation testing: An empirical
study. The Journal of Systems and Software, 31 (3): 185-196, December 1995.

[55] L. A. Zadeh. Outline of a new approach to the analysis of complex systems and
decision processes. IEEE Transactions onSystems, Man and Cybernetics, SMC-
3(1):28-44, Jan. 1973.

361

